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Abstract. We consider partitions of a finite set whose elements are associated with a single numerical
attribute. For each partition we consider the vector obtained by taking the sums of the attributes corresponding
to the elements in the parts (sets) of the partition, and we study the convex hulls of sets of such vectors. For
sets of all partitions with prescribed number of elements in each set, we obtain a characterizing system of
linear inequalities and an isomorphic representation of the face lattice. The relationship of the resulting class
of polytopes to that of generalized permutahedra is explored.
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1. Introduction

Partitioning of finite sets constitutes an important class of combinatorial optimization
problems. Frequently, in partitioning problems, each element of the partitioned set
is associated with a (fixed) number of numerical attributes, that is, a vector, and the
evaluation of a partition depends on the vectors obtained by summing up the vectors that
correspond to each part (set) of the partition. Applications of this model include graph
partitioning [1], inventory grouping [3,4], location problems [4], hypothesis testing in
statistics [4], storage allocation [5–7], group testing [9], and system reliability [10–
12]. Here, we consider such partitioning problems where the associated vectors are
one-dimensional, that is, each element of the partitioned set is associated with a single
numerical attribute. Many of the above-mentioned applications fit this situation.

Consider the partitioning of the setN = {1, . . . ,n} into p partswhere eachi ∈ N
is associated with a real numberθ i . Such apartitionπ is then associated with a p-vector
θπ whose j -th coordinate is the sum of theθ i ’s over the indicesi assigned to thej -th
part ofπ. Thepartition polytopecorresponding to a set of partitions5, denotedP(5), is
then the convex hull of{θπ : π ∈ 5}. When5 is the set of all partitions with prescribed
part sizes, we refer toP(5) as asingle-shape partition polytope. Our goal is to study
these polytopes. The following paragraphs highlight some of our key findings.
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One of our results (Theorem 1) gives a representation of single-shape partition
polytopes through explicit systems of linear inequalities. With5 as a set of partitions
defined through the specification of the part-sizes, we show thatx is in P(5) if and only
if x satisfies:

∑
j∈I

x j ≥ min
π∈5

∑
j∈I

(θπ) j for each∅ ⊂ I ⊂ {1, . . . , p} , and (1)

p∑
j=1

xj =
n∑

j=1

θ i

= p∑
j=1

(θπ) j for each partitionπ havingp parts

 ; (2)

of course, the right hand-side of (1) and (2) is easily computable. This representation
facilitates the solution of corresponding partitioning problems by linear programming
and by methods for optimizing nonlinear objectives subject to linear constraints.

To put the above representation in perspective, we recall from the Main Theorem
for Polytopes that the convex hullP of any finite subsetB of Rp is the solution set
of a system of linear inequalities. While the explicit identification of such a system
for P is generally difficult, it is known that for each facetF of P there is a vector
cF ∈ Rp with F = {x ∈ P : (cF)

T x = minθ∈B(cF)
Tθ} and P has the representation

[∩F{x ∈ Rp : (cF)
T x ≥ minθ∈B(cF)

Tθ}] ∩ L whereL is the smallest linear subspace
containingB. Our result shows that for single-shape partition polytopes thecF ’s can be
taken as 0− 1 vectors. For a sufficient condition for (1)–(2) to provide a representation
of other partition polytopes and for examples that demonstrate that such a representation
need not hold for arbitrary classes of partitions see [8].

Another result (Theorem 3) is the discovery of an isomorphism of the face-lattice
of single-shape partition polytopes and a family of chains. The structure we reveal is
expressed both in terms of defining inequalities and in terms of defining vertices. The
results put into focus the work of Barnes, Hoffman and Rothblum [2] about properties
of vertices of partition polytopes; we prove the sufficiency of their necessary condition
(obtained for multi-dimensional partition polytopes). In particular, we show that the
direction of edges is always the difference of two unit vectors; see Sect. 4 for an
important application of this property for assembly problems.

A third result (Theorem 7 and Corollary 2) is the placement of the class of single-
shape partition polytopes within other families of polytopes in terms of the combinatorial
structure of their faces and in terms of normal equivalence (see Sect. 2 for formal
definitions). Surprisingly, when theθ i ’s are distinct, each single-shape partition polytope
is normally equivalent to the standard permutahedron (see Sect. 3 for a definition). But,
we demonstrate that new polytopes are generated when repeatedθ i ’s are allowed.

Preliminaries about partitions and polytopes are summarized in Sect. 2. Our main
results are stated in Sect. 3 and are proved in Sect. 5. An application of our results to
optimal assembly of systems with the goal of maximizing reliability are discussed in
Sect. 4.
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2. Preliminaries: partitions and polytopes

Throughoutwe letn be a positive integer andN ≡ {1, . . . ,n}. A (labeled) partitionis an
ordered collection of setsπ = (π1, . . . , πp) whereπ1, . . . , πp are disjoint, nonempty
subsets ofN whose union isN. In this case we refer top as thesizeof π and to the sets
π1, . . . , πp as theparts ofπ. Also, if the number of elements in the parts of the partition
π = (π1, . . . , πp) aren1, . . . ,np, respectively, we refer to(n1, . . . ,np) as theshape
of π; of course, in this case

∑p
j=1 nj = |N| = n. We sometimes refer top-partitionsor

to (n1, . . . ,np)-partitionsas partitions of sizep or of shape(n1, . . . ,np), respectively.
A partition is calledconsecutiveif its parts consist of consecutive integers, that is, if
there is an enumeration of its parts, sayπ j1, . . . , π j p, such that fort = 1, . . . , p and

corresponding positive integersnj1, . . . ,nj p, π jt = {
∑t−1

s=1 njs + 1, . . . ,
∑t

s=1 njs}.
We assume that each elementi in the given partitioned setN is associated with a real

numberθ i and, without loss of generality, we assume that

θ1 ≤ θ2 ≤ . . . ≤ θn . (3)

We note that (3) implies that

u+w∑
i=u+1

θ i ≤
v+w∑

i=v+1

θ i for nonnegative integeru, v andw with u ≤ v . (4)

Further, if u < v andw > 0, equality holds in (4) if and only ifθ i is a constant for
u+ 1≤ i ≤ v+w, thus, (4) holds strictly when the inequalities in (3) are strict,u < v
andw > 0.

We identify row and column vectors and useRp to denote the set of either type of
p-vectors. Also, we refer to the standard definitions foraffine, tangential, conic hullsof
subsets ofRp and for thedimensionof convex sets, in particular, we use the notation
aff C, tngC, coneC and dimC, respectively. Also, we refer to the standard topology in
Rp and use the notation clB for theclosureof a subsetB of Rp.

A polytopein Rp is the convex hull of finitely many points inRp. The Main Theorem
for Polytopes (see [16, Theorem 1.1, p. 29]) asserts that a subset ofRp is a polytope if
and only if it is bounded and is the solution set of a system of linear inequalities.

For a subsetS⊆ {1, . . . ,n} we define theS-summation scalarθS by θS≡∑i∈Sθ
i .

For a p-partitionπ = (π1, . . . , πp) we define theπ-summation-vectorθπ by θπ ≡
(θπ1, . . . , θπp) ∈ Rp. Given a set5 of p-partitions, we define the5-partition polytope
by P(5) ≡ conv{θπ : π ∈ 5} ⊆ Rp.

Given a polytopeP in Rp, we say that a linear inequality
∑p

j=1 cj x j ≤ γ is

valid for P if P ⊆ {x ∈ Rp : ∑p
j=1 cj x j ≤ γ }. A faceof P is any set of the form

F = P∩ {x ∈ Rp :∑p
j=1 cj x j = γ } where

∑p
j=1 cj x j ≤ γ is a valid inequality forP.

Of course, the faces ofP are themselves polytopes. A faceF of P is calledproper if
∅ 6= F 6= P. Faces of dimension 0, 1 and(dim P ) − 1 are calledvertices, edgesand
facets, respectively. At convenience, we refer to avertexnot only as a face of dimension
zero, but also as the single element that such a face contains.

The next proposition summarizes useful properties of faces of polytopes; see
[16, Propositions 2.2 and 2.3, pp. 52–53, and Theorem 2.7 and following discussion
pp. 57–58].
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Proposition 1. Let P be a polytope inRp. Then:

(a) P is the convex hull of its vertices,
(b) intersections of faces ofP are faces ofP,
(c) each face ofP is the intersection of facets ofP,
(d) each proper faceF of P is a facet of a faceF′ of P,
(e) the faces of a faceF of P are exactly the faces ofP that are contained inF, in

particular, the vertices ofF are the vertices ofP that are contained inF,
(f) a face F′ of P is strictly included in a faceF of P if and only if F′ ⊆ F and

dim F′ < dim F,
(g) if P is a polytope with representation

p∑
j=1

Bk j x j ≤ bk for all k ∈ β (5)

whereβ is a finite index set, then each facetF of P has a representation of the form
F = {x ∈ P :∑p

j=1 Ck j x j = cr } for somek ∈ β, and
(h) if dim P = 1, thenP has exactly two vertices.

Part (b) of Proposition 1 implies that, with inclusion as the partial order, the set
of faces of a polytopeP is a lattice, and we refer to this lattice as theface-lattice
of P. We say that two polytopes arecombinatorically-equivalentif there is a one-to-one
dimension-preserving isomorphism of the face-lattice of one onto the face-lattice of the
other, where byisomorphismwe mean an inclusion-preserving map.

Let P be a polytope inRp. For each nonempty faceF of P, we define thenormal
coneof F, denotedNF , by

NF ≡ {c ∈ Rp : F = argmaxx∈P cT x} , (6)

where argmaxx∈P cT x refers to the set of maximizers of the function onP that maps
x ∈ P to cT x. This definition differs from [16, p. 193] whereNF is defined by{c ∈ Rp :
F ⊆ argmaxx∈P cT x}. The next proposition summarizes some facts about the normal
cones; as the results refer to our non-standard definitions, we provide a proof in the
Appendix.

