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Abstract. We consider partitions of a finite set whose elements are associated with a single numerical
attribute. For each partition we consider the vector obtained by taking the sums of the attributes corresponding
to the elements in the parts (sets) of the partition, and we study the convex hulls of sets of such vectors. For
sets of all partitions with prescribed number of elements in each set, we obtain a characterizing system of
linear inequalities and an isomorphic representation of the face lattice. The relationship of the resulting class
of polytopes to that of generalized permutahedra is explored.
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1. Introduction

Partitioning of finite sets constitutes an important class of combinatorial optimization

problems. Frequently, in partitioning problems, each element of the partitioned set

is associated with a (fixed) number of numerical attributes, that is, a vector, and the

evaluation of a partition depends on the vectors obtained by summing up the vectors that

correspond to each part (set) of the partition. Applications of this model include graph

partitioning [1], inventory grouping [3,4], location problems [4], hypothesis testing in

statistics [4], storage allocation [5-7], group testing [9], and system reliability [10—

12]. Here, we consider such partitioning problems where the associated vectors are

one-dimensional, that is, each element of the partitioned set is associated with a single

numerical attribute. Many of the above-mentioned applications fit this situation.
Consider the partitioning of the sbt= {1, ..., n} into p partswhere each € N

is associated with a real numb##r Such gartition  is then associated with a p-vector

6™ whosej-th coordinate is the sum of th#'s over the indices assigned to thg-th

part ofz. Thepartition polytopecorresponding to a set of partitiofis denotedP™ | is

then the convex hull ofo™ : = € I1}. WhenIl is the set of all partitions with prescribed

part sizes, we refer t® as asingle-shape partition polytop©ur goal is to study

these polytopes. The following paragraphs highlight some of our key findings.
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One of our results (Theorem 1) gives a representation of single-shape partition
polytopes through explicit systems of linear inequalities. Witlas a set of partitions
defined through the specification of the part-sizes, we showtisan P(™ if and only
if x satisfies:

Y xj =min) (6™ foreachy C | C {L,..., p}, and 1)
el TS
p no p
Z xj=Y 0 [= Z(@”N for each partitionr havingp parts| ; (2)
j:l j=1 j:l

of course, the right hand-side of (1) and (2) is easily computable. This representation
facilitates the solution of corresponding partitioning problems by linear programming
and by methods for optimizing nonlinear objectives subject to linear constraints.

To put the above representation in perspective, we recall from the Main Theorem
for Polytopes that the convex huit of any finite subseB of RP is the solution set
of a system of linear inequalities. While the explicit identification of such a system
for P is generally difficult, it is known that for each facét of P there is a vector
cF € RPwith F = {x € P : (cp)"x = mingeg(cr) 0} and P has the representation
[NE{X € RP: (cp)Tx > mingeg(cp)T0}] N L wherelL is the smallest linear subspace
containingB. Our result shows that for single-shape partition polytopesgtecan be
taken as G- 1 vectors. For a sufficient condition for (1)—(2) to provide a representation
of other partition polytopes and for examples that demonstrate that such a representation
need not hold for arbitrary classes of partitions see [8].

Another result (Theorem 3) is the discovery of an isomorphism of the face-lattice
of single-shape partition polytopes and a family of chains. The structure we reveal is
expressed both in terms of defining inequalities and in terms of defining vertices. The
results put into focus the work of Barnes, Hoffman and Rothblum [2] about properties
of vertices of partition polytopes; we prove the sufficiency of their necessary condition
(obtained for multi-dimensional partition polytopes). In particular, we show that the
direction of edges is always the difference of two unit vectors; see Sect. 4 for an
important application of this property for assembly problems.

A third result (Theorem 7 and Corollary 2) is the placement of the class of single-
shape partition polytopes within other families of polytopes in terms of the combinatorial
structure of their faces and in terms of normal equivalence (see Sect. 2 for formal
definitions). Surprisingly, when th#’s are distinct, each single-shape partition polytope
is normally equivalent to the standard permutahedron (see Sect. 3 for a definition). But,
we demonstrate that new polytopes are generated when rep€ataict allowed.

Preliminaries about partitions and polytopes are summarized in Sect. 2. Our main
results are stated in Sect. 3 and are proved in Sect. 5. An application of our results to
optimal assembly of systems with the goal of maximizing reliability are discussed in
Sect. 4.
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2. Preliminaries: partitions and polytopes

Throughoutwe leh be a positive integerard = {1, . .. , n}. A (labeled) partitions an
ordered collection of sets = (n1, ... , wp) wherery, ... , wp are disjoint, nonempty
subsets o whose union isN. In this case we refer tp as thesizeof = and to the sets
m, ..., wpastheparts of . Also, if the number of elements in the parts of the partition
m = (m,...,wp) a@reny, ..., Np, respectively, we refer tny, ... , np) as theshape
of r; of course, in this casgjpz1 nj = |N| = n. We sometimes refer tp-partitionsor
to (ny, ... , np)-partitionsas partitions of sizg or of shap&ny, ... , np), respectively.
A partition is calledconsecutivef its parts consist of consecutive integers, that is, if
there is an enumeration of its parts, say, ... , 7j,, such that fot = 1,..., pand
corresponding positive integems, , . .. , nj,, Tj, = {2;;1 Nis+21,..., 5L 1 nj).

We assume that each elemeintthe given partitioned séd is associated with a real
numbem' and, without loss of generality, we assume that

ot<o’<...<o". (3)
We note that (3) implies that
u+w ] v+w )
> 6" < ) ¢ fornonnegative integar, v andw with u < v. (4)
i=u+1 i=v+1

Further, ifu < v andw > 0, equality holds in (4) if and only i#' is a constant for
u+1<i <v+ w,thus, (4) holds strictly when the inequalities in (3) are strict; v
andw > 0.

We identify row and column vectors and uB® to denote the set of either type of
p-vectors. Also, we refer to the standard definitionsdffine tangential conic hullsof
subsets ofRP and for thedimensionof convex sets, in particular, we use the notation
aff C, tngC, coneC and dimC, respectively. Also, we refer to the standard topology in
RP and use the notation 8 for theclosureof a subseB of RP.

A polytopen RPis the convex hull of finitely many points iRP. The Main Theorem
for Polytopes (see [16, Theorem 1.1, p. 29]) asserts that a subRétisfa polytope if
and only if it is bounded and is the solution set of a system of linear inequalities.

Forasubseb C {1, ..., n} we define thé&ssummation scalafis by 6s = Ziesei .

For a p-partition = (1, ..., wp) we define ther-summation-vectof, by 6, =
(01, - .. »0z,) € RP. Given a sefl of p-partitions, we define thE-partition polytope
by PID = con{6, : = € [T} € RP.

Given a polytopeP in RP, we say that a linear inequalitEJp:1 CiXj < yis
valid for Pif P C {x € RP : Z}):lcjxj < y}. A faceof P is any set of the form
F=PN{xeRP: ij=l cjxj = y}whereX_P_, cjxj < y is a valid inequality forP.

Of course, the faces d® are themselves poiytopes. A fakEeof P is calledproperif

¢ # F # P. Faces of dimension 0, 1 aridimP) — 1 are calledvertices edgesand
facets respectively. At convenience, we refer taeatexnot only as a face of dimension
zero, but also as the single element that such a face contains.

The next proposition summarizes useful properties of faces of polytopes; see
[16, Propositions 2.2 and 2.3, pp. 52-53, and Theorem 2.7 and following discussion
pp.57-58].
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Proposition 1. Let P be a polytope irRP. Then:

(a) P is the convex hull of its vertices,

(b) intersections of faces &f are faces ofP,

(c) each face oP is the intersection of facets &f,

(d) each proper fac& of P is a facet of a facé’ of P,

(e) the faces of a facé of P are exactly the faces d? that are contained irf, in
particular, the vertices oF are the vertices oP that are contained irF,

() a faceF’ of P is strictly included in a face~ of P if and only if F € F and
dmF < dimF,

(g) if P is a polytope with representation

p
> Bjxj < bxforallk e g (5)
j=1

whereg is a finite index set, then each fadebf P has a representation of the form
F={xeP: ij:lcijj = ¢} for somek € B, and
(h) ifdimP = 1, thenP has exactly two vertices.

Part (b) of Proposition 1 implies that, with inclusion as the partial order, the set
of faces of a polytopeP is a lattice, and we refer to this lattice as ttaee-lattice
of P. We say that two polytopes acembinatorically-equivalerif there is a one-to-one
dimension-preserving isomorphism of the face-lattice of one onto the face-lattice of the
other, where bysomorphisnwe mean an inclusion-preserving map.

Let P be a polytope irRP. For each nonempty fade of P, we define thaxormal
coneof F, denoted\E, by

N ={ce RP: F = argmaxepc'x}, (6)

where argmay.p c'x refers to the set of maximizers of the function Brthat maps

x € P toc'x. This definition differs from [16, p. 193] wheter is defined by{c € RP :

F C argmax.p c'x}. The next proposition summarizes some facts about the normal
cones; as the results refer to our non-standard definitions, we provide a proof in the
Appendix.

Proposition 2. Let P be a polytope irRP. Then:

(a) for every nonempty fade of P, Ng is a nonempty cone iRP,

(b) {Nf : F is aface ofP} is a partition of RP,

(c) if F andG are two nonempty faces & thenF C G if and only ifcl Ng 2 ¢l Ng,

(d) the mapF — N is one-to-one, and

(e) for every nonempty fade of P, tngNg = (tngF )=, in particular, dim Ng =
dimtngF )+ = p—dimF.

Thenormal fanof a polytopeP € RY is defined byN(P ) = {Nf : F is a nonempty
face of P}. Two polytopes ar@ormally equivalentf their normal fans coincide. The
next result shows that normal equivalence implies combinatorial equivalence.

