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The Computer Numerical Control (CNC) machine is one of the most effective production facilities used in manufacturing industry. 
Determining the optimal machining parameters is essential in the machining process planning since the machining parametcrs 
significantly affect production cost and quality of machined parts. Previous studies involving machinin2 optimization of turning 
operations concentrated primarily on developing machining models for bar components. Machined parts on the CNC lathes, 
however, typically have continuous forms. In this study, we formulate an optimization model for turned parts with continuous 
forms. Also, a stochastic optimization method based on the simulated annealing algorithm and the pattern search is applied to 
solve this machining optimization problem. Finally, the applications of the developed machining modcl and the proposed opti- 
mization algorithm are established through the numerical examples. 

I .  Introduction 

Optimizing machining conditions has become increas- 
ingly important owing to the extensive applications of 
Computer Numerical Control (CNC) machines. In the 
process planning of CNC machining, determining opti- 
mal machining parameters is necessary to satisfy re- 
quirements involving machining economics, machining 
quality and machining safety. The machining parameters 
in multi-pass turning operations consist of cutting speed, 
feed, depth of cut and number of passes. The machining 
parameters significantly affect the cost, productivity and 
quality of machined parts. Determining machining pa- 
rameters is generally based on optimizing certain eco- 
nomic criteria which are subjected to  a set of machining 
constraints. A number of economic criteria such as min- 
imum unit production cost, minimum unit production 
time and maximum profit rate are used to  measure the 
performance of machining operations. The machining 
constraints usually consider the C N C  machine specifica- 
tions, CNC machine dynamics, cutting tool dynamics and 
machined part design specifications. Therefore, the ma- 
chining optimization problems are generally constrained 
nonlinear programming problems with a high computa- 
tional complexity. 

Although previous studies involving optimizing turning 
operations are remarkable, they concentrated primarily 
on developing cutting models and solution approaches 
for bar components [I-1 51. The machining models for- 

mulated in these works only considered bar components 
requiring straight turning. This process involves cutting a 
workpiece in the longitudinal (2) direction to produce a 
constant stock diameter. In the real-world turning pro- 
cess, the parts turned on CNC lathes frequently have 
continuous forms. Figure I presen ts a turned part with a 
continuous form. These usually consist of bar compo- 
nents, taper components and circillar components. Such 
turned parts additionally require taper turning, face 
turning and circular turning (see Fig. 1). A taper is a 
uniform reduction in diameter measured along the axis of 
the workpiece; in addition, linear interpolation is used to 
cut the taper. Face turning involves material removal as 
the tool moves in the x direction that is perpendicular to 
the z axis. Circular turning is typically used to machine 
concave or convex circular -shapes. In this study, we 
formulate a machining model for turned parts with con- 
tinuous forms to extend machining optimization appli- 
cations. 

Many solution approaches have been used to optimize 
turning operations, e-g., calculus differential approach 
[ I  21, geometric programming [5,11,123, Lagrangian opti- 
mization method [3,9], goal :programming [I 2,141, 
Sequential Unconstrained Mir..imization Technique 
(SUMT) (81, linear approximatior1 method [IS], simplex 
search [1,2], direct search combining random search and 
Hooke-Jeeves pattern search [lo], a combination of dy- 
namic programming and Fibonacci search [13), and a 
combination of geometric and linear programming [6,?]. 
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Fig. 1 .  A turned part with the continuous form. 

Among the existing methods, no generalized solution 
method is available for all machining optimization 
problems [16]. The existing methods differ in their reli- 
ability, efficiency and sensitivity to initial solution. Fur- 
thermore, they are only useful for a specific problem or 
:ire inclined to obtain a local optimal solution. 

This study aims to formulate a machining model for 
turned parts with continuous forms, and to develop a 
generalized solution method for determining the optimal 
machining parameters. The turned components consid- 
ered herein can be characterized in terms of straight, ta- 
per and circular profiles. The turning operations for 
machined parts with continuous forms studied here have 
multiple rough cuts and a single finish cut. The optimal 
machining paralncters are determined with respect to 
minimum unit production cost criterion and a set of 
practical constraints. The proposed optimization algo- 
rithm is a hybrid approach that combines Simulated 
Annealing (SA) 11 7,181 and Hooke-Jeeves Pattern Search 
(PS) [19]. This algorithm can solve large turning optimi- 
zation problems for actual manufacturing applications, 
and also deliver a solution approximating to the global 
optimum. It has been reported that the future of SA de- 
pends on its application with other well-tuned heuristics 
[20]. Whilst the SA technique is well-known for its ca- 
pability to escape from local optima, it is not efficient 
with respect to the number of iterations [21]. PS has been 
widely used and is considered to be efficient in the area of 
nonlinear programming [22); however, it is more inclined 
to terminate on a local optima. In this study, a more 
efficient stochastic optimization approach is developed by 
incorporating PS into SA. 

The rest of this paper is organized as follows. Section 2 
discusses the expressions for cutting time for various 

turning operations. Section 3 formulates the machining 
model for turned parts with continuous forms. Section 4 
presents the proposed optimization algorithm. In Section 
5, two numerical examples are described and their com- 
putational results are summarized. Concluding remarks 
are finally made in Section 6. 

2. Computation of cutting time 

For turned parts with continuous forms, turning pro- 
cesses include circular interpolation and/or linear inter- 
polation. The linear interpolation can be classified into 
three types of operations: straight turning, face turning 
and taper turning. Previous studies have developed 
turning models for bar components, in which the cutting 
time is only calculated for straight turning. Therefore 
these previous models cannot be employed to optimize 
turning operations for parts with continuous forms since 
the computation of cutting time for each type of turning 
process is different. The expressions of cutting time for 
various turning processes are presented as follows. 