Proposition 2. Let P be a polytope inRp. Then:

(a) for every nonempty faceF of P, NF is a nonempty cone inRp,
(b) {NF : F is a face ofP} is a partition ofRp,
(c) if F andG are two nonempty faces ofP, thenF ⊆ G if and only ifcl NF ⊇ cl NG,
(d) the mapF → NF is one-to-one, and
(e) for every nonempty faceF of P, tngNF = (tngF )⊥, in particular, dim NF =

dim(tngF )⊥ = p− dim F.

Thenormal fanof a polytopeP ⊆ Rd is defined byN(P ) ≡ {NF : F is a nonempty
face ofP}. Two polytopes arenormally equivalentif their normal fans coincide. The
next result shows that normal equivalence implies combinatorial equivalence.

Proposition 3. Normal equivalence of polytopes implies combinatorial equivalence.
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Proof. SupposeP and Q are normally equivalent polytopes. LetRp as the Euclidean
space containingN(P ) = N(Q), then P ⊆ Rp and Q ⊆ Rp. For a faceF of P,
NF ∈ N(P ) = N(Q) implying that Q has a face, sayH , with NH = NF ; part (e)
of Proposition 2 implies that dimH = p − dim NH = p − dim NF = dim F. As
N(P ) = N(Q), the constructed dimension-preserving map of faces ofP to faces ofQ
is onto; also, parts (d) and (c) of Proposition 2 show that this map is one-to-one and
inclusion-preserving.

ut

It can be shown that two normally equivalent polytopes have representations as the
solution sets of systems of linear inequalities, sayAx ≤ b and A′x ≤ b′, with A = A′
and identical parametrization of corresponding faces through tightening inequalities
determined by subsets of the set of rows ofA = A′. Thus, normal equivalence assures
related algebraic representation beyond common combinatorial structure established in
Proposition 3.

3. Statement of main results

We consider partitions with given shape; with theθ i ’s given, the data then consists of an
ordered list of positive integersn1, . . . ,np with

∑p
j=1 nj = n. The set of partitions with

shape(n1, . . . ,np) is then denoted5(n1,... ,np) and the corresponding partition polytope
is denotedP(n1,... ,np) and referred to as asingle-shape partition polytope. We state our
results about single-shape partition polytopes in the current section while proofs are
provided in Sect. 5.

Single-shape partition polytopes withnj = 1 for each j are calledgeneralized
permutahedra, the standardpermutahedronin Rp corresponding to the case where
nj = 1 andθ j = j for each j . These polytopes were first investigated by Schoute [15]
(see also [16, pp.17–18 and 23]). Single-shape partition polytopes as defined herein
constitute a specialization of the polytopes considered in [2] (obtained by restricting the
partitioned vectors to be one-dimensional).

Henceforth, we assume that the list(n1, . . . ,np) is given and fixed. In particular,
whenever we refer to apartition we mean an(n1, . . . ,np)-partition, so, we avoid
explicit reference to the shape of partitions through the prefix “(n1, . . . ,np)-”.

For a subsetI of {1, . . . , p} we introduce the notation

nI ≡
∑
j∈I

n j , and (7)

θ(I) ≡
nI∑

i=1

θ i . (8)
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Also, letC(n1,... ,np) be the solution set of the system of linear inequalities given by∑
j∈I

x j ≥ θ(I) for each nonempty subsetI of {1, . . . , p}, and (9)

p∑
j=1

xj = θ({1,... ,p}) =
n∑

i=1

θ i . (10)

Theorem 1 (Representation of Single-Shape Partition Polytopes and their Ver-
tices). P(n1,... ,np) = C(n1,... ,np) and the vertices of this polytope are precisely theθπ ’s
whereπ ranges over the consecutive partitions.

Supposenj = 1 for each j = 1, . . . , p. In this casen = p, all partitions are
consecutive, theθπ ’s are the vectors obtained from coordinate-permutation ofθ =
(θ1, . . . , θ p), and Theorem 1 implies that the convex hull of these permuted vectors is
the solution set of (9)–(10). This conclusion is an important result of Rado [14] asserting
that the convex hull of all permutations of a given vector is the set of vectors that are
majorized by that vector; see [13, Corollary B.3, p. 23]. The specialization of Theorem 1
with nj = 1 andθ j = j for j = 1, . . . , p, namely for the standard permutahedron, is
due to Schoute [15]; see also [16, Ex. 0.3, p. 23].

For eachI ⊆ {1, . . . , p}, let FI be the subset ofC(n1,... ,np) obtained by tightening
the inequality corresponding toI in (9), that is,

FI ≡ {x ∈ C(n1,... ,np) :
∑
j∈I

x j = θ(I)} . (11)

For eachI , C(n1,... ,np) ⊆ {x ∈ Rp : xj ≥ θ(I)} and thereforeFI is a face ofC(n1,... ,np).
From part (b) of Proposition 1, intersections ofFI ’s are also faces ofC(n1,... ,np). Further,
parts (c) and (g) of Proposition 1 show that each face ofC(n1,... ,np) is an intersection of
FI ’s. So, the faces ofC(n1,... ,np) are precisely the intersections ofFI ’s.

A (possibly empty) sequenceI1, I2, . . . , Ik of subsets of{1, . . . , p} is called achain
if ∅ ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ {1, . . . , p}, in which case we refer tok as thelength
of the chain. Such a chain is usually augmented withI0 ≡ ∅ and Ik+1 ≡ {1, . . . , p}.
We say that chainI ′1, I ′2, . . . , I ′k′ is asubchainof I1, I2, . . . , Ik and thatI1, I2, . . . , Ik

is asuperchainof I ′1, I ′2, . . . , I ′k′ if {I ′1, I ′2, . . . , I ′k′ } ⊆ {I1, I2, . . . , Ik}; we say thatI ′1,
I ′2, . . . , I ′k′ is a proper subchainof I1, I2, . . . , Ik and thatI1, I2, . . . , Ik is a proper
superchainof I ′1, I ′2, . . . , I ′k′ when the above inclusion is strict. The maximal length of
a chain isp− 1 and every chain has a superchain of lengthp− 1.

For a chainI1, I2, . . . , Ik, we have that{It \ It−1 : t = 1, . . . , k+ 1} is a partition
of {1, . . . , p}. In particular, if the length of the chain isp− 1, each of the setsIt It−1 is
a singleton and{It\ It−1 : t = 1, . . . , p} = {{ j } : 1≤ j ≤ p}. So, a chain of lengthp−1
defines an order on{1, . . . , p} with integer j ranked in placet if It \ It−1 = { j }, thus,
such a chain defines a unique consecutive partitionπ (of N) where for j = 1, . . . , p

π j ≡ {nIt−1 + 1, . . . ,nIt } for the unique indext for which It \ It−1 = { j } .
Observing that a consecutive partitionπ with π jt = {

∑t−1
s=1 njs+ 1, . . . ,

∑t
s=1 njs} for

t = 1, . . . , p corresponds uniquely to the chainI1 ≡ { j1}, I2 ≡ { j1, j2}, . . . , I p−1 ≡
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{ j1, . . . , j p−1} (of length p− 1), we have that the correspondence of chains of length
p− 1 into consecutive partitions is one-to-one and onto. We say that a consecutive
partitionπ is consistent witha chainI1, . . . , Ik if I1, . . . , Ik is a subchain of the unique
chain of lengthp− 1 corresponding toπ.

We say that a chainI1, I2, . . . , Ik is a representing chainof a subsetF of Rp, if
F = ∩k

t=1FIt . The next theorem shows that each faceF of P(n1,... ,np) has a representing
chain and uses such chains to characterizesF’s faces, in particular, its vertices.

Theorem 2 (Chain-Representation of Faces).A subsetF of Rp is a nonempty face of
P(n1,... ,np) if and only if it has a representing chain, that is, there is a chainI1, . . . , Ik

with F = ∩k
t=1FIt . Further:

(a) if F and F′ are nonempty faces ofP(n1,... ,np), then the following are equivalent:
(i) F′ ⊆ F,

(ii) each representing chain ofF has a superchain which is a representing chain
of F′, and

(iii) some representing chain ofF has a superchain which is a representing chain
of F′,

(b) if F is a nonempty face ofP(n1,... ,np) with representing chainI1, . . . , Ik then a vertex
v of P(n1,... ,np) is in F if and only if there is a consecutive partitionπ which is
consistent withI1, . . . , Ik and hasv = θπ , and

(c) if I1, . . . , Ik is a chain, then∩k
t=1FIt 6= ∅.

A chain I1, I2, . . . , Ik is calledminimal if no set can be dropped without affecting
the intersection∩k

t=1FIt , that is, fors = 1, . . . , k, ∩k
t=1,t 6=sFIt 6= ∩k

t=1FIt . Of course,
subchains of minimal chains are minimal, and every chainI1, . . . , Ik has a minimal
subchainI ′1, . . . , I ′k′ with ∩k′

t=1FI ′t = ∩k
t=1FIt . We say that minimal chainI ′1, . . . , I ′k′

refinesminimal chain I1, . . . , Ik if I ′1, . . . , I ′k′ can be constructed fromI1, . . . , Ik

by augmenting this chain with additional sets and then dropping sets which become
superflous, formallyI ′1, . . . , I ′k′ refinesI1, . . . , Ik if there exists a chainI ′′1 , . . . , I ′′k′′
which is a superchain of bothI1, . . . , Ik and I ′1, . . . , I ′k′ and∩k′′

t=1FI ′′t = ∩k′
t=1FI ′t . We

observe that the refining relationship is a partial order on the set of minimal chains.