Proposition 3. Normal equivalence of polytopes implies combinatorial equivalence.
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Proof. SupposeP and Q are normally equivalent polytopes. LBP as the Euclidean
space containindgN(P) = N(Q), thenP € RP andQ € RP. For a faceF of P,
Ng € N(P) = N(Q) implying that Q has a face, say, with Ny = Ng; part (e)
of Proposition 2 implies that did = p — dimNy = p—dimNg = dimF. As
N(P) = N(Q), the constructed dimension-preserving map of facd? wf faces ofQ
is onto; also, parts (d) and (c) of Proposition 2 show that this map is one-to-one and
inclusion-preserving.
o

It can be shown that two normally equivalent polytopes have representations as the
solution sets of systems of linear inequalities, #ay< bandA’'x < by, with A = A’
and identical parametrization of corresponding faces through tightening inequalities
determined by subsets of the set of rowsfoE= A’. Thus, normal equivalence assures
related algebraic representation beyond common combinatorial structure established in
Proposition 3.

3. Statement of main results

We consider partitions with given shape; with this given, the data then consists of an
ordered list of positive integers, . .. , np with ij=l nj = n. The set of partitions with

shapeny, ..., np)isthen denotedl(""p) and the corresponding partition polytope

is denotedP("--"p) and referred to assingle-shape partition polytop&Ve state our
results about single-shape partition polytopes in the current section while proofs are
provided in Sect. 5.

Single-shape partition polytopes witt)y = 1 for eachj are calledgeneralized
permutahedrathe standargpermutahedrorin RP corresponding to the case where
nj = 1andg’ = j for eachj. These polytopes were first investigated by Schoute [15]
(see also [16, pp.17-18 and 23]). Single-shape partition polytopes as defined herein
constitute a specialization of the polytopes considered in [2] (obtained by restricting the
partitioned vectors to be one-dimensional).

Henceforth, we assume that the list, ... , np) is given and fixed. In particular,
whenever we refer to artition we mean an(ng, ... , np)-partition, so, we avoid
explicit reference to the shape of partitions through the préfix,” .. , np)-".

For a subset of {1, ..., p} we introduce the notation

n =) nj. and ()

jel

b=y 6. (8)
i=1
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Also, letC(":--"p) he the solution set of the system of linear inequalities given by

ij > 6y for each nonempty subskof {1, ..., p}, and (9)

jel
p no
Y oXi=6q...op= 6" (10)
=1 i—1

Theorem 1 (Representation of Single-Shape Partition Polytopes and their Ver-
tices). P("1--Np) = C("1.--.Mp) and the vertices of this polytope are precisely thés
wherer ranges over the consecutive partitions.

Supposen; = 1 for eachj = 1,..., p. In this casen = p, all partitions are
consecutive, th@,’s are the vectors obtained from coordinate-permutatiod ef
(6%, ...,6P), and Theorem 1 implies that the convex hull of these permuted vectors is
the solution set of (9)—(10). This conclusion is an important result of Rado [14] asserting
that the convex hull of all permutations of a given vector is the set of vectors that are
majorized by that vector; see [13, Corollary B.3, p. 23]. The specialization of Theorem 1
withnj = 1 andd) = jfor j =1,..., p, namely for the standard permutahedron, is
due to Schoute [15]; see also [16, Ex. 0.3, p. 23].

Foreachl C {1,..., p}, let F| be the subset a("--"p) obtained by tightening
the inequality corresponding toin (9), that is,

FI = {X c C(nl,...,np) . ZXJ — 9(|)} . (11)

jel

For eachl, C("t+") C {x € RP : Xj > 6;)} and thereforéF, is a face ofC("t+"p),
From part (b) of Proposition 1, intersectionsfs are also faces @™, Further,
parts (c) and (g) of Proposition 1 show that each facg8f-"r) is an intersection of
F\’s. So, the faces oE("1-"p) are precisely the intersectionsBf’s.

A (possibly empty) sequendeg, |2, ... , Ix of subsets ofl, ... , p}is called achain
f#dcliclac...clkc{d...,p},inwhich case we refer th as thelength
of the chain. Such a chain is usually augmented Witk= ¥ andly1 = {1, ..., p}.
We say that chaity, 15, ... , I, is asubchairof Iy, I2, ..., Ix and thatly, 12, ..., Ik
is asuperchairof I3, 15, ..., I, if {17, 15, ..., 1} € {l1, 2, ..., I}; we say that,
15, ..., 1, is aproper subchairof Iy, I2,..., Ik and thatly, I2, ..., Ik is aproper
superchairof 14, 15, ... , I}, when the above inclusion is strict. The maximal length of
a chain isp — 1 and every chain has a superchain of length 1.

Forachainly, I, ..., Ik, we have thafli \ lt—1:t =1,...,k+ 1} is a partition
of {1,..., p}. In particular, if the length of the chain [3— 1, each of the setlg 1;_1 is
asingletonan@li{\l;—1:t=1,...,p} ={{j}: 1< ] < p}. So,achainoflength—1
defines an order oft, ... , p} with integerj ranked in place if I; \ li_1 = {]j}, thus,
such a chain defines a unique consecutive partitigof N) where forj =1,...,p

mj ={n_, +1,...,n} for the unique index for which Iy \ li_1 = {j} .

Observing that a consecutive partitiowith 7j, = {Y L3 nj+1,..., Y5 ; nj) for
t=1,..., pcorresponds uniquely to the chdin= {j1}, I2 = {j1, j2}, ..., lp-1 =
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{j1, ..., Jp-1} (of lengthp — 1), we have that the correspondence of chains of length
p — 1 into consecutive partitions is one-to-one and onto. We say that a consecutive
partitionz is consistent witla chainly, ..., I if 11, ..., Ixis a subchain of the unique
chain of lengthp — 1 corresponding ta .

We say that a chaily, |2, ..., Ik is arepresenting chaimf a subsef of RP, if
F= ﬂt‘ 1 Fi;- The nexttheorem shows that each f&oef P(1.--Np) has a representing

chain and uses such chains to charactefZe$aces, in particular, its vertices.

Theorem 2 (Chain-Representation of Facesp subsef of RP is a nonempty face of
PN if and only if it has a representing chain, that is, there is a chiain . . , Ix
with F = Nf_; Fy,. Further:

(a) if F andF’ are nonempty faces &("1--"p), then the following are equivalent:
(i) FFcF,
(i) each representing chain df has a superchain which is a representing chain
of F/, and
(iii) some representing chain & has a superchain which is a representing chain
of F/,
(b) if Fisanonempty face ¢1("---"p) with representing chaity, . .. , I then avertex
v of P("--Mp) is in F if and only if there is a consecutive partition which is
consistent witHq, ... , Ix and hasv = 6,;, and
() ifl1,..., Icis achain, themk_, F, # 7.

Achainly, I2,..., lx is calledminimalif no set can be dropped without affecting
the intersectiomX_, Fy,, that is, fors = 1,... , k, ﬂ{‘zlt#th # N, Fy,. Of course,
subchains of minimal chains are minimal, and every chain.. , Ix has a minimal
subchainlf, ... . I}, with Nf_; Fy, = Nk_; Fy,. We say that minimal chaiy, ... , 1},
refinesminimal chainly, ..., I if 17,..., 1, can be constructed frory, ..., Ix
by augmenting this chain with additional sets and then dropping sets which become
superflous, formallyl;, ... , I, refinesly, ..., I if there exists a chainy, ..., 1y,
which is a superchain of both, ... . Ik andlf, ... . I, andni F = N Fyy. We
observe that the refining relationship is a partial order on the set of minimal chains.

Example 1.SupposeP = n =3,n; = n, = nz = 1,01 = 1 and6? = 63 = 2.
The chaind; = {1, 2} andl; = {1} are minimal chains and they represent the faces
(X € R :x1+x = 3,x3 = 2} and {1, 2, 2}, respectively, (see the forthcoming
Lemma 9). Now, the chait = {1}, IJ = {1, 2} is a superchain of the above two
minimal chains andr, N Fy = Fy;. So, the chaini] refines the chaith; .

|

The next theorem explores minimal representing chains of facB&%f--"p),

Theorem 3 (Minimal Chain Representation of Faces)A subsetF of RP is a non-
empty face ofP("---"p) if and only if there is a minimal chairy, ..., Iy with

F = ﬂ{;th, and the correspondence of nonempty faceB®f--"») onto minimal
chains is one-to-one. Further, F is a nonempty face d?"----"») corresponding to
minimal chainl, ..., I then
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(@ if 17,..., 1y is a chain withF = ﬂ{‘/leu, thenlq, ..., Ix is a subchain of
A 1S
(b) if F” is a nonempty face ¢?("1----"p) then the following are equivalent:
() FCF,
(i) F’ has a representing chain which is a superchaiof . . , Iy,
(iii)y the minimal chain representin§’ refinesly, ..., I,
(c) avertexy of P("-"0) jsiin F if and only if there is a consecutive partitianwhich
is consistent with1, ... , Ix and hasv = 6, in particular, F = con\é,, : 7 is
a partition which is consistent with, ... , Ix}, and
(d) dimF < dim P("1-2Np) _

The following example demonstrates that a consecutive partitioreed not be
consistent with the minimal chain representing a fader 6,, to be inF.

Example 1 (continued)Vith the earlier datdy = {1, 2} is a minimal chain representing
faceF = {x € R® : Xy 4+ x2 = 3, x3 = 2}. The partitionr = (71 = {1}, 72 = {3},
w3 = {2}) is not consistent with this chain, but the verfiex= (1, 2, 2) isin F. Of course,
(1, 2, 2) hasthe representatiéﬁ/ forthe partitiont” = (73 = {1}, 75, = {2}, 75 = {3})
which is consistent with the minmal chalin= {1, 2}.

|

Property (a) of the minimal chain corresponding to a fcef P(".---"») charac-
terizes that chain as the common subchain of all representing chdinsamely as the
unigueminimal representing chain fof. Property (b) shows that the correspondence
of faces to minimal representing chains is an isomorphism of the face-lattice with set
inclusion as the partial order onto the set of minimal chains with the “refining” partial
order; in particular, we obtain a lattice structure for the minimal chains. Property (c)
uses the minimal chain representing a face to characterize the vertices of that face.
Finally, property (d) shows the length of the minimal chain corresponding to a face of
P(1.---Np) yields an upper bound on the dimension of that face. The following example
demonstrates that, in general, these bounds are not necessarily tight.