The cutting time of straight turning T (min) can be 
calculated by [23] 

where D and L are the diameter and length of the 
workpiece (mm); V is the cutting speed (mlmin); and f is 
the feed (mmlrev). From Fig. 2, the formula for the 
cutting time (Equation (1)) for straight turning between 
any two points Pj (2 ,  , X I )  and P2(z2, x2) can be rewritten as 

where x = xI = XZ; 2x = D; and lz2 - z l l  = L. 
In turning operations, the spindle speed N (rpm) can be 

represented as the cutting speed V divided by the cir- 
cumference length of the given diameter D [24], thus 

Fig. 2. Straight turning. 
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Turning operations for continuous forms 585 

In straight turning the distance between the tool and the 
workpiece center is a constant. Thus, a constant cutting 
speed V can be obtained if the spindle speed N does not 
vary. However, the diameter D in the cases of face 
turning, taper turning and circular turning is not a con- 
stant. Therefore, the cutting speed V cannot be constant 
due to the instantaneously changing diameter D (refer to 
Equation (3)). It is desirable to maintain a constant cut- 
ting speed even though the effective diameter of the cut- 
ting changes during machining [25]. To provide a 
constant cutting speed in such cases, the CNC controller 
monitors the changing distance between the tool and the 
workpiece center, and adjusts the spindle speed. There- 
fore, Equation ( I )  cannot be used to calculate the cutting 
times for face turning, taper turning and circular turning. 
For such turning operations, the cutting times can be 
calculated by the formulas derived by Lee [26]. These 
formulas are briefly described as follows. Lee presents a 
more detailed discussion. 

Figure 3 illustrates the geometric representation of the 
linear turning. For the linear turning between any two 
points Pl(zl , x l )  and P2(z2,x2), the cutting time can be 
calculated by 

where 0 = tan-'((x2 - x1)/(z2 - I,)); 0 < 6 < II. or 7-t < 
8 < 271. If 0 is not equal to 0, n/2, n, or 37r/2, the linear 
turning can be classified as taper turning. 

In the case of straight turning, where 8 in Equation (4) is 
0 or n , Equation (4) is found to be equivalent to Equation 
(1). In the case of face turning, where 0 in Equation (4) is 
n/2 or 3n/2 (sin 6 = f 1), the cutting time T becomes 

Figure 4 presents a geometric representation of circular 
turning. For circular turning between any two points 
Pl (2, , X I )  and P2(z2,x2), the cutting time can be calculated 
by 

d6 = / 2~ (4 + r, sin 0) do, 
1ooo:y 

8 r 81 

where O1 = tan-'((I, - x,) / (zl -- z,)); e2 = tan-' ((xZ- 
x,)/(z2 - zc ) ) ;  0 5 6 ,  5 2n; 0 5 O2 5 2n; r, represents the 
radius of the circular arc at  a point P(x,  z) between PI and 
P2; PC&, xc)  represents the center of the circular arc. 

Next, we derive the analytical formulas for cutting time 
of the multi-pass machining models, in which the turned 
parts have continuous forms. 

3. Development of machining mc~del 

In the cutting of forged and cast workpieces, the cutter 
path pattern, which moves along the part contour, is re- 
peated as many times as required 1251. The turning c~p- 
erations generally include a roughing stage which has 
multiple rough cuts, and a finishing stage which has a 
single finish cut. For such multi-pass turning operations, 
the number of rough cuts, as well as cutting speeds, feeds, 
and depths of cut for roughing a:ad finishing are consid- 
ered as decision variables. In this study, the optimal 
machining parameters (decision viiriables) are determined 
with respect to the minimum unit production cost crite- 
rion. The unit production cost is minimized while salis- 
fying a set of machining constraints. 

Fig. 3. Linear turning (Lee [26]). Fig. 4. Circular turning (Lee 1261). 
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586 Su and Chen 

3.1. Cutting time expressions for multi-pass 
turning operations 

3.1.1. Cutting time of multi-pass straight turning 

A turned part may consist of several segments which re- 
quire straight turning. For the i-th straight turning segment 
between two points PI (i).(zl ( i )  , X I  (i) ) and S ( i )  (z*(i) 3 x2(i1) 
(refer to Fig. 2), the cuttlng time of the g-th rough cut 
Thr(i)(g) (min) can be calculated by using Equation (2), and is 
expressed as 

Thr (i) (e) = 
nlx(g)(i)  (z2(i) - Z] (4) I 

500 Y,f, 
where x ( , ) ( ~ )  represents the x-coordinate of the g-th rough 
cut and takes the form 

In Equation (7), z ( I ) ( ~ )  and Z(Z)(~) are the z-coordinates of 
PI(,) and P2( , ) ;  K, fr and d, are the cutting speed (mlmin), 
feed (mmlrev) and depth of each cut (mm) for roughing, 
respectively; D(i) is the diameter of the finished part for 
the i-th straight turning segment; and d, is the total depth 
of metal to be removed. By substituting x ( , ) ( ~ )  in Equation 
( 7 )  for Equation (8), Thr(i)(g) can be rewritten as 

For the i-th straight turning segment, the cutting time 
of multi-pass roughing Shr(;) can be expressed as 

where n is the number of rough passes. 
For single-pass finishing, the cutting time of the i-th 

straight turning segment Sh(i) can be expressed as 

lxr(i) (z2(i) - 2' ( i )  ) 1 
= 

500 Kh 

where x,(o = D(i)/2 represents the x-coordinate of the i-th 
straight turning segment for the finish cut; and V, and $, 
are the cutting speed and feed for finishing, respectively. 