Example 1.SupposeP = n = 3, n1 = n2 = n3 = 1, θ1 = 1 andθ2 = θ3 = 2.
The chainsI1 = {1,2} and I ′1 = {1} are minimal chains and they represent the faces
{x ∈ R3 : x1 + x2 = 3, x3 = 2} and {1,2,2}, respectively, (see the forthcoming
Lemma 9). Now, the chainI ′′1 = {1}, I ′′2 = {1,2} is a superchain of the above two
minimal chains andFI ′′1 ∩ FI ′′2 = FI ′1. So, the chainI ′1 refines the chainI1.

ut
The next theorem explores minimal representing chains of faces ofP(n1,... ,np).

Theorem 3 (Minimal Chain Representation of Faces).A subsetF of Rp is a non-
empty face ofP(n1,... ,np) if and only if there is a minimal chainI1, . . . , Ik with
F = ∩k

t=1FIt , and the correspondence of nonempty faces ofP(n1,... ,np) onto minimal
chains is one-to-one. Further, ifF is a nonempty face ofP(n1,... ,np) corresponding to
minimal chainI1, . . . , Ik then
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(a) if I ′1, . . . , I ′k′ is a chain with F = ∩k′
t=1FI ′t , then I1, . . . , Ik is a subchain of

I ′1, . . . , I ′k′ ,
(b) if F′ is a nonempty face ofP(n1,... ,np), then the following are equivalent:

(i) F′ ⊆ F,
(ii) F′ has a representing chain which is a superchain ofI1, . . . , Ik,

(iii) the minimal chain representingF′ refinesI1, . . . , Ik,
(c) a vertexv of P(n1,... ,np) is in F if and only if there is a consecutive partitionπ which

is consistent withI1, . . . , Ik and hasv = θπ , in particular, F = conv{θπ : π is
a partition which is consistent withI1, . . . , Ik}, and

(d) dim F ≤ dim P(n1,... ,np) − k.

The following example demonstrates that a consecutive partitionπ need not be
consistent with the minimal chain representing a faceF for θπ to be inF.

Example 1 (continued).With the earlier dataI1 = {1,2} is a minimal chain representing
face F = {x ∈ R3 : x1 + x2 = 3, x3 = 2}. The partitionπ = (π1 = {1}, π2 = {3},
π3 = {2}) is not consistent with this chain, but the vertexθπ = (1,2,2) is in F. Of course,
(1,2,2)has the representationθπ

′
for the partitionπ ′ = (π ′1 = {1}, π ′2 = {2}, π ′3 = {3})

which is consistent with the minmal chainI1 = {1,2}.
ut

Property (a) of the minimal chain corresponding to a faceF of P(n1,... ,np) charac-
terizes that chain as the common subchain of all representing chains ofF, namely as the
uniqueminimal representing chain forF. Property (b) shows that the correspondence
of faces to minimal representing chains is an isomorphism of the face-lattice with set
inclusion as the partial order onto the set of minimal chains with the “refining” partial
order; in particular, we obtain a lattice structure for the minimal chains. Property (c)
uses the minimal chain representing a face to characterize the vertices of that face.
Finally, property (d) shows the length of the minimal chain corresponding to a face of
P(n1,... ,np) yields an upper bound on the dimension of that face. The following example
demonstrates that, in general, these bounds are not necessarily tight.

Example 2.Supposeθ1 = 1, θ2 = 2, θ3 = θ4 = θ5 = 3, p = 4, n1 = 2 and
n2 = n3 = n4 = 1, and letP ≡ P(n1,... ,n4). The minimal chain corresponding to vertex
F ≡ {(3,3,3,3)} is {1} with length isk = 1. As the forthcoming Corollary 1 shows
that dimP = 3 we have that(dim P )− k = 3− 1> 0= dim F.

ut
A chain I1, . . . , Ik is calledmaximalif it has no proper superchain which is a rep-

resenting chain ofF ≡ ∩k
t=1FIt . To study maximal chains, we define for each chain

I1, . . . , Ik the characteristicT(I1, . . . , Ik) given by:

T(I1, . . . , Ik) ≡ {t = 0,1, . . . , k :
where|It+1 \ It | ≥ 2 andθ i is constant fornIt < i ≤ nIt+1} .

The next theorem explores maximal representing chains of faces ofP(n1,... ,np).
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Theorem 4 (Maximal Chain Representation of Faces).Each representing chain of
a faceF of P(n1,... ,np) has a superchain which is a maximal representing chain ofF.
Further, if I1, . . . , Ik is a representing chain of a faceF of P(n1,... ,np), then the following
are equivalent:

(a) I1, . . . , Ik is maximal,
(b) T(I1, . . . , Ik) = ∅,
(c) dim F = p− 1− k, and
(d) tngF = {z ∈ Rp :∑ j∈It\It−1

zj = 0 for t = 1, . . . , k+ 1}.
Theorem 4 implies that all maximal representing chains of a given faceF of

P(n1,... ,np) have a common length, namelyp−1− (dim F ). But, the following example
illustrates that, unlike the situation for minimal representing chains examined in The-
orem 3, no uniqueness is available for maximal representing chains.

Example 3.Consider Example 2. Representations of vertexF ≡ {(3,3,3,3)} via
a chain I1, . . . , Ik as F = ∩k

t=1FIt are available through the minimal chain{1}
(with length 1) and any superchain of{1}; in particular, there are six such maximal
superchains, e.g.,{1}, {1,2}, {1,2,4} and {1}, {1,3}, {1,3,4}, and all have length
3= p− 1− (dim F ).

ut
Corollary 1 (θ i ’s do not coincide).dim P(n1,... ,np) = p− 1 if and only if eitherp= 1
or not all θ i ’s coincide.

For a subsetI of {1, . . . , p} we leteI be the vector inRp with (eI ) j = 1 if j ∈ I
and(eI ) j = 0 if j ∈ {1, . . . , p} \ I . Also, for a chainI1, . . . , Ik, let

N(I1, . . . , Ik) ≡ {
k+1∑
t=1

βte
It : βt < 0 for t = 1, . . . , k andβk+1 ∈ R (unrestricted)} .

(12)

We use this notation to explore representations of normal cones of faces ofP(n1,... ,np)

defined through (6) withP = P(n1,... ,np).

Theorem 5 (Representation of Normal Cones).A representing chainI1, . . . , Ik of
a faceF of P(n1,... ,np) is both maximal and minimal if and only ifN(I1, . . . , Ik) = NF.

We mention that Theorem 5 can be generalized to a faceF whose minimal represent-
ing chain is not maximal. The representation forNF is then substantially more complex
and is given in terms ofF’s minimal chain; see the discussion following the proof of
Theorem 5 in Sect. 5.

Theorem 6 (Vertices and Edges).

(a) For v ∈ Rp the following are equivalent:
(i) v is a vertex ofP(n1,... ,np),

(ii) there is a consecutive partitionπ with v = θπ , and
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(iii) there is a chain of lengthp− 1, sayI1, . . . , I p−1, with {v} = ∩p−1
t=1 FIt .

(b) For distinct verticesv andv′ of P(n1,... ,np) the following are equivalent:
(i) conv{v, v′} is an edge ofP(n1,... ,np),

(ii) there exist consecutive partitionsπ and π ′ such that{v, v′} = {θπ, θπ′ }, π
andπ ′ coincide on all but exactly two parts, say thej -th andk-th part, and
π j ∪ πk = π ′j ∪ π ′k is a consecutive set of integers, and

(iii) there exist two chains of lengthp− 1, sayI1, . . . , I p−1 and I ′1, . . . , I ′p−1 such

that {v, v′} = {∩p−1
t=1 FIt ,∩p−1

t=1 FI ′t } and I1, . . . , I p−1 and I ′1, . . . , I ′p−1 have
a common subchain of lengthp− 2.

Further, if the above equivalent conditions hold andj andk are as in (ii), thenv−v′
is a scalar multiple of(ej − ek).

The next theorem and corollary concern situations where theθ i ’s are distinct, in
particular, in such cases we have that the lattice of faces ofP(n1,... ,np) is isomorphic to
the lattice of chains.

Theorem 7 (Distinctθ i ’s). Suppose theθ i ’s are distinct. Then for every nonempty face
F of P(n1,... ,np) there is a unique collection{I1, . . . , Ik} of distinct subsets of{1, . . . , p}
with F = ∩k

t=1FIt , further, the subsetsI1, . . . , Ik are well-ordered under set-inclusion,
that is, with possible relabelingI1, . . . , Ik is a chain.

ut
Corollary 2 (Distinct θ i ’s). Suppose theθ i ’s are distinct. Then:

(a) dim P(n1,... ,np) = p− 1.
(b) A subsetF of Rp is a nonempty face ofP(n1,... ,np) if and only if there is a chain

I1, . . . , Ik with F=∩k
t=1FIt and the correspondence of nonempty faces ofP(n1,... ,np)

to chains is one-to-one; in particular, a nonempty face ofP(n1,... ,np) has a unique
maximal representing chain which is a minimal chain.

(c) P(n1,... ,np) is normally equivalent to the standard permutahedron inRp (defined in
the second paragraph of this section).

(d) If F is a nonempty face ofP(n1,... ,np) corresponding to chainI1, . . . , Ik then
(i) a nonempty faceF′ of P(n1,... ,np) with corresponding chainI ′1, . . . , I ′k′ is in-

cluded inF if and only if I1, . . . , Ik is a subchain ofI ′1, . . . , I ′k′ ,
(ii) for a consecutive partitionπ, θπ ∈ F if and only if π is consistent with

I1, . . . , Ik, in particular, F = conv{θπ : π is a partition which is consistent
with I1, . . . , Ik},

(iii) dim F = p− 1− k, and
(iv) tngF = {z ∈ Rp :∑ j∈It\It−1

zj = 0 for t = 1, . . . , k}.
(e) Forv ∈ Rp the following are equivalent:

(i) v is a vertex ofP(n1,... ,np),
(ii) there is a unique consecutive partitionπ with v = θπ , and

(iii) there is a unique chainI1, . . . , I p−1, with {v} = ∩p−1
t=1 FIt ;

further, if the above equivalent conditions hold,I1, . . . , I p−1 is the chain corres-
ponding toπ.