Example 2.Supposedt = 1,62 = 2,603 = 0* =0° =3, p=4,n = 2 and
Nz = n3 =ng = 1, and letP = PN The minimal chain corresponding to vertex
F = {(3, 3, 3,3)} is {1} with length isk = 1. As the forthcoming Corollary 1 shows
that dimP = 3 we have that(dmP) —k=3—-1> 0=dimF.

O

A chainly, ..., Ik is calledmaximalif it has no proper superchain which is a rep-
resenting chain of = ﬂt‘:th. To study maximal chains, we define for each chain
I1,..., Ik the characteristi@(lq, ... , k) given by:

Tlg,...,. k={t=01...,k:

where|lt41 \ It| > 2 andd' is constant fon;, <i <n,,,}.

The next theorem explores maximal representing chains of fade$"of-"e).
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Theorem 4 (Maximal Chain Representation of Faces)Each representing chain of
a faceF of P("1--"0) has a superchain which is a maximal representing chaif of
Further,iflq, ..., Ixis arepresenting chain of a fadeof P(":--") | then the following
are equivalent:

@) l1,..., lxis maximal,

(b) T(lq, ..., lx) =0,

(¢) dmF =p—-1-k,and

(d) tngF ={ze RP: 3"\, ,2j =0 fort=1,... k+1}.

Theorem 4 implies that all maximal representing chains of a given Facd
P(1.---Mp) have a common length, namgdy- 1— (dim F ). But, the following example
illustrates that, unlike the situation for minimal representing chains examined in The-
orem 3, no unigueness is available for maximal representing chains.

Example 3.Consider Example 2. Representations of verkex= {(3, 3, 3, 3)} via
a chainly,..., Ik asF = Nk, F, are available through the minimal chaia}
(with length 1) and any superchain @f}; in particular, there are six such maximal
superchains, e.g{1}, {1, 2}, {1, 2,4} and {1}, {1, 3}, {1, 3,4}, and all have length
3=p—-1—-(dimF).

O

Corollary 1 (6"s do not coincide).dim P+ = p — 1if and only if eitherp = 1
or not all #"’s coincide.

For a subset of {1, ..., p} we lete' be the vector irRP with (e')j =1lifjel
and(e"); =0if j e {1,..., p}\ I. Also, forachain, ..., I, let
k+1
N(l1, ..., 1) = {Z Bre't : By < Ofort =1,... ,kandBys1 € R (unrestricted).
=1
(12)

We use this notation to explore representations of normal cones of fag¥&.of "»)
defined through (6) withP = P(M1Np),

Theorem 5 (Representation of Normal Cones)A representing chainy, ... , I of
afaceF of P(":-:Mp) s both maximal and minimal if and onlyM(l1, ... , Ix) = Ng.

We mention that Theorem 5 can be generalized to afFaebose minimal represent-
ing chain is not maximal. The representationfty is then substantially more complex
and is given in terms oF’s minimal chain; see the discussion following the proof of
Theorem 5 in Sect. 5.

Theorem 6 (Vertices and Edges).

(a) Forv € RP the following are equivalent:
(i) visavertex ofP("L-Np),
(i) there is a consecutive partitiom with v = 6., and
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(i) there is a chain of lengttp — 1, sayly, ..., lp—1, with {v} = ﬂtp:’lth.
(b) For distinct vertices andv’ of P("1---"p) the following are equivalent:

(i) conv, v'} is an edge oP(":-Np),

(i) there exist consecutive partitions and =’ such that{v, v'} = {0;,0,}, 7
and ' coincide on all but exactly two parts, say theh andk-th part, and
mj Umg = 7 U is a consecutive set of integers, and

(iii) there exist two chains of length— 1, sayls, ..., Ip-1andlg, ..., I, ; such

that {v, v’} = (N Fi, NP1 Fyy andly,... ., lp1 andIf,.... 17, have

. v p-l
a common subchain of length— 2.

Further, if the above equivalent conditions hold anahdk are as in (i), therv — v’
is a scalar multiple ofe! — €.

The next theorem and corollary concern situations wherd'tiseare distinct, in
particular, in such cases we have that the lattice of fac&"f-"?) is isomorphic to
the lattice of chains.

Theorem 7 (Distinct'’s). Suppose thé'’s are distinct. Then for every nonempty face

F of P("1---"p) there is a unique collectiofiy, . . . , Ik} of distinct subsets @i, . .. , p}
with F = ﬂt‘:l Fi,, further, the subsetls, . .. , Ik are well-ordered under set-inclusion,
that is, with possible relabelinty, . .. , Ik is a chain.

O

Corollary 2 (Distinct 6''s). Suppose thé'’s are distinct. Then:

(@) dimP(MNp) = p 1,

(b) A subsef of RP is a nonempty face d?".--"») if and only if there is a chain
l1, ..., lkwith F =nk_, Fi, and the correspondence of nonempty facé -
to chains is one-to-one; in particular, a nonempty facéPdt-"») has a unique
maximal representing chain which is a minimal chain.

(c) P(M.--Np) js normally equivalent to the standard permutahedroRfh(defined in
the second paragraph of this section).

(d) If F is a nonempty face d?"1---"p) corresponding to chaityy, . .. , Ik then
(i) a nonempty facé’ of P("-"p) with corresponding chain, ... , I, is in-
cluded inF ifand only iflq, ... , I is a subchainof}, ... , I/,
(i) for a consecutive partitiont, 6, € F if and only if = is consistent with
I1,..., I, in particular, F = con{0, : 7 is a partition which is consistent
with 11, ..., Ik},

(i) dmF =p—-1-k, and
(iv) tngF = {ze RP: 2jeinn . Zj =0 fort=1,... k.
(e) Forv € RP the following are equivalent:
(i) visavertex ofP("L-Np),
(i) there is a unique consecutive partitianwith v = 6,, and

(iii) there is a unique chairly, . .. , Ip_1, with {v} = NP Fy;
further, if the above equivalent conditions hold, ... , I,_1 is the chain corres-
ponding tor.

(f) For a pair of verticesy andv’ of P("----") the following are equivalent:
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(i) confv, v’} is an edge oP">--Np),
(i) there exist consecutive partitions and =’ such that{v, v’} = {0;,0,, 7
and ' coincide on all but exactly two parts, say theh andk-th part, and
Ty Umk = n} U m, is a consecutive set of integers, and
(iii) there exist two chains of length— 1, sayls, ..., lp_1andly, ..., I;)_l such

that {v, v'} = {NF{Fi, NP1 Fy) andlz,... . lp-g and 1f,.... 17, have

k] p_l
a common subchain of lengfh— 2;
further, if the above equivalent conditions hold andndk are as in (ii),v — v' is
a scalar multiple ofel — €).

The conclusions of Corollary 2 about the face structur®@f--"») whenn; = 1
andg) = jfor j =1,..., paredue to Schoute [15]; see also [16, pp. 17, 23].

Part (c) of Corollary 2 implies that for each positive integerall single-shape
partition polytopes corresponding to data that includes disireand p as the size of
the partitions are normally equivalent, in particular, they are combinatorically equivalent.
This conclusion holds independently of the particular values af'te@nd of the values
of then;’s!

In view of the conclusion of part (c) of Corollary 2, one may speculate that each
partition polytope is normally, or at least combinatorically, equivalent to a generalized
permutahedron. The next example shows that this conjecture is false.

Example 4.Suppose® = 3,n = 6,01 = 9% = 1 andp® = 6* = 0° = 9° = 2. Consi-
der the single-shape partition polytope corresponding to stia@e3). By Theorem 1,
the vertices of this polytope are thig's associated with the consecutive partitions.
Table 1 lists the consecutive partitions and associated vertices — it demonstrates that
there are exactly 4 vertices.

The generalized permutahedron i is determined by 3 parameters, say 1>
andnsz wheren; < n2 < n3z; the permutahedron is then given by the solution set of the
following linear inequality system (for example, see Theorem 1)

X1 = n X2 = n X3 =m
X1+X2=n1+n2 X1+X3=n1+n2 Xe+X3=n1+n2
X1+ X2+ X3=mn1+n2+n3

Now, if the nj’s coincide, the generalized permutahedron is a single point. In the case
where thenj’s do not coincide, that is;; < 53, we have a two-dimensional polytope
(see Corollary 1) whose projection of the first two coordinates is the solution set of the
following linear system:

NL=<X1=<1n3 NM=X2=<n3 n+n=X1+X2=<n2+n3.

It is easily seen that this set is a sextahegomif< n2 < n3 and a triangle if either
n1 = n2 < n30rny < n2 = n3; in the former case the set has exactly six vertices and in
the latter two cases it has exactly three vertices. In neither case is the set combinatorically
equivalent to our single-shape partition polytope and by Proposition 3 it can neither be
normally equivalent to it.

O
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Table 1.
Determining Permutation The Consecutive O
Partition

of 1, mp andng 1 o 3

1, TP, T3 {1} | {2,3} | {4,5,6} 1,3,6)
1, T3, T {1} | {5,6} | {2,3,4} 1,4,5)
T, 1, T3 {3} {1,2} | {4,5,6} (2,2,6)
9, T3, T {6} | {1,2} | {3,4,5} (2,2,6)
3, 1, T {4} {5,6} | {1,2,3} (2,4,4)
73, T, T {6} {4,5} | {1,2,3} (2,4,4)

We conclude this section with the observation that chains are in one-to-one cor-
respondence with partitions ¢1, ..., p} with chainlq, I, ..., Ix corresponding to
the partition (1, 12\ 11, ..., Ik+1 \ lk)- Chain-inclusion then corresponds to partition-
refinement. A complete alternative analysis can be carried out by focusing on partitions
rather than on chains.