The cutting time of the i-th straight turning segment is 
the sum of the cutting time of multi-pass roughing Shr(i)  
and the cutting time of single-pass finishing Shr(i). If there 
are nh segments of straight turning, the total cutting time 
of all such segments S,, becomes 

3.1.2. Cutting time of multi-pass taper turning 
For the j-th taper between two points PI (zIb), x l O ) )  and 
p2(,) ( z ~ ( ~ ) ,  x2(,)) (refer to Fig. 3), the x-coordinates of 
P1(j)(g) and P2(j)(s) of the 9-th rough cut can be represented 
as 

where DIG) and D2(,) are the diameters of the finished part 
at  points ( Z ~ ( ~ ) , X ~ ( ~ ) )  and P2(,) ( z2 ( , j , x20 ) ) ,  respectively. 
By substituting xl and x2 in Equation (4) for x ~ ( , ) ( ~ )  and 
x2b)(,)  using Equation (13), the cutting time of the g-th 
rough cut for taper turning T,,b)(,) can be obtained as 

( ( ~ 2 ~ ) / 2 ) + d t - g d r ) ~ - ( ( ~ 1 ( , ~ / 2 ) + d , - g d r ) ~  
1000 v,f, sin Otj) 

0.25(~;, - D;,)) + (40 - ~1 w) (dt - gdr) 

1000 V,S, sin 00 

where O(j )  = tan-' ( (xZl i )  - x ~ ~ ) ) / ( z ~ ~ )  - z ' ( ~ ) ) )  = tan-' 
( ( ~ 2 ~ )  - Q ( , ) ) / 2 ( ~ 2 ~ )  - ~ l ( , ) ) ) ;  0 < 6(,) < n ;  < 0(,) < 2 ~ -  

For the multi-pass roughing, the cutting time of the j-th 
taper S,(,) can be defined as 

0.25 (qO) - + (40) - Dlb)) (4  - g 4 )  

1000 fr sin Ot j) 

For the single-pass finishing of the j-th taper, the x- 
coordinates of PI(,) and PZ0 of the finish cut, xlSu and 
xzr(,), can be represented as 

- - 

By substituting xl and x2 into Equation (4) for x l ,b )  and 
xa(,) using Equation (16), the cutting time of the finish 
cut for the j-th taper S,(,) can be expressed as 

( ~ 2 (  j )  12) - (D I ( j )  /2:1 
sin B(,) -I 

nh 

SO = c (sh .~ i )  + S h ( i ) )  (12) Tbe cutting time of the j-th taper is the sum of the cutting 
i= 1 time of multi-pass roughing S,(,) and the cutting time of 
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Turning operations for continuous forms 

single-pass finishing SbM. The toial cutting time of all 
taper turning segments St can be expressed as 

where n, is the number of tapers. 

3.1.3. Cutting time of multi-pass face rurning 
For face turning, the formulas for cutting time can be 
obtained by setting 8 in Equation (4) to n/2 or 3x12 
(sin 8 = f 1). The cutting time of the multi-pass roughing 
for the k-th facing segment S+) can be obtained from 
Equation (15) and expressed as 

where Dl(k)  and D2p) are the diameters of the finished 
part for the k-th facing segment at points ( Z ~ ( ~ ) , X ~ ( ~ ) )  

and P2(k) ( z2 (k )  ~ 2 ( k ) ) ,  respectively - 
Similarly, the cutting time of the finish cut for the k-th 

face turning segment can be obtained from Equation 
(1 7) and is expressed as 

The cutting time of the k-th facing segment is the sum of 
the cutting time of multi-pass roughing Sw(k) and the 
cutting time of single-pass finishing Sus(kl. The total cut- 
ting time of all facing segments S, can be defined as 

where nu is the number of facing segments. 

3.1 -4. Cutting time of multi-pass circular turning 
For the I-th circular arc between two points 
p, ( 1 )  ( z I ( I ) ,  X I  ( I ) )  and 4 1 )  ( ~ 2 ( 1 ) ,  X 2 ( 1 ) )  (refer to Fig. 41, the 
arc radius in the g-th rough cut ra())(B) can be defined as 

where R(/) is the radius of the finished part for the 1-th 
circular arc. By replacing ra in Equation ( 6 )  by ra(,)(,) 
using Equation (22), the cutting time of the g-th rough cut 
for the 1-th circular arc Tc,(I)(,) can be obtained as 

where 

= tan-' 
Zl  ( 1 )  - Zc(1) 

Dl ( , )  and D2(,)  are the diameters of the finished part ibr 
the i-th circular arc at points P,o) and P2(1), respectively; 
and ( ~ ~ ( ~ 1 ,  x , ( ~ ) )  is the center of the 1-th circular arc. 

For the multi-pass roughing, tht: cutting time of the 1.-th 
circular arc SCdI) can be defined as 

For the single-pass finishing of t5e 1-th circular arc,  he 
cutting time of the finish cut S,(,, can be expressed as 

The cutting time of the 1-th circul.ar arc is the sum of the 
cutting time of multi-pass roughing S,(l) and the cutting 
time of single-pass finishing S, ( r )  The total cutting time 
of all circular arcs Sc can be expressed as 

nc 

sc = c (sCrco + Sam), (:! 6 )  
I= I 

where nc is the number of circular arcs. 
Finally, the total cutting time TM c.an be obtained by 

summing up the cutting times of: multi-pass straight 
turning Sh, of multi-pass taper turning S,, multi-pass fhce 
turning S, and multi-pass circulai: turning S,. Hence, the 
total cutting time TM becomes 

TM = Sh + Sr + A \  + S c .  (27) 

3.2. Formulation of the objective ,function 

The economic criterion considered here is the minimum 
unit production cost which includes the cutting cost by 
actual time, the machine idling cost due to loading and 
unloading operations and idling tool motion, the tool 
replacement cost and the tool cost. 