(f) For a pair of verticesv andv′ of P(n1,... ,np) the following are equivalent:
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(i) conv{v, v′} is an edge ofP(n1,... ,np),
(ii) there exist consecutive partitionsπ and π ′ such that{v, v′} = {θπ, θπ′ , π

andπ ′ coincide on all but exactly two parts, say thej -th andk-th part, and
π j ∪ πk = π ′j ∪ π ′k is a consecutive set of integers, and

(iii) there exist two chains of lengthp− 1, sayI1, . . . , I p−1 and I ′1, . . . , I ′p−1 such

that {v, v′} = {∩p−1
t=1 FIt ,∩p−1

t=1 FI ′t } and I1, . . . , I p−1 and I ′1, . . . , I ′p−1 have
a common subchain of lengthp− 2;

further, if the above equivalent conditions hold andj andk are as in (ii),v − v′ is
a scalar multiple of(ej − ek).

The conclusions of Corollary 2 about the face structure ofP(n1,... ,np) whennj = 1
andθ j = j for j = 1, . . . , p are due to Schoute [15]; see also [16, pp. 17, 23].

Part (c) of Corollary 2 implies that for each positive integerp, all single-shape
partition polytopes corresponding to data that includes distinctθ i ’s and p as the size of
the partitions are normally equivalent, in particular, they are combinatorically equivalent.
This conclusion holds independently of the particular values of theθ i ’s and of the values
of thenj ’s!

In view of the conclusion of part (c) of Corollary 2, one may speculate that each
partition polytope is normally, or at least combinatorically, equivalent to a generalized
permutahedron. The next example shows that this conjecture is false.

Example 4.SupposeP = 3,n = 6, θ1 = θ2 = 1 andθ3 = θ4 = θ5 = θ6 = 2. Consi-
der the single-shape partition polytope corresponding to shape(1,2,3). By Theorem 1,
the vertices of this polytope are theθπ ’s associated with the consecutive partitions.
Table 1 lists the consecutive partitions and associated vertices – it demonstrates that
there are exactly 4 vertices.

The generalized permutahedron inR3 is determined by 3 parameters, sayη1, η2
andη3 whereη1 ≤ η2 ≤ η3; the permutahedron is then given by the solution set of the
following linear inequality system (for example, see Theorem 1)

x1 ≥ η1 x2 ≥ η1 x3 ≥ η1
x1+ x2 ≥ η1+ η2 x1+ x3 ≥ η1+ η2 x2+ x3 ≥ η1+ η2
x1+ x2+ x3 = η1+ η2 + η3

Now, if theη j ’s coincide, the generalized permutahedron is a single point. In the case
where theη j ’s do not coincide, that is,η1 < η3, we have a two-dimensional polytope
(see Corollary 1) whose projection of the first two coordinates is the solution set of the
following linear system:

η1 ≤ x1 ≤ η3, η1 ≤ x2 ≤ η3, η1 + η2 ≤ x1+ x2 ≤ η2 + η3 .

It is easily seen that this set is a sextahegon ifη1 < η2 < η3 and a triangle if either
η1 = η2 < η3 orη1 < η2 = η3; in the former case the set has exactly six vertices and in
the latter two cases it has exactly three vertices. In neither case is the set combinatorically
equivalent to our single-shape partition polytope and by Proposition 3 it can neither be
normally equivalent to it.

ut
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Table 1.

Determining Permutation The Consecutive θπ
Partition

of π1, π2 andπ3 π1 π2 π3

π1, π2, π3 {1} {2, 3} {4, 5, 6} (1, 3, 6)
π1, π3, π2 {1} {5, 6} {2, 3, 4} (1, 4, 5)
π2, π1, π3 {3} {1, 2} {4, 5, 6} (2, 2, 6)
π2, π3, π1 {6} {1, 2} {3, 4, 5} (2, 2, 6)
π3, π1, π2 {4} {5, 6} {1, 2, 3} (2, 4, 4)
π3, π2, π1 {6} {4, 5} {1, 2, 3} (2, 4, 4)

We conclude this section with the observation that chains are in one-to-one cor-
respondence with partitions of{1, . . . , p} with chain I1, I2, . . . , Ik corresponding to
the partition (I1, I2 \ I1, . . . , Ik+1 \ Ik). Chain-inclusion then corresponds to partition-
refinement. A complete alternative analysis can be carried out by focusing on partitions
rather than on chains.

4. Optimal partitions with applications to system assembly

The definition of Schur Convexity was recently extended by Hwang and Rothblum [11]
to asymmetric functions. Specifically, a real-valued function onRp is calledquasi-
convex alonga nonzero vectord ∈ Rp, or briefly d-quasi-convex, if the maximum
of the function over every line-segment with directiond is attained at one of the two
endpoints of that line-segment. Withej for j = 1, . . . , p as thej -unit vector inRp and
D ≡ {ej − ek : j, k = 1, . . . , p}, a real-valued function is calledasymmetric Schur
convexif it is d-quasi convex for everyd in D. Theorem 2.3 of [11] then demonstrates
that when such a functiong is maximized over a polytopeP all of whose edges have
direction in D, theng attains a maximum overP at an extreme point; this is the case
with P as the unit simplex inRp or, by Theorem 6, withP as a single-shape partition
polytope. In particular, as Theorem 1 shows that the extreme points of single-shape
partition polytopes correspond to consecutive partitions, we obtain the following result:

Theorem 8. Letgbe an asymmetric Schur convex function onRp and consider the real-
valued functionU on partitions defined byU(π) = g(θπ). ThenU attains a maximum
over5(n1,... ,np) at a consecutive partition.

ut
We next demonstrate an application of Theorem 7 for problems of system assembly

with the goal of maximizing reliability.
Consider a system havingp modules as components. Each of these modules can

be eitheroperativeor inoperative. Thestateof the system is determined by the set of
operative modules and is represented by a vectors ∈ {0,1}p, wheresi = 0 if modulei
is inoperative andsi = 1 if modulei is operative. The operativeness of the system is
determined by astructure functionJ : {0,1}p→ {0,1}, i.e., the system isinoperative
if it is in a states with J(s) = 0 and the system isoperativeif it is in a states with
J(s) = 1. The system is calledcoherentif the structure function ismonotone, that is,
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if J(s) ≤ J(s′) for s, s′ ∈ {0,1}p with s ≤ s′. (We note that the standard definition of
coherence has an added requirement which we do not need herein.)

The modules are assumed to be composed of parts which are functionally interchan-
geable, with modulej ∈ {1, . . . , p} requiring exactlynj > 0 parts. The modules are
constructed in series, that is, a module is operative if and only if each of its parts is
operative. All neededn =∑ j n j parts are assumed to be available. Anassemblyfor the
system is an assignment of parts to the modules in a way that matches the requirements
of each module; it corresponds to a partition with shape(n1, . . . ,np) and we identify
assemblies and partitions.

The reliability of a part, a module and the system as a whole is the probability of
being operative. We assume that positive reliabilities of the parts are given and that
operativeness of the parts are stochastically independent. Also, the parts are enumerated
in a weakly increasing order of their reliability. So, withθ i as the log of the reliability
of thei -th part we have that (3) is satisfied.

The reliability of a module depends on its composition. Given an assemblyπ =
(π1, . . . , πp), the series structure of the modules implies that the reliability of modulej
is given by

ρ(π) j ≡
∏
i∈π j

exp(θ i ) = exp

∑
i∈π j

θ i

 = exp(θπ j ), for j = 1, . . . , p ; (13)

The reliability of the system as a whole depends on the way it is constructed. Letρ be
a vector whose coordinatesρ1, . . . ρp are, respectively, the reliabilities of the modules.
Then the system’s reliability is the expectation ofJ(s)wheres is a random vector whose
components have independent Binomial distributions with coefficientsρ1, ρ2, . . . , ρp

and is given by

f(ρ) =
∑

s∈{0.1}p
J(s)

 ∏
{ j :sj=0}

(1− ρ j )

 ∏
j :sj=1

ρ j

 . (14)

With g : Rp → R as the function defined forξ ∈ Rp by g(ξ) = f(eξ1, . . . ,eξp), the
system’s reliability under assemblyπ = (π1, . . . , πp) is then given by

U(π) ≡ f
[
ρ(π)1, . . . , ρ(π)p

] = g(θπ1, . . . , θπp) = g(θπ) . (15)

The goal is to find an assemblyπ that maximizes the system-reliability functionU(.).
As f(ρ) is the expectation of a function of a random vector with independent

coordinates, we get by conditioning on the positions of any pair of modules, say modulej
and modulek, that f(ρ) can be decomposed into

f(ρ) = (1− ρ j )(1− ρk)h00(ρ)+ (1− ρ j )ρkh01(ρ)+ ρ j (1− ρk)h10(ρ)+ ρ jρkh11(ρ)

= ρ jρk [h11(ρ)− h01(ρ)− h10(ρ)+ h00(ρ)] + ρ j [h10(ρ)− h00(ρ)]

+ ρk [h10(ρ)− h00(ρ)] + [h00(ρ)+ h01(ρ)+ h10(ρ)]
(16)
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with h00(ρ), h01(ρ), h10(ρ) andh11(ρ) not depending onρ j andρk; further, system-
coherence assures thath00(ρ) ≤ h01(ρ) ≤ h11(ρ) and h00(ρ) ≤ h10(ρ) ≤ h11(ρ).
Consequently, forξ ∈ Rp,

g(ξ) = eξ j+ξk H00(ξ)+ eξ j H01(ξ)+ eξk H10(ξ)+ H11(ξ) (17)

with the Huv(ξ)’s not depending onξ j and ξk (for u, v ∈ {0,1}); further, system-
coherence implies thatH01(ξ) and H10(ξ) are nonnegative and therefore thatg is
(ej − ek)-quasi-convex (in fact,g is then convex along any line with directionej − ek).