4. Optimal partitions with applications to system assembly

The definition of Schur Convexity was recently extended by Hwang and Rothblum [11]
to asymmetric functions. Specifically, a real-valued functionRbis called quasi-
convex alonga nonzero vectod € RP, or briefly d-quasi-convexif the maximum

of the function over every line-segment with directidris attained at one of the two
endpoints of that line-segment. Wighfor j = 1, ..., p as thej-unit vector inRP and
D={el —€:jk=1,...,p} areal-valued function is calleasymmetric Schur
convexf it is d-quasi convex for evergt in D. Theorem 2.3 of [11] then demonstrates
that when such a functiogis maximized over a polytopE all of whose edges have
direction in D, theng attains a maximum ovelP at an extreme point; this is the case
with P as the unit simplex irRP or, by Theorem 6, wittP as a single-shape partition
polytope. In particular, as Theorem 1 shows that the extreme points of single-shape
partition polytopes correspond to consecutive partitions, we obtain the following result:

Theorem 8. Letgbe an asymmetric Schur convex functiorR¥rand consider the real-
valued functiorJ on partitions defined by (;r) = g(6™). ThenU attains a maximum
overI1("t--"p) gt a consecutive partition.

O

We next demonstrate an application of Theorem 7 for problems of system assembly
with the goal of maximizing reliability.

Consider a system having modules as components. Each of these modules can
be eitheroperativeor inoperative The stateof the system is determined by the set of
operative modules and is represented by a vextof0, 1}P, wheres = 0 if modulei
is inoperative andy = 1 if modulei is operative. The operativeness of the system is
determined by atructure functiond : {0, 1}P — {0, 1}, i.e., the system ioperative
if it is in a states with J(s) = 0 and the system igperativeif it is in a states with
J(s) = 1. The system is calledoherentif the structure function isnonotonethat is,



Partition polytopes over 1-dimensional points 347

if J(s) < J(§) fors, s € {0, 1}P with s < . (We note that the standard definition of
coherence has an added requirement which we do not need herein.)

The modules are assumed to be composed of parts which are functionally interchan-
geable, with modulg € {1, ..., p} requiring exactlyn; > O parts. The modules are
constructed in series, that is, a module is operative if and only if each of its parts is
operative. All needed = Zj nj parts are assumed to be available.assemblyor the
system is an assignment of parts to the modules in a way that matches the requirements
of each module; it corresponds to a partition with shape. .. , np) and we identify
assemblies and partitions.

Thereliability of a part, a module and the system as a whole is the probability of
being operative. We assume that positive reliabilities of the parts are given and that
operativeness of the parts are stochastically independent. Also, the parts are enumerated
in a weakly increasing order of their reliability. So, withas the log of the reliability
of thei-th part we have that (3) is satisfied.

The reliability of a module depends on its composition. Given an assembly
(71, ..., mp), the series structure of the modules implies that the reliability of module
is given by

p(0)j = [ ] expeh) = exp(Z@‘) = explx,), forj=1,....,p; (13)

iemj i€

The reliability of the system as a whole depends on the way it is constructedbket
a vector whose coordinates, . . . pp are, respectively, the reliabilities of the modules.
Then the system’s reliability is the expectationJgd) wheresis a random vector whose
components have independent Binomial distributions with coefficientsy, ... , pp
and is given by

= > 9| [l a-ep ||| ITri|]- (14)
se{0.1}P {j:sj=0} j:sj=1

With g : RP — Ras the function defined fdr ¢ RP by g(¢) = (€1, ..., €p), the
system'’s reliability under assembiy= (x4, ... , 7p) is then given by

U = f[p(1, ..., p(m)p] = 9bry, .., Or,) = OB) . (15)

The goal is to find an assembtythat maximizes the system-reliability functitl.).

As f(p) is the expectation of a function of a random vector with independent
coordinates, we get by conditioning on the positions of any pair of modules, say mjodule
and modulé, that f(p) can be decomposed into

f(p) = (L= pj)(1 — phoo(p) + (L — pj) pkho1(p) + pj (1 — p)h1o(p) + pjekh11(p)
= pjpk [h11(p) — ho1(p) — h1o(p) + hoo(p)] + pj [h10(p) — hoo(p)]

+ pk [h10(p) — hoo(p)] + [Noo(p) + ho1(p) + h1o(p)]
(16)
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with hoo(p), ho1(p), h1o(p) andhi1(p) not depending om; and pi; further, system-

coherence assures thajo(p) < hoi(p) < hi1(p) andhgo(p) < hio(p) < hi1(p).
Consequently, fof € RP,

0(&) = €175 Hoo(&) + €1 Hoa(§) + e H1o(8) + H11(8) 17)

with the Hy,(§€)’s not depending or§j and & (for u, v e {0, 1}); further, system-
coherence implies thatlp1(§) and Hio(§) are nonnegative and therefore tlaais
(el — &)-quasi-convex (in facg is then convex along any line with directieh — €).

We conclude that when the system is cohergig,asymmetric Schur convex; thus,
Theorem 7 implies that there exists a consecutive reliability-maximizing assembly. We
note that an assembly is consecutive if there is a ranking of the modules so that for each
pair of modules the parts that are assigned to the module with the higher ranking are
at least as good as those assigned to the module with the lower ranking. For alternative
approaches for studying the optimality of consecutive assemblies see [10] and [11].

5. Proofs

In this section we prove the results stated in Sections 3 and 4. For most of this section,
till stated otherwise, we assume as in Sect. 3 that grigt. . . , np) is given and that
all considered partitions are labeled and have sliape . . , np); in particular, we omit
the prefix ‘(ng, ..., np)-".

We start by proving that the polytogg"t---"») defined through (9)—(10) contains
P(.--.Np) Theorem 1 (proved below) asserts that, in fact, the two polytopes coincide.

Lemma 1. Forevery partitionr, 6, € C("--0) in particular, P(M--Np) € C(NL:---Np)

Proof. Letw be a partition and a subset of1, ..., p}. AsUj¢| 7 haszjEI nj=n
elements, (3) implies that
. [Ujermj| . noo
D= > 6= ) =30 =00
jel ieUje|mj i=1 i=1

with equality holding forl = {1,..., p}, that is,6; € C("-"0) As C(N1.-.Np) jg
convex, we conclude th&M:-") = cond, : = € T1(M--Mp)} € CL---.Np),

A real-valued functionf on subsets ofl, ... , p} is calledsupermodulaif
f(auUJ+ (I NnJ > f(l) + f(J) for every pairl andJ of subsets of1, ..., p};
(18)
the functionf is calledstrictly supermodulaif strict inequality holds whenever neither
of the two sets is a subset of the other, that ig,J andJZ I.

Lemma 2. The functiond ) mappingl < {1,..., p} into 6y given by (7)—(8) is
supermodular; further, if andJ are subsets ofL, ... , p} wherel ¢ JandJZ I, then
6, satisfies (18) with equality if and onlydf is a constant fon;ny < i < njyj.

O
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Proof. Forsubset$ andJ of {1, ..., p},njug = Ny +na\1, N3 = Ning+ngy g, and (4)
with u = njng, v =N (= Ny = u) andw = ny > 0 implies that
Nuy noo nuy np+ngy .
bavy =0 =2 0= 0= ) 6= 3 ¢
i=1 i=1 i:n|+1 i:n|+1
Ning+na\ _ ny ) ng Niny
> Z o = Z 9':29'—29'=9(J)—9(m3);
i=njn3+1 i=njn3+1 i=1 i=1

further, asl ¢ J and JZ | if and only if njny < n; andny > O, respectively, we
have from the comment following (4) that whég J andJZ I, 6 satisfies (18) with
equality if and only if¢' is a constant fonjny <i < njnj.

O

The next lemma establishes a key property offfhe (defined through (11)).

Lemma 3. Let| and J be subsets dft, ..., p} with Fy N Fy # @. ThenF; N Fj =
Fiua N Fing; further, if IZ Jand JZ |, thend' is a constant fon;~y < i < njyy.

Proof. Letx € F| N Fy (suchx exists as it is assumed thigt N Fj # ). Then

9(|)+9(J)=ZXJ+ZXJ = Z Xj + Z Xj = 0quy +0any = 0y +6)
jel jed jelud jelnd

where the inequalities follow from (9) applied k&) J and toJ N J and from Lemma 2.
It follows that all of the above inequalities hold as equalities, thds,; 5 Xi = 61uJ),
Yicing Xi = 0ang andduy) + 0any) = 6qy + 6y); as each vector iff; N Fyis in
Fius N Fing, we have that N F3; € Fiug N Fiqy. To see the reverse inclusion let
y € Fiug N Fing. Then

Oy +00 <D i+ ¥i= Y Vit Y ¥i=0auy+0any =0 +6y;

jel jed jelud jelnd

it follows that all of the above inequalities hold as equalities, ts,, yj = 6q)
andeEJ Yi = 60, thatis,y € F| N F3. So, the inclusiorF g N Fing € F N Fy
has also been established. Finally & J and JZ I, then the established equality
Oauy) + 0any) = Oy + 63 combines with Lemma 1 to show théltis a constant for
Ning <i < nNjug.

O

Recall the one-to-one correspondence of chains of lepgthl and consecutive
partitions observed in Sect. 3. The next lemma characterizes the summation vectors of
consecutive partitions in terms of the corresponding chains.

Lemma 4. Letly, I, ..., Ip—1beachainoflengtip—1and letr be the corresponding
consecutive partition. Thefy, is the unique solution of the linear system
Y oxj=6gfort=1,....p; (19)

jelt

in particular, \P—'Fy, = {6,).
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Proof. As {It \ lt—1 :t =1,...,p} = {{j} : 1 < ] < p}, we have that for each
t=1,..., pthereis a positive integgs € {1, ..., p} with I \ l;—1 = {ji}. It follows
that (19) can be written as

t

ijsze(mfort:l,... . p:
s=1

this triangular linear system has a unique solution giverjpy= 6,y — 6(,_,) fort =
1,...,p. Asristhe consecutive partition corresponding the chairl,, ..., Ip-1,
for eacht, 7j, = (Y- nj, + L ngd andéy;, = 9(|t) O,y = Xj,; hence,

X = 6. As Lemma 1 assures thﬁt € C, it follows thatﬁt 1 = {6}.
O

Lemma 5. Letly, ..., Ix be achain. Then there exists a consecutive partition which is
consistentwithy, ... , ly; further, for each such consecutive partitiond,, € ﬂ{‘leh.