The cutting cost CM ($/piece) can be expressed as 

CM = k, Tm., (28) 

where k, is the sum of direct labor cost and overhead 
($/min); TM is the actual cutting time which can be 
calculated by Equation (27). 
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The machine idling cost Cr ($/piece) can be expressed as 

where TI is the machine idling time (min). I t  is divided 
into a constant term ( t , )  due to loading and unloading 
operations and a variable term due to idling tool motion. 
The variable term, idling tool motion time t ,  (min), can be 
represented as the distance of tool rapid traverse 1 ,  (mm) 
divided by the rapid speed V, (rnmlmin), thus 

The distance of rapid traverse I, can be defined as 

where 1 ,  is the distance between the reference point and 
the cycle start point; l2  i s  the distance between the cycle 
start point and the cutting start point; and l3 is the dis- 
tance between the cutting end point and the cycle start 
point [25].  Consequently, the machine idling time can 
bc expressed as 

Heuce, the machine idling cost CI becomes 

The tool replacement cost CR ($/piece) can be expressed as 

where TR is the tool replacement time (rnin). The tool 
replacement time can be written in terms of tool life t l  

(min), time required to exchange a tool t, (min) and 
cutting time TM. It is given by 

The Taylor equation for tool-life is given by [23] 

co t = -  va f Pdv ' (36) 

where a, ,9, y and Co are constants. The same tool is 
assumed to be used for the entire machining process, i.e., 
both roughing and finishing. The wear rate of tools 
usually differs between roughing and finishing because 
the machining condition is different. The tool life t ,  in 
such a situation can be expressed as 11 31 

Su and Chen 

(38) 

The tool cost CT ($/piece) can be obtained by 

TM CT = k t - ,  
t I 

(39) 

where k, is the cutting edge cost ($/edge). 
Finally, by using the above mathematical manipula- 

tions, the unit production cost UC ($/piece) can be ob- 
tained as 

3.3. Cutting constraints 

The practical constraints imposed during the roughing 
and finishing operations include: (1) parameter bounds; 
(2) tool-life constraint; (3) operating constraints consist- 
ing of surface finish constraint (only for finish machin- 
ing), cutting force constraint and power constraint; (4) 
stable cutting region constraint; (5) chip-tool interface 
temperature constraint and (6) parameter relationship 
constraints consisting of relations between roughing and 
finishing parameters, and total depth of cut constraint. 
They are discussed as follows. 

3.3.1. Rough machining 
Parameter bounb:  Owing to the limited capacity of CNC 
machines, the safety of the operator, the type of cutting 
tool and the material of the workpiece, the machining 
parameters are restricted to be within the lower and upper 
bounds. 
Bounds on the cutting speed 

where y,L and Y," are the lower and upper bounds of the 
cutting speed in roughing, respectively. 
Boundr on the feed: 

I;L < f r  < f r ~ ,  (42) 

where frL and frU are the lower and upper bounds of the 
feed in roughing, respectively. 
Bounds on the depth of cut: 

where drL and drU are the lower and upper bounds of the 
depth of cut in roughing, respectively. 

where = ~o/vr"f!~? represents life for rough ma- Tool-lije constraint: Considering production economics 
chining; r~ = c ~ / ~ a . f ? d y  represents too' life for finish and the required quality of the machined parts, the tool 
machining; w is a weight for the tool-life equation; and life should be within an acceptable range. ~h~ constraint 
o s w g .  on the tool life is taken as 

Hence, the tool replacement cost CR can be expressed 
as Ti. 5 tr ,< Tu, (44) 
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Turning operat ions for continuous forms 5139 

where TL and Tu are the lower and upper bounds of the 
tool life, respectively. 
Cutting force constraint: A constraint must be placed on 
the cutting force to limit any deflection of either the 
workpiece or the cutting tool that would cause dimen- 
sional errors, and to reduce the power required for the 
cutting process. An expression for the cutting force con- 
straint is [18] 

where Fr is the cutting force during rough machining 
(kgf); kf, p and u are constants pertaining to specific tool- 
workpiece combination; and Fu is the maximum allow- 
able cutting force (kgf). 
Power constraint: The power required during the cutting 
operation should not exceed the available power of the 
machine tool. The power constraint is given by [13] 

where Pr is the cutting power during rough machining 
(kW); q is the power efficiency; and PU is the maximum 
allowable cutting power (kW). 
Stable cutting region constraint: To prevent chatter vi- 
bration, adhesion and the formation of a built-up edge, a 
constraint on the stable cutting region has been imposed. 
This constraint is expressed as [ I  I ]  

where R and o are constants pertaining to specific tool- 
workpiece combinations; and SL is the limit of the stable 
cutting region. 
Chip- tool inter-ce temperature constraint: The hardness 
and sharpness of a tool decrease if the temperature gen- 
erated at  the chip-tool interface exceeds the available 
limit and the tool can no longer be used for cutting. This 
constraint can be expressed as [8] 

- 

Qr = kq ctf!d," 5 Qu, (48) 

where Q, is the temperature during roughing ("C); k,, r ,  4 
and 6 are constants, and QU is the maximum allowable 
temperature ("C). 

3.3.2. Finish Machining 
All the constraints other than the surface finish constraint 
are similar for rough and finish machining. 
Parameter bounds: 
Bounds on the cutting speed 

K L  5 yS 5 Ku, (49) 
where KL and KLI are the lower and upper bounds on the 
cutting speed in finishing, respectively. 
Bounds on the feed: 

f s ~  S f J  I f s u ,  (50) 

where I,L and fsu are the lower and upper bounds on the 
feed in finishing, respectively. 