We conclude that when the system is coherent,g is asymmetric Schur convex; thus,
Theorem 7 implies that there exists a consecutive reliability-maximizing assembly. We
note that an assembly is consecutive if there is a ranking of the modules so that for each
pair of modules the parts that are assigned to the module with the higher ranking are
at least as good as those assigned to the module with the lower ranking. For alternative
approaches for studying the optimality of consecutive assemblies see [10] and [11].

5. Proofs

In this section we prove the results stated in Sections 3 and 4. For most of this section,
till stated otherwise, we assume as in Sect. 3 that a list(n1, . . . ,np) is given and that
all considered partitions are labeled and have shape(n1, . . . ,np); in particular, we omit
the prefix “(n1, . . . ,np)-”.

We start by proving that the polytopeC(n1,... ,np) defined through (9)–(10) contains
P(n1,... ,np). Theorem 1 (proved below) asserts that, in fact, the two polytopes coincide.

Lemma 1. For every partitionπ,θπ ∈C(n1,... ,np), in particular,P(n1,... ,np)⊆C(n1,... ,np).

Proof. Letπ be a partition andI a subset of{1, . . . , p}. As∪ j∈Iπ j has
∑

j∈I n j = nI
elements, (3) implies that

∑
j∈I

(θπ) j =
∑

i∈∪ j∈I π j

θ i ≥
|∪ j∈Iπ j |∑

i=1

θ i =
nI∑

i=1

θ i = θ(I)

with equality holding forI = {1, . . . , p}, that is,θπ ∈ C(n1,... ,np). As C(n1,... ,np) is
convex, we conclude thatP(n1,... ,np) = conv{θπ : π ∈ 5(n1,... ,np)} ⊆ C(n1,... ,np).

A real-valued functionf on subsets of{1, . . . , p} is calledsupermodularif

f(I ∪ J)+ f(I ∩ J) ≥ f(I)+ f(J) for every pairI andJ of subsets of{1, . . . , p} ;
(18)

the functionf is calledstrictly supermodularif strict inequality holds whenever neither
of the two sets is a subset of the other, that is,I 6⊆ J andJ 6⊆ I .

Lemma 2. The functionθ(.) mapping I ⊆ {1, . . . , p} into θ(I) given by (7)–(8) is
supermodular; further, ifI and J are subsets of{1, . . . , p} whereI 6⊆ J and J 6⊆ I , then
θ(.) satisfies (18) with equality if and only ifθ i is a constant fornI∩J < i ≤ nI∪J.

ut
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Proof. For subsetsI andJ of {1, . . . , p}, nI∪J = nI +nJ\I , nJ = nI∩J+nJ\I , and (4)
with u ≡ nI∩J , v ≡ nI (≥ nI∩J = u) andw = nJ\I ≥ 0 implies that

θ(I∪J) − θ(I) =
nI∪J∑
i=1

θ i −
nI∑

i=1

θ i =
nI∪J∑

i=nI+1

θ i =
nI+nJ\I∑
i=nI+1

θ i

≥
nI∩J+nJ\I∑
i=nI∩J+1

θ i =
nJ∑

i=nI∩J+1

θ i =
nJ∑
i=1

θ i −
nI∩J∑
i=1

θ i = θ(J) − θ(I∩J) ;

further, asI 6⊆ J and J 6⊆ I if and only if nI∩J < nI andnJ\I > 0, respectively, we
have from the comment following (4) that whenI 6⊆ J andJ 6⊆ I , θ(.) satisfies (18) with
equality if and only ifθ i is a constant fornI∩J < i ≤ nI∩J .

ut
The next lemma establishes a key property of theFI ’s (defined through (11)).

Lemma 3. Let I and J be subsets of{1, . . . , p} with FI ∩ FJ 6= ∅. ThenFI ∩ FJ =
FI∪J ∩ FI∩J; further, if I 6⊆ J and J 6⊆ I , thenθ i is a constant fornI∩J < i ≤ nI∪J.

Proof. Let x ∈ FI ∩ FJ (suchx exists as it is assumed thatFI ∩ FJ 6= ∅). Then

θ(I) + θ(J) =
∑
j∈I

x j +
∑
j∈J

x j =
∑

j∈I∪J

x j +
∑

j∈I∩J

x j ≥ θ(I∪J) + θ(I∩J) ≥ θ(I) + θ(J) ,

where the inequalities follow from (9) applied toI ∪ J and toJ∩ J and from Lemma 2.
It follows that all of the above inequalities hold as equalities, thus,

∑
i∈I∪J xi = θ(I∪J),∑

i∈I∩J xi = θ(I∩J) andθ(I∪J) + θ(I∩J) = θ(I) + θ(J); as each vector inFI ∩ FJ is in
FI∪J ∩ FI∩J , we have thatFI ∩ FJ ⊆ FI∪J ∩ FI∩J . To see the reverse inclusion let
y ∈ FI∪J ∩ FI∩J . Then

θ(I) + θ(J) ≤
∑
j∈I

yj +
∑
j∈J

yj =
∑

j∈I∪J

yj +
∑

j∈I∩J

yj = θ(I∪J) + θ(I∩J) = θ(I) + θ(J) ;

it follows that all of the above inequalities hold as equalities, thus,
∑

j∈I yj = θ(I)
and

∑
j∈J yj = θ(J), that is,y ∈ FI ∩ FJ. So, the inclusionFI∪J ∩ FI∩J ⊆ FI ∩ FJ

has also been established. Finally, ifI 6⊆ J and J 6⊆ I , then the established equality
θ(I∪J) + θ(I∩J) = θ(I) + θ(J) combines with Lemma 1 to show thatθ i is a constant for
nI∩J < i ≤ nI∪J .

ut
Recall the one-to-one correspondence of chains of lengthp− 1 and consecutive

partitions observed in Sect. 3. The next lemma characterizes the summation vectors of
consecutive partitions in terms of the corresponding chains.

Lemma 4. Let I1, I2, . . . , I p−1 be a chain of lengthp−1and letπbe the corresponding
consecutive partition. Thenθπ is the unique solution of the linear system∑

j∈It

x j = θ(It ) for t = 1, . . . , p ; (19)

in particular,∩p−1
t=1 FIt = {θπ}.
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Proof. As {It \ It−1 : t = 1, . . . , p} = {{ j } : 1 ≤ j ≤ p}, we have that for each
t = 1, . . . , p there is a positive integerjt ∈ {1, . . . , p} with It \ It−1 = { jt}. It follows
that (19) can be written as

t∑
s=1

xjs = θ(It ) for t = 1, . . . , p ;

this triangular linear system has a unique solution given byx jt = θ(It ) − θ(It−1) for t =
1, . . . , p. As π is the consecutive partition corresponding the chainI1, I2, . . . , I p−1,
for eacht, π jt = {

∑t−1
s=1 njs+ 1, . . . ,

∑t
s=1 njs} andθπ jt

= θ(It )− θ(It−1) = xjt ; hence,

x = θπ . As Lemma 1 assures thatθπ ∈ C, it follows that∩p−1
t=1 FIt = {θπ}.

ut
Lemma 5. Let I1, . . . , Ik be a chain. Then there exists a consecutive partition which is
consistent withI1, . . . , Ik; further, for each such consecutive partitionπ, θπ ∈ ∩k

t=1FIt .

Proof. Trivially, the chainI1, . . . , Ik has a superchain of lengthp−1, sayI ′1, . . . , I ′p−1.
As I1, . . . , Ik is a subchain ofI ′1, . . . , I ′p−1, the consecutive partition corresponding
to I ′1, . . . , I ′p−1 is consistent withI1, . . . , Ik. Next, letπ be a consecutive partition
which is consistent with the chainI1, . . . , Ik. Then the (unique) chain of lengthp− 1
corresponding toπ, say I ′1, . . . , I ′p−1, is a superchain ofI1, . . . , Ik, and Lemma 4

implies thatθπ ∈ ∩p−1
t=1 FI ′t ⊆ ∩k

t=1FIt .
ut

The next lemma shows how to represent nonempty intersections of arbitraryFI ’s to
intersections corresponding to chains.

Lemma 6. Let I1, . . . , Ik be a chain and letI ′1, . . . , I ′k′ be nonempty proper subsets

of {1, . . . , p} with F = (∩k
t=1FIt ) ∩ (∩k′

t=1FI ′t ) 6= ∅. Then there exists a superchain of
I1, . . . , Ik which is a representing chain ofF.

Proof. It suffices to consider the case withk′ = 1, in which case we letI stand forI ′1.
So,F ≡ (∩k

t=1FIt )∩ FI 6= ∅. Fort = 1, . . . , k+1, let Jt ≡ It−1∪[(It \ It−1)∩ I ]. We
next prove by induction that fors= 0,1, . . . , k, F = (∩s

t=1FJt )∩ FIs∪I ∩ (∩k
t=s+1FIt ).

As I0 = ∅, the case wheres= 0 follows from the representationF = FI ∩ (∩k
t=1FIt ).

Next assume that the asserted representation holds for 0≤ s < k. As Is ⊆ Is+1,
we have that(Is ∪ I) ∩ Is+1 = Is ∪ [(Is+1 \ Is) ∩ I ] = Js+1 and(Is ∪ I) ∪ Is+1 =
Is+1 ∪ I ; by the induction assumptionFIs∪I ∩ FIs+1 ⊇ F 6= ∅, hence, Lemma 3
implies thatFIs∪I ∩ FIs+1 = F(Is∪I)∩Is+1 ∩ F(Is∪I)∪Is+1 = FJs+1 ∩ FIs+1∪I and therefore
F = (∩s

t=1FJt )∩ FIs∪I ∩ (∩k
t=s+1FIt ) = (∩s+1

t=1 FJt )∩ FIs+1∪I ∩ (∩k
t=s+2FIt ). Thus, the

induction hypothesis has been established withs+1 replacings. As Ik+1 = {1, . . . , p},
we have thatIk∪ I = Ik∪[(Ik+1 \ Ik)∩ I ] = Jk+1 and the verified inductive hypothesis
with s= k proves thatF = ∩k+1

t=1 FJt . We next observe that

∅ = I0 ⊆ J1 ⊆ I1 ⊆ J2 ⊆ . . . ⊆ Jk ⊆ Ik ⊆ Jk+1 ⊆ Ik+1 = {1, . . . , p} ; (20)
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as∩k+1
t=1 FJt = F ⊆ ∩k

t=1FIt it follows that the constructed superchain ofI1, . . . , Ik is
a representing chain ofF.

ut
Lemma 7. A subsetF of Rp is a nonempty face ofC(n1,... ,np) if and only if there exists
a chainI1, . . . , Ik with F = ∩k

t=1FIt .