Proof. Trivially, the chainlq, ... , Ik hasasuperchain oflengh-1,sayl;, ..., I;) 1-
As I1,..., Ixis a subchainotf,..., p 1» the consecutive partition corresponding
tol3,.... 1, 4 is consistent withly, ..., lx. Next, letw be a consecutive partition
which is consistent with the chain, ... , Ik. Then the (unique) chain of lengih— 1
corresponding tor, sayl;, ..., I;)_l, is a superchain ofy, ..., Ik, and Lemma 4
implies thats,, € NP'F,, < Nk Fy,.

i

The next lemma shows how to represent nonempty intersections of arliraip
intersections corresponding to chains.

Lemma6. Letlq, ..., Ik be achainandlet/, ..., I((, be nonempty proper subsets
of {1,..., py with F = (N, Fi) N (ﬂt"zlﬁ{) £ ). Then there exists a superchain of
I1, ..., Ik which is a representing chain &f.

Proof. It suffices to consider the case wkh= 1, in which case we let stand forl;.
So,F = (N Fi)NF #@.Fort=1,... ,k+1,letd = li—1U[(It\ li—1) N 1]. We
next prove by induction that fa= 0, 1, ... , k, F = (NS_;F3) N Fiui N (N g, 1 Fiy).
As lg = ¢, the case where= 0 follows from the representatida = F| N (ﬂt‘:th).
Next assume that the asserted representation holds fordd< k. As Is C lst1,
we have thalls U 1) N lg11 = IsU [(lsp1 \ Is) N 1] = Jsp1 and(lsU 1) U lg41 =
Is+1 U I; by the induction assumptiof ) N Fi.41 2 F # ¥, hence, Lemma 3
implies thatFi u1 NFig11 = Fagunniss N Fasunules = Fag N F|S+1U| and therefore
F = (ﬂts:lFJt) NFigur N (mlt(:s+lF|t) = (ﬂ +1F‘]t) n FI&HUI n (ﬂt st 2F|t) Thus, the
induction hypothesis has been establlshed et replacings. As lx+1 = {1, ..., p},
we have thaty Ul = I U[ (Ik+1\ k)N 1] = J1 and the verified inductive hypotheS|s
with s = k proves thaF = NKF1F 5. We next observe that

P=loch<chchc..CkSkS k1S lkra={Ll....p}; (20
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asﬁ{‘illFJt =FC ﬂ{‘:th it follows that the constructed superchainlef. .. , Ik is

a representing chain ¢f.
o

Lemma 7. A subsef of RP is a nonempty face @("2-"») if and only if there exists
achainly, ..., lkwith F =Nk Fy,.

Proof. First assume thakF = ﬂ't‘:th wherelq, ..., lx is a chain. Following the
definition of theF,’s in (11) we already observed that intersectiond-gf are faces
of C"L---Mp)  To see thafr = ﬂt‘:th # (J, observe that the chaih, ..., Ik has
a superchain of lengtip — 1, sayl;, ..., ';371? by Lemma 4, ifx is the (unique)
consecutive partition correspondingpy ... . 1y, thend, € NP'Fy, € N .
So, F is a nonempty face a2,

Next assume thaf is a nonempty face o€ ("M, As observed following the
definition of theF, s in (11), there exist subset§, ... , I, of {1,..., pjwith@ # F =
ﬂ{"le“. As the empty chain is a representing chairCétt--"»), Lemma 6 implies
the existence a representing chairFof C("t--"») = F which is a superchain of the
empty chain.

i

Proof of Theorem 1By Lemma 1,P("--") < C(".---Np) We prove the reverse
inclusion by showing that each vertexof C("t-:1p) s in P(1.:Np); see part (a) of
Proposition 1. Now, by Lemma 7, there exists achain. . , Ix such thafv} = ﬂ{‘:th;
this chain has a superchain of length- 1, sayl;, ..., I/p—l' Let = be the (unique)
consecutive partition corresponding to this chain. By Lemmgg} < mtpz_ll Fip ©
ﬂ{‘:th = {v}, implying thatv = 6, € P("--:") in particular,y has a representation
v = 0, with & as a consecutive partition.

To complete the proof of Theorem 1, let be a consecutive partition and let
l1,..., Ip—1 be the chain of lengtlp — 1 corresponding tor. By Lemma 4 and
Lemma 7,{0;} = ﬂtp:_lth and this set is a face &@""0); s0,0,, is a vertex of
C(nl,...,np) — P(nl,...,np)_

O

Proof of Theorem 2Lemma 7 shows that a subsétof RP is a nonempty face of
P if and only if it has a representing chain; in particular, this conclusion assures
that for each chaimy, . .. , I, ﬂ{;th is nonempty, proving (c).

To establish (a), leF and F’ be nonempty faces dP(".-"») The implication
(i) = (ii) follows from Lemma 6 and the implication (igs (iii) is immediate from the
established existence of representing chains of faces. Finally,.if. , Ik is a repre-
senting chain ofF andl], ..., II’(/ is a superchain ofy, ... , Ix which a representing
chain of F/, thenF =, F, € NK F = F'.

To establish (b), leF be a nonempty face dpP("--"p) with representing chain
I1, ..., Ix. Now, if vis a vertex ofP("%---"p) which is inF, thenF’ = {v} C F is aface
of P("1.--"p) and part (a) implies the existence of a reperesenting chaff efhich
is a superchain ofy, ... , I, sayli, ..., I,. By Lemma 5, there exists a consecutive
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partitionr which is consistent with7, ... , I, and hagd, € ﬂLth = {v}, that is,
6> = v, of course,r is also consistent with the subchain ..., Ix of I7,...,1}.
Alternatively, assume thatis a vertex ofP ("1 with representation = 6,, where
7 is consistent with, ... , k. Then there exists a chain of length- 1 corresponding
to = which is a superchain ofy, ... , Ix. By Lemma 4, this chain is a representing
chain of{v} = {0;}, and the implication (iii)= (i) in (a) assures thgb,} C F, that is,
0, € F.

O

The next lemma characterizes the sources for non-minimality of chains.

Lemma 8. Letlq, ..., Ix be achainand les € {1,...,k}. Then the following are
equivalent:

€) ﬂ{(:th = m?:l,t#sFlt'
(b) F|s_1 NFi., € Fis, and

(c) 0" is constant fom;,_, <i <ny,,

Proof. (b) = (a): This implication is trite.
(c)= (b): Suppose' = K for ni_;, < i < ni,,. ThenOuy — Oq, ) =
(Nig = Mg K and@snig ;. < Nigandsia\ly) < Mig)O0sin) = Ollsa\Us\ls 1) =
(nj; —n_,)K. To provethat,._, NF, € F,letx e F_, NF,, andwe will
show thatx € Fy,. Indeed, we have that

Nig
DoXi=D X = X201y — 01,y = Y 0 = (N, —n,)K and
jels\ls—1 jels jels—1 i=n_,+1
DoXi= DX D X =00 — Blends\ls 1) = (g = Nig DK

jels\ls—1 j€lsta jelsya\Us\Is-1)

It follows that the inequality in the first string holds as equality; implying that
X € F..
(a)S:> (c): Suppose@X_,F, = N, ,.sFi,. By Lemma 5, there exists a conse-

cutive partitionr which is consistentwi’tﬁthe chalnp, .. IS 1,Jd = IS_1U(IS+1\

ls), lst1, ..., Ik; for thisz, 0, € (ﬂt 1t7ésF|t) N FJ - ﬂt 1Lts i = ﬂt 1Fig-
So0,0, € F|s NFj.AslsandJ = Is_1 U (Isy1\ ls) are not ordered by set inclusion,
aslsNJ = Is_1 and asls U J = ls+1, Lemma 3 implies tha#' is constant for
Nig, <1 <nNjg,.

The next lemma is needed for exploring minimal chains.

Lemma 9. Letl be asubsetdfi, ..., p} andletx € F,. Then:

(a) ift € I, thenx; < n®™, and
(b) ifte{l,..., p}\ I, thenx; > nO"+1.
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Proof. As X € Fi, > ¢ Xj = 6q). Also, 3 jc3Xj = 6 forall J < {1,..., ph
Using (3),

n

Xt = ij — Z Xj = 9(|) _Q(I\{t}) = Z 9i < nt9”' fort e 1, and

jel jel\{t} i=n; —nt+1
N +nt )
Xt = Z Xj—ZXj > Oaupty — 0y = Z o' znten'“forte{l,...,p)\l.
jeluft) jel i=ny +1

o
The next lemma proves uniqueness of minimal representing chains of faces.

Lemma 10. If Iy, ..., Ixandly, ..., I, are minimal chainswith}{‘zlﬁt = ﬂleFu £
@, thenk =K andly = I{fort =0,1,... ,k=K.

Proof. Let F = nk_,F, = nK_,I{ # . We proceed with an inductive argument
and prove that for each positive integex min{k, k'} + 1, Is = I, in particular, if
s=minfk, K} +1,thenls=I{={1,... ,plands=k+ 1=k + 1. Aslg = I, the
assertion is trite fos = 0. Assume the assertion holds for integer k+ 1 and we will
establish the assertion wigy 1 replacings.

We first argue thats,; and |§+1 are ordered by set-inclusion. Aiming to establish
a contradiction we assume that this conclusion is false. WithIs;1 N Ié+l, we have
thatls € J C Isy1. Also, Lemma 3 and the fact th&j,, , N F,é+1 2 F # ¢ imply that
Fj= Fls+mlg+1 ) leﬁF,é+1 D Fandthat' isaconstantfony < i < n|s+1ulé+l.As
Is € J C lsy1andFj 2 F, the insertion of] into the chainly, ... , Ik betweenls and
Is+1 yields a superchain which is another representatidn ef ﬂ{‘:l Fi,; by Lemma 8,
it follows that if Is ¢ J, thené' is constant fon;, < i < nj,,. As ' was shown to
be constant fon; = Niganil,, < i < Nigau1l,, and asnyg,; > Nig,; Nlg ., =Ny
(becausés1 andlg, ; are not ordered by set-inclusion), we conclude that when either
ls=Jorlsc J,0is aconstantfon;, <i < n|wu|é+1.