Bounds on the depth of cut: 

where dsL and dsU are the lower and upper bounds on the 
depth of cut in finishing, respectively. 
Tool-lge constraint: 

Cutting force constraint: 

where F, is the cutting force during finish machining (kgf). 
Power constraint:. 

where P, is the cutting power during finish machining 
(k W). 
Stable curt ing region constraint: 

Chip-tool interface temperature constraint: 

where Qs is the temperature during finishing ("C). 
SurfaceJinish constraint: The surfztce finish dominates the 
quality of a machined part, and is gene.rally influenced by 
factors such as speed, feed, depth of cut, tool geomet.ry 
and material of the tool. Furthennore, some undesiral~le 
machining conditions such as excessive tool wear, built- 
up edge and chatter, deteriora.te the surface finish. 
However, only feed and the nose radius of the cutting 
tool R, (mm) are considered here since they have the most 
significant effect on the surface finish [ I  I]. This constraint 
takes the form 

where R, is the maximum allowable surface roughncss 
(PM). 
Relations bet ween roughing and jinishing parameters: In 
addition to the constraints mentioned previously, the re- 
lations between the speed, feed and depth of cut in both 
roughing and finishing must be defined [16]. During 
roughing, the values of the dep1.h of cut and feed are 
usually greater than that for finishing. Nevertheless, the 
speed for roughing is usually less than that for finishing. 
These relations are important in determining machining 
parameters, and can be expressed as 

where kl,  k2, k3 are relationship coefficients and kl, k2, 
k3 2 1.  
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590 Su and Chen 

Torof deptl~ of cur constraint: The depth of the finish cut 
(d,) should be equal to the total depth of cut (d,) minus 
the total depth of the rough cut (nd,)'. Therefore, this 
equality equation can be defined as 

Boutids on the number of rough curs: The bounds on the 
number of rough cuts can be expressed as follows: 

where NL = (dl - dro)/dru , Nu = (dl - dsL)/drL are the 
lower and upper bounds on the number of rough cuts, 
respectively. 

For each possible depth of a finish cut (d,), the corres- 
ponding depth of the rough cut (d,) can be computed. 
Equation (61) can be rewritten as 

BY 
the 
in t 

using the above mat hematical manipulation, d, and 
cqurdi ty constraint, Equation (6 I), can be eliminated 

.he optimi~ation algorithm. 

lamas et al. [27] have surveyed SA applications in pro- 
ductionloperations management and operations research 
problems. From their review, SA has developed into a 
powerful optimization technique for difficult combinat- 
orial optimization problems. By defining a specific move 
generation mechanism, Corana el al. [28] have developed 
an SA approach to solve optimization problems in which 
the variables are continuous. 

Analogous to statistical mechanics, the search proce- 
dure in SA performs with respect to a transition proba- 
bility. The transition probability is determined by the 
control temperature and the change in objective function. 
SA is a variation of neighborhood search, which will move 
"uphill" with respect to cost, replacing the current solu- 
tion with a higher cost. By allowing a move to a worse 
solution in a controlled situation, SA can escape from a 
local optimum and potentially find a more promising 
"downhill" path. Furthermore, the "uphill" moves are 
carefully con trolled by the temperature parameter. When 
the temperature is high, the probability of the "uphill" 
move is high. With a gradual decrease in temperature, the 
probability of an "uphill" move becomes small. Although 
SA is typically considered to be a heuristic optimization 

3.4. Sunrmary of the cuffing model method, it allows the global optima to be found, provided 

Rascd on the above discussion, this study has formulated that certain conditions are satisfied [29]. 

a machining model to optimize multi-pass turning oper- 
ations for parts with continuous forms. The turning 4.2. Pattern search 
model formulated above is a constrained nonlinear opti- 
mization problem with mu1 tiple continuous/integraI 
variables (machining parameters). The unit production 
cost, as  given by Equation (40) is the objective function of 
the developed machining optimization model. The ma- 
chining constraints include constraints (4 1 )-(62). The 
iiforemcntioned optimization techniques are not suitable 
for solving this cutting model owing to tbe complexity 
arising from the nonlinear objective function and the 
numerous nonlinear constraints. The following section 
describes the proposed optimization algorithm. 

4. Proposed optimization algorithm 

In this section, we propose an optimization algorithm to 
effectively deal with the complex multi-pass turning 
problems developed in Section 3. The proposed optimi- 
zation algorithm is an approach combining SA and PS. 
To rcduce the computational requirement of SA and in- 
crease the chance of optimality of PS, the proposed op- 
timiziition algorithm embeds the PS into SA as the move 
generation mechanism. 

4.1. Sirnula f ed annealing 

The Simulated Annealing (SA) algorithm [17,18] is a 
s tochns tic search technique designed to guide a search 
procedure away from the trap of local optimality. Kou- 

a 

The Hooke-Jeeves Pattern Search (PS) [19] is incorpo- 
rated into the SA algorithm as the move generation 
mechanism. PS proceeds according to a series of either 
exploratory or pattern moves. The exploratory moves 
examine the local behavior of a function and seek to lo- 
cate the direction of any sloping valleys that might be 
present. The pattern moves utilize the information gen- 
erated in the exploration to step rapidly along the valleys. 

The step sizes of the variables are adjusted if the vector 
of the pattern direction is equal to zero, i.e., no move is 
accepted in the completed exploratory move with the 
current step sizes. The step sizes will be increased first until 
the user-specified limit is reached. If this fails, the step sizes 
will be decreased, and the exploratory moves are repeated. 

4.3. The proposed optimization algorithm 

By considering the enormous computational require- 
ments, the SA approach for optimization problems with 
continuous variables as developed by Corana et al. [28], is 
not suitable for solving complex machining optimization 
problems. To reduce the computational cost of the 
method developed by Corana et al., we propose an 
optimization algorithm which incorporates PS into SA 
as the move generation mechanism. Applying the SA 
approach initially requires defining four basic compo- 
nents of the algorithm. The four basic components in the 
proposed optimization algorithm are 
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Turning operations for continuous forms 5!> 1 