Proof. First assume thatF = ∩k
t=1FIt where I1, . . . , Ik is a chain. Following the

definition of theFI ’s in (11) we already observed that intersections ofFI ’s are faces
of C(n1,... ,np). To see thatF = ∩k

t=1FIt 6= ∅, observe that the chainI1, . . . , Ik has
a superchain of lengthp − 1, say I ′1, . . . , I ′p−1; by Lemma 4, ifπ is the (unique)

consecutive partition corresponding toI ′1, . . . , I ′p−1, thenθπ ∈ ∩p−1
t=1 FI ′t ⊆ ∩k

t=1FIt .

So,F is a nonempty face ofC(n1,... ,np).
Next assume thatF is a nonempty face ofC(n1,... ,np). As observed following the

definition of theFI ’s in (11), there exist subsetsI ′1, . . . , I ′k′ of {1, . . . , p}with ∅ 6= F =
∩k′

t=1FI ′t . As the empty chain is a representing chain ofC(n1,... ,np), Lemma 6 implies

the existence a representing chain ofF ∩ C(n1,... ,np) = F which is a superchain of the
empty chain.

ut
Proof of Theorem 1.By Lemma 1,P(n1,... ,np) ⊆ C(n1,... ,np). We prove the reverse
inclusion by showing that each vertexv of C(n1,... ,np) is in P(n1,... ,np); see part (a) of
Proposition 1. Now, by Lemma 7, there exists a chainI1, . . . , Ik such that{v} = ∩k

t=1FIt ;
this chain has a superchain of lengthp− 1, say I ′1, . . . , I ′p−1. Let π be the (unique)

consecutive partition corresponding to this chain. By Lemma 4,{θπ} ∈ ∩p−1
t=1 FI ′t ⊆

∩k
t=1FIt = {v}, implying thatv = θπ ∈ P(n1,... ,np); in particular,v has a representation
v = θπ with π as a consecutive partition.

To complete the proof of Theorem 1, letπ be a consecutive partition and let
I1, . . . , I p−1 be the chain of lengthp − 1 corresponding toπ. By Lemma 4 and

Lemma 7,{θπ} = ∩p−1
t=1 FIt and this set is a face ofC(n1,... ,np); so, θπ is a vertex of

C(n1,... ,np) = P(n1,... ,np).
ut

Proof of Theorem 2.Lemma 7 shows that a subsetF of Rp is a nonempty face of
P(n1,... ,np) if and only if it has a representing chain; in particular, this conclusion assures
that for each chainI1, . . . , Ik, ∩k

t=1FIt is nonempty, proving (c).
To establish (a), letF and F′ be nonempty faces ofP(n1,... ,np). The implication

(i) ⇒ (ii) follows from Lemma 6 and the implication (ii)⇒ (iii) is immediate from the
established existence of representing chains of faces. Finally, ifI1, . . . , Ik is a repre-
senting chain ofF and I ′1, . . . , I ′k′ is a superchain ofI1, . . . , Ik which a representing

chain ofF′, thenF = ∩k
t=1FIt ⊆ ∩k′

t=1FI ′t = F′.
To establish (b), letF be a nonempty face ofP(n1,... ,np) with representing chain

I1, . . . , Ik. Now, if v is a vertex ofP(n1,... ,np) which is inF, thenF′ ≡ {v} ⊆ F is a face
of P(n1,... ,np) and part (a) implies the existence of a reperesenting chain ofF′ which
is a superchain ofI1, . . . , Ik, say I ′1, . . . , I ′k′ . By Lemma 5, there exists a consecutive
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partitionπ which is consistent withI ′1, . . . , I ′k′ and hasθπ ∈ ∩k
t=1FIt = {v}, that is,

θπ = v; of course,π is also consistent with the subchainI1, . . . , Ik of I ′1, . . . , I ′k′ .
Alternatively, assume thatv is a vertex ofP(n1,... ,np) with representationv = θπ where
π is consistent withI1, . . . , Ik. Then there exists a chain of lengthp− 1 corresponding
to π which is a superchain ofI1, . . . , Ik. By Lemma 4, this chain is a representing
chain of{v} = {θπ}, and the implication (iii)⇒ (i) in (a) assures that{θπ} ⊆ F, that is,
θπ ∈ F.

ut
The next lemma characterizes the sources for non-minimality of chains.

Lemma 8. Let I1, . . . , Ik be a chain and lets ∈ {1, . . . , k}. Then the following are
equivalent:

(a) ∩k
t=1FIt = ∩k

t=1,t 6=sFIt .
(b) FIs−1 ∩ FIs+1 ⊆ FIs, and
(c) θ i is constant fornIs−1 < i ≤ nIs+1 ,

Proof. (b)⇒ (a): This implication is trite.
(c)⇒ (b): Supposeθ i = K for nIs−1 < i ≤ nIs+1. Then θ(Is) − θ(Is−1) =

(nIs − nIs−1)K and(asnIs−1 < nIs+1\(Is+1\Is) ≤ nIs+1)θ(Is+1) − θ(Is+1\(Is\Is−1)) =
(nIs − nIs−1)K . To prove thatFIs−1 ∩ FIs+1 ⊆ FIs, let x ∈ FIs−1 ∩ FIs+1 and we will
show thatx ∈ FIs. Indeed, we have that

∑
j∈Is\Is−1

xj =
∑
j∈Is

x j −
∑

j∈Is−1

xj ≥ θ(Is) − θ(Is−1) =
nIs∑

i=nIs−1+1

θ i = (nIs − nIs−1)K and

∑
j∈Is\Is−1

xj =
∑

j∈Is+1

xj −
∑

j∈Is+1\(Is\Is−1)

xj ≤ θ(Is+1) − θ(Is+1\(Is\Is−1)) = (nIs − nIs−1)K ;

It follows that the inequality in the first string holds as equality; implying that
x ∈ FIs.

(a)⇒ (c): Suppose∩k
t=1FIt = ∩k

t=1,t 6=sFIt . By Lemma 5, there exists a conse-
cutive partitionπ which is consistent with the chainI1, . . . , Is−1, J ≡ Is−1∪(Is+1\
Is), Is+1, . . . , Ik; for this π, θπ ∈ (∩k

t=1,t 6=sFIt ) ∩ FJ ⊆ ∩k
t=1,t 6=sFIt = ∩k

t=1FIt .
So,θπ ∈ FIs ∩ FJ . As Is andJ = Is−1∪ (Is+1 \ Is) are not ordered by set inclusion,
as Is ∩ J = Is−1 and asIs ∪ J = Is+1, Lemma 3 implies thatθ i is constant for
nIs−1 < i ≤ nIs+1.

ut
The next lemma is needed for exploring minimal chains.

Lemma 9. Let I be a subset of{1, . . . , p} and letx ∈ FI . Then:

(a) if t ∈ I , thenxt ≤ ntθ
nI , and

(b) if t ∈ {1, . . . , p} \ I , thenxt ≥ ntθ
nI+1.
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Proof. As x ∈ FI ,
∑

j∈I x j = θ(I). Also,
∑

j∈J x j ≥ θ(J) for all J ⊆ {1, . . . , p}.
Using (3),

xt =
∑
j∈I

x j −
∑

j∈I \{t}
xj ≤ θ(I) − θ(I \{t}) =

nI∑
i=nI−nt+1

θ i ≤ ntθ
nI for t ∈ I, and

xt =
∑

j∈I∪{t}
xj −

∑
j∈I

x j ≥ θ(I∪{t}) − θ(I) =
nI+nt∑

i=nI+1

θ i ≥ ntθ
nI+1 for t ∈ {1, . . . , p) \ I.

ut
The next lemma proves uniqueness of minimal representing chains of faces.

Lemma 10. If I1, . . . , Ik andI ′1, . . . , I ′k′ are minimal chains with∩k
t=1FIt = ∩k′

t=1FI ′t 6=∅, thenk = k′ and It = I ′t for t = 0,1, . . . , k = k′.

Proof. Let F ≡ ∩k
t=1FIt = ∩k′

t=1I ′t 6= ∅. We proceed with an inductive argument
and prove that for each positive integers ≤ min{k, k′} + 1, Is = I ′s, in particular, if
s= min{k, k′} + 1, thenIs = I ′s = {1, . . . , p} ands= k+ 1= k′ + 1. As I0 = I ′0, the
assertion is trite fors= 0. Assume the assertion holds for integers< k+ 1 and we will
establish the assertion withs+ 1 replacings.

We first argue thatIs+1 and I ′s+1 are ordered by set-inclusion. Aiming to establish
a contradiction we assume that this conclusion is false. WithJ ≡ Is+1 ∩ I ′s+1, we have
that Is ⊆ J ⊂ Is+1. Also, Lemma 3 and the fact thatFIs+1 ∩ FI ′s+1

⊇ F 6= ∅ imply that

FJ = FIs+1∩I ′s+1
⊇ FIs+1∩FI ′s+1

⊇ F and thatθ i is a constant fornJ < i ≤ nIs+1∪I ′s+1
. As

Is ⊆ J ⊂ Is+1 andFJ ⊇ F, the insertion ofJ into the chainI1, . . . , Ik betweenIs and
Is+1 yields a superchain which is another representation ofF = ∩k

t=1FIt ; by Lemma 8,
it follows that if Is ⊂ J, thenθ i is constant fornIs < i ≤ nIs+1 . As θ i was shown to
be constant fornJ = nIs+1∩I ′s+1

< i ≤ nIs+1∪I ′s+1
and asnIs+1 > nIs+1 ∩ I ′s+1 = nJ

(becauseIs+1 and I ′s+1 are not ordered by set-inclusion), we conclude that when either
Is = J or Is ⊂ J, θ i is a constant fornIs < i ≤ nIs+1∪I ′s+1

.