As lsy1 and I;Jrl are not ordered by set-inclusion, neithgy1 nor I;Jrl equals
{1,..., p} assuring thas + 1 < min{k, k'} + 1. Also, Lemma 8, the minimality of
I1, ..., Ik and the conclusion th&t is a constant fon;; < i < Nig,au1Z,, imply that

Nigqutl,, < Mgz Our next step is to argue thet , C Is;2. Indeed, if there exists an

indexuin I 4\ Isy2, then Lemma 9 and (3) imply that

B g < szt < 10 (21)
nu nU

and equality must hold throughout (21), in particuﬂirmust be constant fam,,, <

i <ny,, + 1. As we already established tiitis a constant fon;; <i < Nigqu1,,

and NigyqulZ,, > Misias 6" must then be constant fon, < i < ny,, + 1. From

Lemma 8 this conclusion is false due to the minimality of the cHain.. , Ix. So,

indeed,IéJrl C lgq2. It follows thatlsy 1 C lgyg U Ig+1 C lgy2, further, asls;1 and

I, 1 are not ordered and dsy1 U I, 4 # lst2 (becausemwu%+l < Nig,,), these
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inclusions are strict. So, withl = lg;1 U I;Jrl, we have thats; 1 € H C Isy2. Also,
Lemma 3 implies thaFy = Figauz, 2 Fisa NFy 2 F #0.We conclude that
the insertion ofH into the chainly, ..., Ix betweenls;; and ls;» yields a proper
superchain which is another representatiof £ ﬂ{‘leh; Lemma 8 then implies that
0" is constant fom;,,, < i < ni,,. As we already established thaltis a constant
for Nis < i < Nigy 1017, andmwu%+l > Nigyy, WE conclude that' is a consta_nt_for_
N, < i < nyg,. This conclusion combines with Lemma 8 to contradict the minimality
of I1, ..., Ix. This contradiction proves that the assertion that and |§+1 are not
ordered by set-inclusion is false.

We have established thég;1 andl,, are ordered by set-inclusion. Without loss
of generality, we henceforth assume tlhgt1 C lgy1. Assume thal;rl # lgt1, that
is, |§+1 C lsy1, and we will establish a contradiction. As = 1 C I;Jrl C lsy1
andF C F'éH = Fj, we conclude that the insertion ¢f, , into the chainly, ..., Ik
betweenls and Is;; yields a proper superchain which is another representation of
F= (ﬂ't‘leh), hence, Lemma 8 implies thaltis constant fomé =N <i<ny,.

We next argue thaks; 1 € 1., ,. Indeed, if there exists an indexin ls 1 \ 1.

. s+2° s+2?
Lemma 9 and (3) imply that
Xu < 9Mst1 < Qn'§+2+1 < Xu (22)
nu nU

and equality must hold throughout (22), in.particuﬁirmust be constant fam,, <

i < n., + 1. As we already established tiatis a constant fomé =N <i <Ny,

6" must then be constantfnré =ng<i< n,é+2+1. From Lemma 8 this conclusionis
false due to the minimality of the chaly, ... , I;,. So, indeedls;1 Ié+2. Lemma 8,
the minimality ofl, ... , 1), and the conclusion that is a constantfon;, <i <ng,
imply thatls 1 # Ig+2. So,I;rl Clsi1 C Ig+2. Also, from Lemma3F.,, 2 F # 0.

It follows that the insertion ofs;; into the chainlg, ..., I, betweenI;rl and Ig+2
yields a proper superchain which is another representaticﬁhefﬁ{‘:1 Fi,; Lemma 8
then implies tha#' is constant fon|é+1 <i= Ny, As we already established thét

is a constant fon;; < i < ny,, andmé+1 < ny,,, we conclude that' is a constant
forn, =n <i < n,, This conclusion combines with Lemma 8 to contradict the

minimality of I1, ..., Ik. This contradiction proves the assertion that = I¢_ ;.
o

Proof of Theorem By Theorem 2, a subs&tof RP is a nonempty face dp"--"p) if
and only if thereis achaih, ... , lxwith F = ﬂ{‘:th; each such chain has a minimal
subchainly, ..., I}, with ﬂleF,tf = NK_,F, = F. We conclude that a sé& C RP is
anonempty face d®("1---"p) if and only if it has a representing chain which is minimal.
By Lemma 10, a minimal chain representing a given face is unique; also, trivially,
a minimal chain uniquely defines the corresponding face. So, the correspondence of
nonempty faces oP(":+-"p) onto minimal chains is one-to-one.

Next, let F be a nonempty face o) with representing minimal chain
I, ..., Ik
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(@): Ifl3, ..., 1, isarepresenting chain & thenithas aminimal subchaify, . .. , I/,
it K K k K’ k
with N_, Fy = N, Fy = F = N R Asni Ry = N, Fi,, Lemma 10
assuresthatthe minimal chains. . . , Ixandl{, ..., 17, coincide, thudy, ... , Ik
is a subchain ofy, ..., 1},.

(b): Supposeé’ is a nonempty face oP("--Mp), The implication (i)=> (ii) follows
from part (a) of Theorem 2. To see that (# (iii) assume that’ has a repre-

senting chairl{, ..., I, whichis a superchain df, . .. , lx. It then follows from
the established part (a) that the minimal chain represeritingayl;. ..., Iy, is
asubchainotf, ..., 17,. As minimal chaindy, ... , Ixandly, ..., I, are both
subchains of{, ..., Iy, andnf Fi» = F' = N, Fy,, we have thaty. ... . I,
refinesly, ..., Ix. Finally, to see that (iii)}= (i) assume the minimal chain repre-
sentingF’, sayly, ..., I, refinesly, ..., Ix. Thenthere exists a chaiii, ... , 1,
which is a superchain of both, ... . Iy andly, ..., 1}, with N Fip = N Fy;

in particular,F’ = mi‘;lF“/ C Nk F =F.

(c): The characterization of the verticesfvia corresponding consecutive partitions
follows from part (b) of Theorem 2 (where it is established for all representing
chains, not just the minimal ones). Also, from part (a) of Propositiofr 1as
a polytope) is the convex hull of its vertices, and from part (e) of Proposition 1 the
vertices ofF are the vertices dP"-"p) that are inF. As Theorem 1 shows that
the vertices oP "1 are precisely thé,’s wherer ranges over the consecutive
partitions, the second part of (c) is immediate from the first part

(d): The minimality of the chairy, ... , I implies that the set§p = P"-"p) and
Fs=n_,F, fors=1,..., karedistinct. As these sets are faceBG# - -"») and
Fo=PMM) 5 F 5 ... > F_1 D Fx = F, part (f) of Proposition 1 implies
that dimP®".:—-") = dimFp > dimF; > ... > dimF_1 > dimFc = dimF; it

follows that dimF < dim P("2.-Np) _ k.
O

Proof of Theorem 4The existence of superchains of representing chains of faces of
P(1.--.Np) that are maximal is immediate by iteratively taking superchains. Next, let
I1, ..., Ik be a representing chain of faéeand we will establish the equivalence of
the stated four conditions.

(@)« (b): ByLemmas, apropersuperchdin. .., I, ofly, ... Ik hasn{(:lﬁ{ =
ﬂLth if and only if it is obtained fromiq, . .. , Ix by inserting sets between pairs
It and li41 for t € T(l4,..., lk); no such insertion is possible if and only if
T4,..., 1K) =0.

(&)= (c): Theorem 3 assures thithas a unique minimal representing chain, say
[1.....ly. By Lemma8, a proper superchainlef . .. , I}, is a representing chain
of F if and only if it is obtained fromiy, ... , I, by inserting nested sets between
pairsl{ andlt’Jrl fort € T(l1, ..., 1,); as the number of possible distinct insertions
betweenl{ and I, , fort € T(ly,..., I;) is precisely|l{, , \ I{| — 1, the length
of each superchain dfj, ..., I;, which is a maximal representing chain Bfis

c(F) = k/+2teT(lis--- ’Il/<’)(| l{,1\ 1{|—1). By Theorem 3, all maximal representing

chains of F are superchains df;, ..., I((,. Thus,c(F) is the common length of



356 B. Gao et. al

all maximal representing chains 6f We prove that(F) = p— 1 — (dimF) by
induction on dimF.

Suppose dink = 0. ThenF is a vertex and Theorem 1 implies that= {6, } for
some consecutive partition By Lemma 4, the chain of length— 1 corresponding to
7 is a representing chain ¢, } = F. As a chain of lengtlp — 1 has no superchains,
that chain is maximal andF) = p— 1= p— 1 — (dimF), verifying the induction
hypothesis when dir = 0.

Assume thatl = dimF > 0, andc(F’) = p— 1 — (dimF’) for every faceF’ of
P(1--Mp) with dimF’ < d. Letk = c(F ) andletlq, ... , Ix be amaximal representing
chain of F. From parts (c) and (d) of Proposition E,has a facef’ which is a face
of P(M1-"p) of dimensiond — 1 > 0. Also, parts (c) and (g) of Proposition 1 imply
thatF has a representation which uses (10) and (9) except that some of the inequalities
of (9) are tightened to equalities; consequently, part (g) of Proposition 1 applied to

polytopeF shows thaF’ = F N F; for some nonempty proper subsenf {1, ... , p}.
So,Nk F, =F>F =FnF =N F)NF.Asd # F C F, Lemma 6
implies thatF’ has a representing chain which is a propeperchain ofiy, ... , lk;

in particular, its length i« + 1 or more. As we already observed that each chain has
a maximal superchain, we conclude tltaF’) > k+ 1. AsdmF =d -1 < d,
the induction assumption implies thatF') = p— 1 — (dimF)=p—-1—(d - 1),
implying thatc(F) =k <c(F)—1=p—-d-1.