(1) Configuration: A legal configuration is one combina- 
tion of variables, i.e., a vector of machining parameters 
(S) related to the turning model. 
(2) Move set: All S's obtained from the PS are elements of 
the move set. The moves in the optimization algorithm 
are determined by PS. It  also adjusts the step sizes and 
determines the search directions in which the optimiza- 
tion procedure will proceed. 
(3) Cost function: The objective function which defines the 
unit production cost with any given combination of 
variables (see Equation (40)) is the cost function for the 
machining optimization problem. 
(4) Cooling schedule: We carried out a simple one, the 
geometric cooling schedule [30]. Following completion of 
a specified number of moves (M), the temperature (r)  is 
replaced by the old temperature multiplied by a constant 
(c). The constant, called the cooling ratio, is less than 1 
and greater than zero. The process is judged to be frozen 
when the procedure has made K consecutive loops of M 
moves with no change in the current best solution. van 
Laarhoven and Aarts [21] have discussed a number of 
cooling schedules. The geometric cooling schedule has 
been implemented successfully for many optimization 
problems, e.g., graph partitioning [31], resource-con- 
strained scheduling [32] and manufacturing systems lay- 
out design [33]. This cooling schedule cools rapidly and 
performs quite well [32]. Since the machining optimiza- 
tion model formulated above is large and complex, the 
geometric cooling schedule is proposed here to reduce the 
computational requirements. 

If frozen = 1, go to Step 5 .  . 
Step 3. (Check pattern direction and adjust step sizes) 

(a) If AS f 0, go to Step 4. 
(b) If nl < I, set nl = n, + I (increase step sizes). 

For i = 1 to m 
If si is continuous, set ui = (r1)"' x UP. 
Otherwise, if si :is integral, set ui = 
(nI + 1)x u!. 
If uj > ff, set ui = IP. 

G o  to Step 2. 
(c) Otherwise, set no = n~ + 1 (decrease step 

sizes) . 
For i = 1 to m 

If si is continuous, set ui = (rD)" x UP. 
Otherwise, if si is inxegral, set ui = u! - n ~ .  
If ui < d", set ui = z,?. 

G o  to Siep 2. 
Step 4. (Pattern move) 

(a) Set St = S + AS, AE =: F ( S 1 )  - F ( S ) .  
(b) If AE < 0 (downhill move), set S = St ,  imp =: 1 

and go to (d). 
(c) If AE 2 0 (uphill move), set S = S', imp = 1 

with probability e-ml''. 
(d) Perform sub-procedurt: CHECK. 

If frozen = 1, go to Step 5. 
(e) If S = St, return to (a) (continue pattern 

move). 
(f) Otherwise, return to Step 2 with S.  

Step 5. (Termination) 
Return S* and terminate search. 

Next, the proposed optimization algorithm is formally Sub- Procedure CHECK (Check improvement in current presented. Table 1 lists the notations and user-specified 
best solution during M moves and lower control tempera- data of the proposed optimization algorithm 
t ure) 

Step I. (Initialize the search procedure) 
(a) Obtain an initial solution S O ,  an initial control 

temperature and initial step sizes If'. 
(b) Set S = SO,  U = U", r = P', nK = 0, n~ = 0, 

nl = 0, n~ = 0. Evaluate F(S) .  
Step 2. (Exploratory move) Set AS = 0, St = S. 

F o r j =  1 t o m  
(a) Set d = s, + u,, hE = F ( S t )  - F ( S ) .  

If d < 0 (downhill move), 
set S =St, Asj = u,, imp = 1. 

(b) I f  AE 2 0 (uphill move), set S = St, hrj = u,, 
imp = I with probability e -M/r .  

(c) Perform sub-procedure CHECK. 
Iffrozen = 1, go to Step 5. 

(d) If = 0, set z$ = s, - u,, AE = F(S1) -  F(S) .  
Otherwise, return to (a). 

(e) If AE < 0 (downhill move), 
set S = St, br, = -u,, imp = 1 .  

(f) If AE 2 0 (uphill move), set S = St, Asj = -uj, 

imp = I with probability e-hElr. 
(g) Perform sub-procedure CHECK. 

Step I. Set n~ = n~ + 1. 
If n~ = M, go to Step 2.  
Otherwise, go to Step 4. 

Step 2. (Check improvement during M moves) Set n~ = 0. 
2.1 If imp = 1 ,  (current best solution improved) 

Set n~ = 0: 
2.2 Otherwise, set nK = n~ + I .  

2.2.1 If n~ = K, Cfroz~n state achieved) 
set frozen = 1. 

2.2.2 Otherwise, set jkozen = 0. 
Step 3. (Lower control te)nperatu;c) 

set r = c x P .  
Step 4. Return. 

In the proposed optimization algorithm, the search pro- 
cedure begins at  an initial soluticln. The initial solution 
can be either selected in an arbitrarily manner or by using 
a present solution (if an existing cutting condition is of 
concern). The initial solution can be generated randomly, 
if the manufacturing engineer does not have sufficient 
knowledge of how to set the initial values of parameters. 
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Su and Chen 

Toble 1. Notations and specified data of the proposed optimization algorithm 

m number of decision variables, m = 2 (Example I ) ,  m = 6 (Example2) 
S vector of decision variables (machining parameters), S = {sl , s2, . . . ,s,) 
St a neighboring solution of S 
SO vector of initial solution, SO = {so so 
S* vcctor of final solution, S* = is;,$, 2 y * m a 1 * s ?  . . . ,s, 
U vector of step sizes, U = { u ,  , ~ 2 , .  . . , urn),  

UO vector of initial step sizes, @ = {uy,  up,. . . , up,}, Uo = {0.01,0.5) (Example I), 
lf' = {1,0.01,0.5,0.01,0.01,0.5) (Example 2) 

LIM vector of maximal step sizes, uM = {q, Ut(, . . . , c}, uM = {l .O, 15.0) 
(Example 1), uM = {1,0.5, 15.0,1.0,0.5, 15.0) (Example 2) 