As Is+1 and I ′s+1 are not ordered by set-inclusion, neitherIs+1 nor I ′s+1 equals
{1, . . . , p} assuring thats+ 1 < min{k, k′} + 1. Also, Lemma 8, the minimality of
I1, . . . , Ik and the conclusion thatθ i is a constant fornIs < i ≤ nIs+1∪I ′s+1

imply that

nIs+1∪I ′s+1
< nIs+2. Our next step is to argue thatI ′s+1 ⊆ Is+2. Indeed, if there exists an

indexu in I ′s+1 \ Is+2, then Lemma 9 and (3) imply that

xu

nu
≤ θnI ′s+1 ≤ θnIs+2+1 ≤ xu

nu
(21)

and equality must hold throughout (21), in particular,θ i must be constant fornIs+1 ≤
i ≤ nIs+2 + 1. As we already established thatθ i is a constant fornIs < i ≤ nIs+1∪I ′s+1

and nIs+1∪I ′s+1
> nIs+1, θ i must then be constant fornIs < i ≤ nIs+2 + 1. From

Lemma 8 this conclusion is false due to the minimality of the chainI1, . . . , Ik. So,
indeed,I ′s+1 ⊆ Is+2. It follows that Is+1 ⊆ Is+1 ∪ I ′s+1 ⊆ Is+2, further, asIs+1 and
I ′s+1 are not ordered and asIs+1 ∪ I ′s+1 6= Is+2 (becausenIs+1∪I ′s+1

< nIs+2), these
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inclusions are strict. So, withH ≡ Is+1 ∪ I ′s+1, we have thatIs+1 ⊂ H ⊂ Is+2. Also,
Lemma 3 implies thatFH = FIs+1∪I ′s+1

⊇ FIs+1 ∩ FI ′s+1
⊇ F 6= ∅. We conclude that

the insertion ofH into the chainI1, . . . , Ik betweenIs+1 and Is+2 yields a proper
superchain which is another representation ofF = ∩k

t=1FIt ; Lemma 8 then implies that
θ i is constant fornIs+1 < i ≤ nIs+2. As we already established thatθ i is a constant
for nIs < i ≤ nIs+1∪I ′s+1

andnIs+1∪I ′s+1
> nIs+1 , we conclude thatθ i is a constant for

nIs < i ≤ nIs+2. This conclusion combines with Lemma 8 to contradict the minimality
of I1, . . . , Ik. This contradiction proves that the assertion thatIs+1 and I ′s+1 are not
ordered by set-inclusion is false.

We have established thatIs+1 and I ′s+1 are ordered by set-inclusion. Without loss
of generality, we henceforth assume thatI ′s+1 ⊆ Is+1. Assume thatI ′s+1 6= Is+1, that
is, I ′s+1 ⊂ Is+1, and we will establish a contradiction. AsIs = I ′s ⊂ I ′s+1 ⊂ Is+1
andF ⊆ FI ′s+1

= FJ, we conclude that the insertion ofI ′s+1 into the chainI1, . . . , Ik

betweenIs and Is+1 yields a proper superchain which is another representation of
F = (∩k

t=1FIt ), hence, Lemma 8 implies thatθ i is constant fornI ′s = nIs < i ≤ nIs+1 .
We next argue thatIs+1 ⊆ I ′s+2. Indeed, if there exists an indexu in Is+1 \ I ′s+2,

Lemma 9 and (3) imply that

xu

nu
≤ θnIs+1 ≤ θnI ′s+2+1 ≤ xu

nu
(22)

and equality must hold throughout (22), in particular,θ i must be constant fornIs+1 ≤
i ≤ nI ′s+2

+ 1. As we already established thatθ i is a constant fornI ′s = nIs < i ≤ nIs+1,

θ i must then be constant fornI ′s = nIs < i ≤ nI ′s+2
+1. From Lemma 8 this conclusion is

false due to the minimality of the chainI ′1, . . . , I ′k′ . So, indeed,Is+1 ⊆ I ′s+2. Lemma 8,
the minimality ofI ′1, . . . , I ′k′ and the conclusion thatθ i is a constant fornIs < i ≤ nIs+1

imply that Is+1 6= I ′s+2. So,I ′s+1 ⊂ Is+1 ⊂ I ′s+2. Also, from Lemma 3,FIs+1 ⊇ F 6= ∅.
It follows that the insertion ofIs+1 into the chainI ′1, . . . , I ′k′ betweenI ′s+1 and I ′s+2
yields a proper superchain which is another representation ofF = ∩k

t=1FIt ; Lemma 8
then implies thatθ i is constant fornI ′s+1

< i ≤ nI ′s+2
. As we already established thatθ i

is a constant fornIs < i ≤ nIs+1 andnI ′s+1
< nIs+1, we conclude thatθ i is a constant

for nI ′s = nIs < i ≤ nI ′s+2
. This conclusion combines with Lemma 8 to contradict the

minimality of I1, . . . , Ik. This contradiction proves the assertion thatIs+1 = I ′s+1.
ut

Proof of Theorem 3.By Theorem 2, a subsetF of Rp is a nonempty face ofP(n1,... ,np) if
and only if there is a chainI1, . . . , Ik with F = ∩k

t=1FIt ; each such chain has a minimal

subchainI ′1, . . . , I ′k′ with ∩k′
t=1FI ′t = ∩k

t=1FIt = F. We conclude that a setF ⊆ Rp is

a nonempty face ofP(n1,... ,np) if and only if it has a representing chain which is minimal.
By Lemma 10, a minimal chain representing a given face is unique; also, trivially,
a minimal chain uniquely defines the corresponding face. So, the correspondence of
nonempty faces ofP(n1,... ,np) onto minimal chains is one-to-one.

Next, let F be a nonempty face ofP(n1,... ,np) with representing minimal chain
I1, . . . , Ik.
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(a): If I ′1, . . . , I ′k′ is a representing chain ofF, then it has a minimal subchainI ′′1, . . . , I ′′k′′
with ∩k′′

t=1FI ′′t = ∩k′
t=1FI ′t = F = ∩k

t=1FIt . As ∩k′′
t=1FI ′′t = ∩k

t=1FIt , Lemma 10
assures that the minimal chainsI1, . . . , Ik andI ′′1 , . . . , I ′′k′′ coincide, thusI1, . . . , Ik

is a subchain ofI ′1, . . . , I ′k′ .
(b): SupposeF′ is a nonempty face ofP(n1,... ,np). The implication (i)⇒ (ii) follows

from part (a) of Theorem 2. To see that (ii)⇒ (iii) assume thatF′ has a repre-
senting chainI ′′1 , . . . , I ′′k′′ which is a superchain ofI1, . . . , Ik. It then follows from
the established part (a) that the minimal chain representingF′, say I ′1, . . . , I ′k′ , is
a subchain ofI ′′1 , . . . , I ′′k′′ . As minimal chainsI1, . . . , Ik and I ′1, . . . , I ′k′ are both

subchains ofI ′′1 , . . . , I ′′k′′ and∩k′′
t=1FI ′′t = F′ = ∩k′

t=1FI ′t , we have thatI ′1, . . . , I ′k′
refinesI1, . . . , Ik. Finally, to see that (iii)⇒ (i) assume the minimal chain repre-
sentingF′, sayI ′1, . . . , I ′k′ , refinesI1, . . . , Ik. Then there exists a chainI ′′1 , . . . , I ′′k′′
which is a superchain of bothI1, . . . , Ik andI ′1, . . . , I ′k′ with ∩k′′

t=1FI ′′t = ∩k′
t=1FI ′t ;

in particular,F′ = ∩k′′
t=1FI ′′t ⊆ ∩k

t=1FIt = F.
(c): The characterization of the vertices ofF via corresponding consecutive partitions

follows from part (b) of Theorem 2 (where it is established for all representing
chains, not just the minimal ones). Also, from part (a) of Proposition 1,F (as
a polytope) is the convex hull of its vertices, and from part (e) of Proposition 1 the
vertices ofF are the vertices ofP(n1,... ,np) that are inF. As Theorem 1 shows that
the vertices ofP(n1,... ,np) are precisely theθπ ’s whereπ ranges over the consecutive
partitions, the second part of (c) is immediate from the first part

(d): The minimality of the chainI1, . . . , Ik implies that the setsF0 ≡ P(n1,... ,np) and
Fs ≡ ∩s

t=1FIt for s= 1, . . . , k are distinct. As these sets are faces ofP(n1,... ,np) and
F0 = P(n1,... ,np) ⊃ F1 ⊃ . . . ⊃ Fk−1 ⊃ Fk = F, part (f) of Proposition 1 implies
that dimP(n1,... ,np) = dim F0 > dim F1 > . . . > dim Fk−1 > dim Fk = dim F; it
follows that dimF ≤ dim P(n1,... ,np) − k. ut

Proof of Theorem 4.The existence of superchains of representing chains of faces of
P(n1,... ,np) that are maximal is immediate by iteratively taking superchains. Next, let
I1, . . . , Ik be a representing chain of faceF and we will establish the equivalence of
the stated four conditions.

(a)⇔ (b): By Lemma 8, a proper superchainI ′1, . . . , I ′k′ of I1, . . . , Ik has∩k′
t=1FI ′t =

∩k
t=1FIt if and only if it is obtained fromI1, . . . , Ik by inserting sets between pairs

It and It+1 for t ∈ T(I1, . . . , Ik); no such insertion is possible if and only if
T(I1, . . . , Ik) = ∅.