Next, as dimF = d > 0, the established inequality< p — 1 — d assures that
k < p—1, implying that|lsy1 \ Is| > 2 for somes = 1, ..., k. We will construct
a setls C I’ C lsy1 such that the chaity, ..., Is, I, ls11, ..., Ik is maximal. As
I1, ..., Ik is a maximal representing chain Bf the established implication (& (b)
implies thatT(l4, ..., Ix) = ¥, and from the established implication (8} (a), the
maximality of the new chain holds if:

(i) either|l’\ Ig| =1 org! is not constant fon;; <i < ny,, and
(i) either|ls;1\ I'| = 1or@"is constantfon;: <i <nyg,,.
We consider two cases.

Case 1.|ls11 \ Is| = 2. Let j’ be any one of the (two) elements kf 1 \ Is and let
I”=1sU{j}. Then|l” \ Is| = |lsy1 \ I’| = 1 and conditions (i) and (ii) are clearly
satisfied.

Case 2.|ls+1 \ Is| > 3. Let j’ be a minimizer ohj when j ranges ovefs 1 \ s, let

I+ =IsU{j}andletl_ = Isy1\ {j’}. Thenn;, =ni +nj, n_ =ny,, —nj and
the selection ofi” assures thatj < (ni,,, — niy)/2; thus,n;, < n;_ implying that
{i:ng <i<n_in{i:n_ <i <ng,} #90. As the maximality ofly, ..., Ik
assures that(l, ... , lx) = @, we have thad' is not a constant fon, <i < njg,,.

We conclude tha#' is not constant over both;, <i < n_andn;, <i <np,.
Conditions (i) and (i) are satisfied by = |, if 6' is not constantover, <i <ny,
and byl’ = I_ if ' is not constant over, <i <n_.

Evidently, I1, ..., s, I, lst1, ..., Ik is a chain which is a representing chain of
F=FnNnF = (m{‘leh) N F-F. As this chain is a proper superchainlef. .. , Ik,
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Theorem 2 implies thaF’ is a nonempty face oP"---"») which is included inF;
further the maximality ofF assures thaE’ c F, implying that dimF’ < dimF =d
(see part (f) of Proposition 1). Ag, ..., Is, I/, Isy1, ..., Ik is a maximal representing
chain of F/, the induction assumption assures that 1 = p— 1 — (dimF’). So,
cF)=k=p—-2—-(dimF)>p—-2—-(d—-1) = p—1-d. Thus, the proof that
c(F) = p—1-discompleted.

(c)=(a): If I1,..., Ik is not a maximal representing chain Bfit has a proper
superchairiy, ..., I, which is a maximal representing chain Bf in particular,
k' > k. By the established implication (& (c), p— 1 — (dimF) =k > k.

()& (d): AsF = m{‘leh , the definition of thd= 'sin (11) assures thatfor y € F
andt =1,... . k+1,3 ., (X=Y)j = 0a — 6a = 0, implying that tngF <
L = ﬂk+1{z € RP: 3%, 2 = 0L As L and tngF are linear subspaces,
we conclude that tnE = L if and only if dimthgF) = dimL. From standard
argumentsdin = p— (k+ 1); thus, thgF = L ifand only if dimF = p—1—k.

O

Proof of Corollary 1.The empty chain is a representing chainRf'v:-") and is
the only chain of length 0. Hence by the equivalence ) (a) of Theorem 4,
dimP(M.---"p) = p — 1 if and only if the empty chain is maximal. Observing that
T(¥) = ¢ if and only if eitherp = |I1 \ lo| = 1 or not allf'’s coincide, the equivalence
(@) & (b) of Theorem 4, implies that the empty chain is maximal if and only if either
p = 1 or not allg'’s coincide.

O

Proof of Theorem 5Let |4, ..., Ik be a chain and let be a vector inN(lq, ..., lx),
as defined in (12). Then has a representatioﬁj{‘il1 Bre't where By, ..., px are

negative andoy1 is unrestricted Fox € PN cTx = Yy ¥l g (e")TX =

Y A e X)) < Y Bibay and equallty holds if and only ;.\, Xj = fqy
fort =1,...,k; so, argmay_pmy...np c'x = :th In particular, we have that for
each face~ having representing chaln, ... , Iy, N(I1, ..., Ix) € Ng.

Suppose is a face of (1" with representmg Chth_L , Ikand with Ng =
N(l1, ..., . Fors e {1,... k} let ¢ = Y L~ e and Fs = nk_ LizsFiee
Thenc® € N(l1, ..., ls1, Ist1, ..., Ik) € Nps (the inclusion following fromthe first
paragraph) and® ¢ N(l1, .. Ik) = Ng. We conclude tham't‘ lt#th = Fs # F for
eachs=1,..., Kk, assurlng thatl, .. Ik is minimal. Next, by standard results from
linear algebra tngl(ll, = {Zt ﬁ et By, ... , Bk+1 € R(unrestrictegl}; in
particular, dimN(l4, . .. Ik) = k+1. The assertiobdlg = N(l1, ..., Ix) nextcombines
with Proposition 2 to show that diff = p— dimNg = p—dimN(l,...,lx) =

—(k+1) = p—1-—k,and Theorem 4 implies that, ... , I is maximal.

Next assume thaF is a face of P("L-"p) with representing chairy, ... , Iy
which is both minimal and maximal. The first paragraph of our proof shows that
N(l1, ..., lk) € Ng. To see the reverse inclusion lete Ng and we will show that
¢ € N(lg, ..., lx). From Proposition 2 we then have thate N C thgNg =
(tngF)*. By Theorem 4, the maximality ofy, ... , Ix implies that thg- = {z €
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RP : Zjeh\lt—l zi = 0fort = 1,...,k+ 1} and therefore (by standard argu-
ments)(tngF )+ is the linear span ofe't\lo, e'2\l1  elk1\l}, or equivalently of
{el,el2, ... e} (ase'i = Y] el\u-iforj = 1,..., k+1). Thus, the conclusion
c € (tngF )T implies thatc has a representatian= Zﬁll Bt €'t and it remains to show
thatps, ... , fcarenegative. Fis € {1, ..., k}.LetF® = (N, ,_sFi,); the minimality
of I, ..., Ik then assures th&t = ﬂ{‘:th C Fs, sothereis avecto® in FS\ F. As
c e N, F = argmax_pmy...np C'X; further, for allx € F, c'x = YK gi(e')Tx =
ﬁll lgt(Zjelt Xj) = th(ill PiOay- As x*¢ F andx® € F* = mt(:l,t;ﬁSFltv we have
k+1 k+1 kt1
Yot By > €x° = 30 s B e, X)) + Bs(X et X) = Zti_l,t#sﬁté’(m +
Bs(X_jer, X}), and therefor@sds) > Bs(3 i, X7)- AS Y-, X; = Oqg it follows that
ﬁs < O
O

Let F be aface oP("--"0) Theorem 5 provides a representatiomgfin terms of
a representing chain @ which is both minimal and maximal. Further, our arguments

show thatif the definition olN(l1, . .. , k) is extended through (12) tosubséts. . . , Ik
of {1, ..., p} which do not form a chain, theNg = N(l1, ..., I) provided:

(a) F = m{(:]_':lty

(b) fors=1,... .k F # Nk, Fi, and

(c) €'1,€e'2, ... el is abasis oftngF ) (with Iy 1 = {1,..., p}).

(If 14,..., Ik is a chain, (a) implies that it is a representing chairFof(b) implies

that it is minimal, and (c) implies that difd = p — dim(ingF )+ = p— 1 — k and,
in view of Theorem 4, the chain is maximal). Now, suppdse.. , Iq is a minimal
representing chain oF andT = T(ly, ..., lg). It is easy to verify thafl; : t =
L,...,9+Lt—1¢T}U{ltU{j} :t € T, € lt+1 \ It} is a family of subset of
{1,..., p} that satisfy (a)—(c), hence, they yield a representatidietolf 11, ..., Iqis
maximal (on top of being minimal), then the constructed familffis. .. , |4} and the
derived representation & reduces to the one asserted in Theorem 5.

Proof of Theorem 6(a) The implications ()= (iii), (i) = (i), (i) = (i) follow,
respectively, from Theorem 4, Lemma 4 and Theorem 1.
(b) Letv andv’ be two distinct vertices oP"--"p) and letE = conVv, v'}.

(i) = (ii): AssumeE is an edge oP"t---") that is, a face of dimension 1. Then
v andv’ are the only vertices oP("1-"p) in E. By Theorem 4E has a maximal

representing chain of length — 2, sayl, ..., lp—2. Evidently, {lt \ li—1 : t =
1,...,p— 1} has p — 2 singletons and one set containing two elements, say
Is\ ls—1 = {], k}. Thus, the chainy, ... , I p_2 has exactly two proper superchains

of length p — 1 obtained by inserting eithdr = Is_1 U {j} or I’ = ls_1 U {k}
betweenls_1 and Is. Let 7 and ' be the consecutive partitions corresponding
to these two superchains, respectively, themnd 7’ coincide on all but parts

jandk andmj Um = 7j Umy = {mi,_, +1,...,ni}. By Lemma 4,60, €
NPZF, = E, 6 € NP-/F, = E and6, and6, are vertices ofP(M--"p),

thJs{en, 0.} C {v,v'}. We next demonstrate thét # 6, which will imply the
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equality{6,, 0/} = {v, v'}. Indeed, if6, = 0x’ thenF, N F;» # ¥ and Lemma 3
implies thatF| N F;r = Fiur N Frapr = Fig N Fi,; consequentlyF; < ﬂtp:_leh
and{6,} = ﬂtp:_th NE = ﬂtp:_th = E, a contradiction to the assertion that
dimE = 1.

(i) = (iii): Assume that (ii) holds. Without loss of generality we assume thaté,,
andv’ = 0x’. Consider the two chains of lengfh— 1 corresponding ta andxn’,
say l1,...,lp-1 andlg, ..., ';371' respectively. By Lemma 4} = {0} =
ﬂf’;ll Fio. (v} = {0} = ﬂf’;ll F\;. Also, the asserted propertiesofindsr’ and the
description of chains of length— 1 corresponding to consecutive partitions, imply
thatly, ..., lp—1andlg, ..., I/p—l coincide, except for a single element, that is,
they have a common subchain of length- 2.