Urn vtctor of minimal step sizes, Urn = {q, $, . . . ,<I ,  Urn = {O, 0) (Example I), Urn = { I ,  0,0,0,0,0) (Example 2) 
AS vector of pattern direction, A S  = {Asl,As2 ,..., As,) 
AE change in objective function, AE = F(S1)  - F ( S )  
n, a counter for number of step size increment 
I maximum number of step size increment allowed, I = 10 
no a counter for number of step size decrement 
r increasing rate of step sizes, r, > 1, r, = 1.47 
r~ decreasing rate of step sizes, 0 < r~ < 1,  r~ = 0.77 
n~ a counter for number of search points at a temperature level 
4 specified number of search points at a temperature level, M = 45 
nK a counter for checking frozen state achieved of the proposed optimization algorithm 
K specified maximum number of n ~ ,  K = 25 
N maximum number of iterations for considering AE = 0 as improvement, N = 3000 
c cooling ratio, a constant, c = 0.95 

control temperature of the optimization algorithm 
Id initial control temperature of the optimization algorithm, P = 1000 

The fact that the proposed optimization algorithm is a 
stochastic optimization approach may cause the cost of 
the current "best" solution to fluctuate. The solution 
procedure saves the lowest cost solution reached at any 
perturbation, thereby ensuring that the lowest cost solu- 
tion can always be recovered. Johnson et al. [31) per- 
formed an empirical study, concluding that, at some 
point, it is more profitable to perform, e-g., two annea- 
lings of length H than one annealing of length 2H. 
Therefore, we recommend the optimization algorithm be 
run twice. To reduce the number of iterations, no change 
in objective function (i.e., AE = 0) will be consider as no 
improvement for this perturbation after a relatively large 
number of points have been reached ( N ) .  

The proposed optimization algorithm has several desir- 
able characteristics, including the capability of escaping 
from the local optima, ease of implementation algorith- 
mically, robustness in dealing with large machining prob- 
lems, and no restrictive assumptions regarding objective 
function, parameter set and constraint set. 

5. Numerical examples and discussions 

5.1. Examples 

Two different test examples are used in this study to 
evaluate the effectiveness of the proposed optimization 
algorithm. Example 1 is adopted from Philipson and 

Ravindran (121. It is a relatively simple turning problem 
whose true optimum can be found by the differential 
calculus approach. This example is used to measure the 
absolute quality of obtained solution using the proposed 
optimization algorithm. Example 2 is a part with a con- 
tinuous form to be turned in multiple passes. It is used to 
illustrate the complexity of the turning model developed 
in Section 3, and justify the viability of the proposed 
optimization algorithm in highly complex turning opti- 
mization problems. The proposed optimization algorithm 
has been tested by making 50 runs with different initial 
solutions for each test example. The initiai solutions are 
randomly selected within the parameter bounds. The ex- 
amples have been run on an IBM PC 486 compatible 
computer using C. 

Example 1: A bar with a single diameter is to be turned 
in one pass using the optimal cutting speed and feed 
which will minimize the unit production cost. The ma- 
chining constraints considered in this  example include 
parameter bounds, cutting force constraint and stable 
cutting region constraint. A detailed formulation of this 
turning model can be found in the literature [12]. Owing 
to the simplicity of this example, its true optimum can be 
obtained from the calculus differential approach. The 
optimal values of cutting speed and feed are 1 53.37 ft/min 
and 0.035 in/rev [12], respectively. By inserting these 
values into the objective function, the unit production 
cost is $ 0.56l/piece. Comparing our results of Example I 
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Turning operations /or continuous forms 593 

Table 2. Computational results of Example 1 

Final solution 
S* = (I., V ' )  

Final cost ($) Frequency 
UC'(%) 

(0.035, 153.432) 0.561 16/50 
(0.035, 153.256) 0.561 25/50 
(0.035, 153.204) 0.561 2/50 
(0.035, 153.391) 0.561 5/50 
(0.035, 153.500) 0.56 1 2/50 
Average final cost (%) 0.561 
Standard deviation 0.000 

of  the final cost 
Average search points 12565.2 
Average CPU time 2.0 
(seconds/run)* 

* The CPU time is based on an IBM PC 486 compatible computer 

(see Table 2) with the optimal solution found by Phi- 
lipson and Ravindran [12] reveals that the final values of 
machining parameters are slightly different. However, the 
final values of objective function are % 0.56l/piece, and 
the standard deviation of the final values of objective 
function is 0.000. Results obtained from t h s  example 
demonstrate that the proposed optimization algorithm 
performs quite well in terms of absolute solution quality. 

Example 2: A turned part with a continuous form 
shown in Fig. 5 is taken as the second example. This 
turned part has five straight turning segments, one face 
turning segment, one taper and two circular arcs. The 
machining optimization model is established with respect 
to the formulation developed in Section 3. The set of 
decision variables in the optimization algorithm is 
{n,f,, Y,, d, , / , ,  V,) (d, can be obtained by Equation (63)). 
Table 3 summarizes the data for the objective function 
(unit production cost) and machining constraints. The 
machining data (refer to Table 3) can be read from ex- 
isting database files in the CAPP (Computer-Aided Pro- 
cess Planning) system, or the data can be provided from 

1 

I 
Fig. 5. Part drawing of Example 2. 

the keyboard, with the option of saving the data into the 
appropriate databases. This example is a constrained 
nonlinear optimization problem with a high comput.a- 
tional complexity. The computational results shown in 
Table 4 reveal that the proposed optimization algorithm 
is a viable alternative for comple.~ turning problems for 
parts with continuous forms. 

5.2. Discussions 

The final solution of each run may vary due to the sl,o- 
chastic nature of the SA approach. A previous experi- 
ment of the SA approach performed by Johnson el al. 
[31] indicates that even with a large number of iterations 
in each run, there can still be a large variation in the 
quality of solutions found by different runs. In contrast, 
Tables 2 and 4 show that the variations in final solutions 
are only slight. The proposed optimization algorithm is 
reasonably consistent since the fiaal solutions are inscn- 
sitive to the initial solutions. Furthermore, the initial 
solution does not have to be a feasible one. 