(iii) = (i): Assume that (i) holds and ledy, ... , Jp—2 be the common subchain
oflengthp—2ofly, ..., lp_1andlf, ..., ';371 and letF = ﬂtp:’lth. Without

loss of generality assume tht} = ﬂtp:’lth and{v'} = ﬂtp:’llFu. We observed

above that a chain of lengfh— 2 has exactly two proper superchains.r)qxngll Fi, =
{v} £ [V} = ﬂtp:’ll Fl{* it follows thatJy, ... , Jp—2 is maximal (for otherwise either
F = {v} orF = {v'}). Now, by part (c) of Theorem 4, difd = (p—1)—(p—2) = 1.
So, F is an edge oP"--"p) that contains vertices andv’ and standard results
show thatF = conj{v, v'} = E. Thus, indeedE is an edge oP":--Mp),
Finally, if j andk are as in (ii), trivially,v — v’ is a scalar multiple ofel — €).

i

The next lemma considers the case wherettseare distinct.
Lemma 11. Suppose thé'’s are distinct. Then:

(a) the functiond ) mappingl < {1,..., p} into 6, given by (7)—(8) is strictly
supermodular,

(b) if l1, ..., I are distinct subsets dfl, ... , p} with ﬂLth # @, thenlq, ..., Ik
are well-ordered under set inclusion,

(c) every chain is both minimal and maximal,

(d) if l,... . Ik, 17.... . 1, are subsets dfl with NE_, F, = NK_, Fy, 5 @, thenk = K’
andfly, ...,k ={l3..... I}, and

(e) the function mapping a partitiom into 6, is one-to-one on the set of consecutive
partitions.

Proof. (a) Letl andJ be subsets ofl, ..., p}with 1ZJandJZ 1. Then|l U J| —
|l N J| > 2 and the assumption that thEs are distinct and Lemma 2 imply that
Oy + 63y # O1ngy + Oauy)-

(b) Let Iq,..., Ik be distinct subsets ofdl, ..., p} with F = m{‘leh # ¢ and
letr,s e {1,... ,k}. If F, ZF, andF < F,, thenn,y, > maxn,,ng} >
min{n,, Nig} > Nni.nig implying thatn uig — N, = 2. AsF, NF, 2 F # 0,
Lemma 3 yields a contradiction to the assertion thattteare distinct.

(c) Asthed'’s are distinct, Lemma 8 implies that every chain is minimal. Also, trivially,
for every chainly, ..., Ik, T(11, ..., Ix) = ¥ and therefore it must be maximal by
Theorem 4.
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(d) Supposér, ..., Ik 1}, ..., 1, aresubsetsdfiwith F = N, Fj, = ﬂ{‘/le,tf £ .
By part (b),l1,..., Ik andli, ..., I are, respectively, well ordered by set inclu-
sion, hence, by possibly permuting the sets in each group we may assume that
l1,...,lkandlj, ..., I, are chains. Consider an enumeration of the distinct sets
in{le, ...l oo s 1) sayly, o 1 Thenm{ilﬁ{/ = F = ¢ and, again by
part (b), after possible permutation we may assumelthat . , 1, is a chain, fur-
ther, by part (c), this chain is minimal. As, ... , Ixandl;, ..., I{(, are subchains
of 17, ..., 1}, with m{ile =N R, = ﬂleﬁ{ = F # ¢, the minimality of
17, ... 1y impliesthat{1], ..., 10} = {1, ... hd = {15, ..., 1L}

(e) Letr andn’ be consecutive partitions with, = 6, and letly, ..., lp_1 and
110, I;)_l be chains of lengtlp— 1 corresponding ta andr’, respectively. Then

ﬂtp;llFlt = {0z} = {6y} = mtpz’lth/ and part (d) assures thflty, ..., lp-1} =

{, ..., ';371}1 implying thatr = 7. .

The next example shows that the last conclusion of Lemma 11 is false for non-
consecutive partitions, even when & are distinct.

Example 5.Suppose.9i =ifori e N=1{1,2,3,4,5, p=n1=2andn; = 3. Then
w1 = ({1, 4}, {2, 3,5}) andw, = ({2, 3}, {1, 4, 5}). Thenb,, = 6., = (5,10 € R2.
O

Proof of Theorem 7Proposition 1 established the representation of nonempty faces of

pP(1.--.Np) 35 intersectionnSu{‘:l F,, in fact, with the setsy, . . . , I well-ordered by set
inclusion. The uniqueness of these representations follows from part (d) of Lemma 11.
o

Proof of Corollary 2.

(a): The first conclusion is immediate from Corollary 1.

(b): Lemma 7 shows the characterization of nonempty faces via the existence of repre-
senting chains and Lemma 11 gives the uniqueness of representing chains when the
0''s are distinct. Theorem 3 and Theorem 4 establish the existence of minimal and
maximal representing chains, thus, the unique representing chain of a nonempty
face must be both minimal and maximal.

(c): Recall the notatio™(P ) for the normal fan of a polytop®. Let F be a face of
p(1.--.Np) By part (b),F has a unique representing chain, $ay. . . , lx, and part
(c) of Lemma 11 assures that this chain is both minimal and maximal; thus, by
Theorem 5N(l1, ... , lx) defined through (12) equalée. ThusN(P("1--"p)y
N={N(l1,...,Ix):1l1,...,lgisachainorl, ..., p}. To see that this inclusion
holds as equality observe thatlif, ..., Ix is a chain on{1, ..., p}, the above
arguments show thad(l4, ... , Ix) = Ng for F = N Fy,.
The family of conesN depends only orp and not on the values of thg's or the
6"'s; and we proved that when ti#&s are distinctN = N(P(M----M0)), Thus, with
p fixed, the normal fans of all partition polytopes coincide, as long as the data has
thed'’s distince; in particular, they all coincide with the normal fan of the standard
permutahedron.
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(d): We have seen that the unique representing chain of a face is both minimal and
maximal. Listed properties (i)—(ii) of the chain corresponding to a fadellow
from Theorem 3 and the minimality of the chain, whereas (iii)—(iv) follow from
Theorem 4 and its maximality.

(e) and (f): These conclusions are immediate from parts (a) and (b) of Theorem 6 and

the established uniqueness of the representing chain of a face.
o

Appendix

Proof of Proposition 2.

(a): LetF be a nonempty face d®. The definition of a face assures thats the set of
maximizers ovelP of a linear function; that iSNg # @. Also, it is easy to verify
thatifc, d € Ng anda, 8 > 0 thenac + Bd € Ng; that is,Nf is a cone inRP.

(b): Standard results show that for eack RP the function mapping € P into cx
attains a maximum over (the bounded $28nd the definition of faces assures that
the corresponding set of maximizers is a face; so, eacliRP defines a nonempty
face F with ¢ € Ng. Further, as argmaxp c'x is well defined, theNg’s are
necessarily disjoint.

(c): Suppose- and G are two faces of with cINg < clINr and letx € F. Let

¢ € Ng (such a vector exists by part (a)). Thene Ng € cINg C cl Ng,
implying that there exists a sequence of vecfox$n=1,2.... in Ng which converges
to casn — oo. In particular, for eacly € P, (ch)"x > (¢))Tyforn=1,2, ...,
implying thatc"x > cTy. Thus,x e argmax.p c'x = G. Thus we proved that
FCG.
Next assume that € G and letc € Ng. Then argmay.p c'x = G D F, that
is, c'x > c'y for everyx € F andy € P. Now, letc* be a vector inNg (such
a vector exists by part (a)). Then argmax(c*)'x = F, thatis,(c*)Tx > (¢")Ty
for everyx € F andy € P with strict inequality holding foly € P \ F. For each
e>0,(c+ec*)Tx > (c+ec*)Tyforeveryx € F andy e P with strict inequality
holding fory € P\ F, implying thatc + ec* € Nr. As ¢ = lim o(c 4 ec*) and
eachc + ec* is in N, it follows thatc € ¢l Ng. ThusNg C cl Ng, implying that
¢l Ng C ¢l Ng.

(d): Supposd- andG are two faces wittNg = Ng. Then cINg = ¢l Ng, and two
applications of part (c) imply th& = G.

(e): LetF be a nonempty face d®. If u € Ng, thenu™x = uTy for everyx, y € F
implying thatuT[a(x—y)] = Oforeveryx € R, thatisu'z = Oforeveryz € tngF;
so,Ng C (tngF )+ implying that thgNg < (tngF ). In order to prove that this
inclusion holds as equality it suffices to show that @timy Ng ) = dim[(tngF )*].
By part (a) there exists a vector Mg, sayc, and withy = max.p c'x andV as
the set of vertices oP, we have that

+ |=7 ifveVNF and
clv , (A1)
<y ifveV\F.
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Letv = dim(tngF ). Then there exist linearly independent vectors itng F )+,

sayul,... ,u".Fixje{l,...,v}.Asul € (tngF )L, (u)T(v—v') = Oforeach
pair of vectorsv, v/ € F, implying that(u/)Tv is constant oveF; let 8j be the
common value oful)Tv whenv ranges oveF. As (A.1) implies thatv > cTw

forallv e VN F andw € V \ F, we have that for sufficiently small positive

Yy +efj = CTv—l—s(uj)Tv < CTw—l—s(uj)Tw foralveVNFandwe V\ F;

asF = convW N F andP = convV, it follows thaty + efj = c'v + e(ul)Tv
for eachv € F andy + efj < c'w + e(u))Tw for eachw € P\ F, that is,
argmaxp(c+ eu)Tx = F. Thus, for sufficiently small positive, c+-eu’ € N
and therefore (as € Ng) ul e thgNg. Asul, ..., u’ are linearly independent,
we conclude that ditngNg) > v = dim(tngF )+ completing the proof that
tngNg = (tngF )*; in particular, dingtngNg) = (tngF )+ = p — dimF.

o
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