To  further examine the performance of the proposed 
optimization algorithm for complex machining problems, 
an enormous set of 6.86 x 10' conlbinations of machining 
parameters in Example 2 are equally-spaced enumeraled 
within the whole solution space. The lowest unit cost in 
these 6.86 x 10' combinations is 1.3.5094, associated with 
{n,d,,  f,, V,,d, , / , ,  Y, )  = {2,2.5,0.7,106.0,1.0,0.3,180.0}. 
From the computational results shown in Table 4, the 
optimization algorithm commonly locates better final 
solutions except the 47-th and 50-th program runs 
(1 3.5769 and 13.5479). However, !.he number of iterations 
in the optimization algorithm is rc:latively small to that in 
the enumerative search (22 787.2 vs. 6.86 x lo7, 0.0330,C). 
The computational results indicate that the proposed 
optimization algorithm can effectively generate high 
quality heuristic solutions. 

Table 3. Data of Example 2 

Ku = 500 mlmin KL = 50 m/min 
f,L = 0.2 mm/rev drU = 3.5mm 
ySU = 500 m/min y,L = 50 m/min 
J,L = 0.2 mmjrev dsU = 2.8 mm 

a = 5  a =  1.75 
kf = 108 jl = 0.75 
4 = 0.85 R = 2 
kg = 132 7 = 0.4 
6 = 0.105 R, = 1.2mm 
k, ='15$ ledge & = 5 x 1 O4 mmlmin 

Co = 6  x 10" t, = 2.5 
TL = 25 min TU = 45 min 

Pu=200kW R,=10pm 
kl = 1.2 k2 = 1.5 
d, = 6mm 

Ju = 0.9 mm/rev 
dd = 1.5mm 
/;" = 0.9 mm/rev 
dJL = 0.8 mm 

y = 0.75 
0 = 0.95 
v = - 1  
4 = 0.2 

k,, = 2.5$ Imin 
re = 1.5 minledge 
FU = 5.0 kgf 
Qu = 1000°C 
St = 140 
k3 = 2.0 
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594 Su and Chen 

Table 4. Computational results of Example 2 

No S * { n * , d ; , / ; ,  Y ,  d;,/;) TI UC*($) No s*{n*,d:,fl, r,di,c, Y ; )  uc' (%) 

Avcrage final cost ($) 13.3385 
The highest cost ($) in 50 runs 13.5769" a represents Run No.  47 
The lowest cost ($) in 50 runs 13.29 1 ob represents Run No. 33 
Standard deviation of the final cost 0.0538 
Average search points 22787.2 
Average CPU time (seconds/run)* 37.5 
*The CPU time i s  based on an IBM PC 486 compatible computer. 

The initial solutions which are randomly selected 
within the parameter bounds are usually infeasible and 
far from the optimal solutions. To  display the current 
solution changes with each iteration of the optimization 
algorithm, a run chart of the first annealing for Example 
2 is plotted in Fig. 6. The run chart clearly demonstrates 
the cost improvement process. In this program run, most 
of the cost improvements are achieved within the first 500 
iterations. For the first 400 iterations, the evaluated so- 
lutions are usually infeasible and far from the optimal 
solution. However, the optimization algorithm can effi- 
cien tly approach to the vicinity of the optimal solution. 
For this program run, the lowest cost ($13.3277) of first 
annealing is obtained after 9000 iterations. Similar ob- 
servations can be made from' the other program runs. 

Without exception, the proposed optimization algo- 

100 

A 80 e - 60 * 5 
, .-, 40 
5 

20 

0 

X 
No. of search points=S0(kx*50 

rithm requires a large number of iterations to locate a Fig. 6. Run chart of first annealing for Example 2. 
nearly-optimal solution, particularly, when solving large 
machining problems.   ow ever, it pe-rforms efficiently with optimal solution within a reasonable computation time. 
respect to the required CPU time. On the average, the In this experimental study, the average computation times 
proposed optimization algorithm can generate a nearly- of Examples 1 and 2 are 2.0 and 37.5 seconds per run, 
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Turning operations for coniinuous forms 

respectively. The computation time can certainly be re- 
duced if a more powerful computer is used. Therefore, this 
approach can certainly be potentially extended as an on- 
line system for selecting optimal machining parameters. 

6. Conclusions 

In this study, we develop a machining model to optimize 
the multi-pass turning operations for turned parts with 
continuous forms. Owing to the high complexity of this 
machining optimization problem, a stochastic optimiza- 
tion method has been applied to solve this problem. The 
proposed optimization algorithm is a hybrid optimization 
method based on a simulated annealing algorithm and 
the Hooke-Jeeves pattern search. I t  can obtain a nearly 
optimal solution in an extremely huge solution space 
within a reasonable computation time. Computational 
results demonstrate that the proposed optimization al- 
gori thm can adequately solve complex machining eco- 
nomics problems. 

This work has some initiative and encouraging fea- 
tures: (I) the machining optimization model for turned 
parts with continuous forms can be used to extend the 
application of machining economics for CNC lathe op- 
erations; (2) the proposed optimization algorithm is 
completely generalized and problem-independent so that 
it can be easily modified to optimize turning operations 
under various economic criteria and numerous practical 
constraints; (3) no special information regarding the so- 
lution surface, e-g., gradient and local curvature, need be 
identified; (4) since the proposed optimization algorithm 
can obtain a nearly-optimal solution within a reasonable 
execution time on a PC, it can potentially be extended to 
be an on-line adjustment system for machining parame- 
ters based on signals from sensors; and (5) experimental 
results demonstrate that the proposed optimization al- 
gorithm is consistent and effective since the final solutions 
are insensitive to the initial solutions (starting points). 
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