(a)⇒ (c): Theorem 3 assures thatF has a unique minimal representing chain, say
I ′1, . . . , I ′k′ . By Lemma 8, a proper superchain ofI ′1, . . . , I ′k′ is a representing chain
of F if and only if it is obtained fromI ′1, . . . , I ′k′ by inserting nested sets between
pairsI ′t andI ′t+1 for t ∈ T(I ′1, . . . , I ′k′ ); as the number of possible distinct insertions
betweenI ′t and I ′t+1 for t ∈ T(I ′1, . . . , I ′k′ ) is precisely|I ′t+1 \ I ′t | − 1, the length
of each superchain ofI ′1, . . . , I ′k′ which is a maximal representing chain ofF is
c(F ) ≡ k′ +∑t∈T(I ′1,... ,I ′k′ )

(|I ′t+1\ I ′t |−1). By Theorem 3, all maximal representing

chains ofF are superchains ofI ′1, . . . , I ′k′ . Thus,c(F ) is the common length of
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all maximal representing chains ofF. We prove thatc(F ) = p− 1− (dim F ) by
induction on dimF.

Suppose dimF = 0. ThenF is a vertex and Theorem 1 implies thatF = {θπ} for
some consecutive partitionπ. By Lemma 4, the chain of lengthp− 1 corresponding to
π is a representing chain of{θπ} = F. As a chain of lengthp− 1 has no superchains,
that chain is maximal andc(F ) = p− 1 = p− 1− (dim F ), verifying the induction
hypothesis when dimF = 0.

Assume thatd ≡ dim F > 0, andc(F′) = p− 1− (dim F′) for every faceF′ of
P(n1,... ,np) with dim F′ < d. Letk ≡ c(F ) and letI1, . . . , Ik be a maximal representing
chain of F. From parts (c) and (d) of Proposition 1,F has a facetF′ which is a face
of P(n1,... ,np) of dimensiond − 1 ≥ 0. Also, parts (c) and (g) of Proposition 1 imply
that F has a representation which uses (10) and (9) except that some of the inequalities
of (9) are tightened to equalities; consequently, part (g) of Proposition 1 applied to
polytopeF shows thatF′ = F ∩ FI for some nonempty proper subsetI of {1, . . . , p}.
So,∩k

t=1FIt = F ⊃ F′ = F ∩ FI = (∩k
t=1FIt ) ∩ FI . As ∅ 6= F′ ⊂ F, Lemma 6

implies thatF′ has a representing chain which is a propersuperchain ofI1, . . . , Ik;
in particular, its length isk+ 1 or more. As we already observed that each chain has
a maximal superchain, we conclude thatc(F′) ≥ k + 1. As dim F′ = d − 1 < d,
the induction assumption implies thatc(F′) = p− 1− (dim F′) = p− 1− (d− 1),
implying thatc(F ) = k ≤ c(F′)− 1= p− d− 1.

Next, as dimF = d > 0, the established inequalityk ≤ p− 1− d assures that
k < p− 1, implying that|Is+1 \ Is| ≥ 2 for somes = 1, . . . , k. We will construct
a setIs ⊂ I ′ ⊂ Is+1 such that the chainI1, . . . , Is, I ′, Is+1, . . . , Ik is maximal. As
I1, . . . , Ik is a maximal representing chain ofF, the established implication (a)⇒ (b)
implies thatT(I1, . . . , Ik) = ∅, and from the established implication (b)⇒ (a), the
maximality of the new chain holds if:

(i) either|I ′ \ Is| = 1 orθ i is not constant fornIs < i ≤ nI ′ , and
(ii) either |Is+1 \ I ′| = 1 orθ i is constant fornI ′ < i ≤ nIs+1 .

We consider two cases.

Case 1.|Is+1 \ Is| = 2. Let j ′ be any one of the (two) elements ofIs+1 \ Is and let
I ′ ≡ Is ∪ { j ′}. Then|I ′ \ Is| = |Is+1 \ I ′| = 1 and conditions (i) and (ii) are clearly
satisfied.

Case 2.|Is+1 \ Is| ≥ 3. Let j ′ be a minimizer ofnj when j ranges overIs+1 \ Is, let
I+ ≡ Is ∪ { j ′} and letI− ≡ Is+1 \ { j ′}. ThennI+ = nIs + nj ′ , nI− = nIs+1 − nj ′ and
the selection ofj ′ assures thatnj ′ < (nIs+1 − nIs)/2; thus,nI+ < nI− implying that
{i : nIs < i ≤ nI−} ∩ {i : nI+ < i ≤ nIs+1} 6= ∅. As the maximality ofI1, . . . , Ik

assures thatT(I1, . . . , Ik) = ∅, we have thatθ i is not a constant fornIs < i ≤ nIs+1.
We conclude thatθ i is not constant over bothnIs < i ≤ nI− andnI+ < i ≤ nIs+1.
Conditions (i) and (ii) are satisfied byI ′ ≡ I+ if θ i is not constant overnI+ < i ≤ nIs+1

and byI ′ ≡ I− if θ i is not constant overnIs < i ≤ nI− .

Evidently, I1, . . . , Is, I ′, Is+1, . . . , Ik is a chain which is a representing chain of
F′ ≡ F ∩ FI ′ = (∩k

t=1FIt ) ∩ FI ′ F. As this chain is a proper superchain ofI1, . . . , Ik,
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Theorem 2 implies thatF′ is a nonempty face ofP(n1,... ,np) which is included inF;
further the maximality ofF assures thatF′ ⊂ F, implying that dimF′ < dim F = d
(see part (f) of Proposition 1). AsI1, . . . , Is, I ′, Is+1, . . . , Ik is a maximal representing
chain of F′, the induction assumption assures thatk + 1 = p − 1 − (dim F′). So,
c(F ) = k = p− 2− (dim F′) ≥ p− 2− (d− 1) = p− 1− d. Thus, the proof that
c(F ) = p− 1− d is completed.

(c)⇒ (a): If I1, . . . , Ik is not a maximal representing chain ofF it has a proper
superchainI ′1, . . . , I ′k′ which is a maximal representing chain ofF; in particular,
k′ > k. By the established implication (a)⇒ (c), p− 1− (dim F ) = k′ > k.

(c)⇔ (d): As F = ∩k
t=1FIt , the definition of theFI ’s in (11) assures that forx, y ∈ F

andt = 1, . . . , k+ 1,
∑

j∈It (x − y) j = θ(It) − θ(It) = 0, implying that tngF ⊆
L ≡ ∩k+1

t=1{z ∈ Rp : ∑ j∈It\It−1
zj = 0}. As L and tngF are linear subspaces,

we conclude that tngF = L if and only if dim(tngF ) = dim L. From standard
arguments dimL = p− (k+ 1); thus, tngF = L if and only if dimF = p− 1− k.

ut
Proof of Corollary 1.The empty chain is a representing chain ofP(n1,... ,np) and is
the only chain of length 0. Hence by the equivalence (c)⇔ (a) of Theorem 4,
dim P(n1,... ,np) = p − 1 if and only if the empty chain is maximal. Observing that
T(∅) = ∅ if and only if eitherp= |I1 \ I0| = 1 or not allθ i ’s coincide, the equivalence
(a)⇔ (b) of Theorem 4, implies that the empty chain is maximal if and only if either
p= 1 or not allθ i ’s coincide.

ut
Proof of Theorem 5.Let I1, . . . , Ik be a chain and letc be a vector inN(I1, . . . , Ik),
as defined in (12). Thenc has a representation

∑k+1
t=1 βt eIt whereβ1, . . . , βk are

negative andbk+1 is unrestricted. Forx ∈ P(n1,... ,np), cTx = ∑k+1
t=1 βt(eIt )Tx =∑k+1

t=1 βt(
∑

j∈It x j ) ≤ ∑k+1
t=1 βtθ(It ) and equality holds if and only if

∑
j∈It x j = θ(It )

for t = 1, . . . , k; so, argmaxx∈P(n1,... ,np) cTx = ∩k
t=1FIt . In particular, we have that for

each faceF having representing chainI1, . . . , Ik, N(I1, . . . , Ik) ⊆ NF .
SupposeF is a face ofP(n1,... ,np) with representing chainI1, . . . , Ik and withNF =

N(I1, . . . , Ik). For s ∈ {1, . . . , k} let cs ≡ ∑k+1
t=1,t 6=s(− eIt ) and Fs ≡ ∩k

t=1,t 6=sFIt .
Thencs ∈ N(I1, . . . , Is−1, Is+1, . . . , Ik) ⊆ NFs (the inclusion following from the first
paragraph) andcs 6∈ N(I1, . . . , Ik) = NF . We conclude that∩k

t=1,t 6=sFIt = Fs 6= F for
eachs= 1, . . . , k, assuring thatI1, . . . , Ik is minimal. Next, by standard results from
linear algebra tngN(I1, . . . , Ik) = {∑k+1

t=1 βt eIt : β1, . . . , βk+1 ∈ R(unrestricted)}; in
particular, dimN(I1, . . . , Ik) = k+1. The assertionNF = N(I1, . . . , Ik)next combines
with Proposition 2 to show that dimF = p− dim NF = p− dim N(I1, . . . , Ik) =
p− (k+ 1) = p− 1− k, and Theorem 4 implies thatI1, . . . , Ik is maximal.

Next assume thatF is a face ofP(n1,... ,np) with representing chainI1, . . . , Ik

which is both minimal and maximal. The first paragraph of our proof shows that
N(I1, . . . , Ik) ⊆ NF . To see the reverse inclusion letc ∈ NF and we will show that
c ∈ N(I1, . . . , Ik). From Proposition 2 we then have thatc ∈ NF ⊆ tngNF =
(tngF )⊥. By Theorem 4, the maximality ofI1, . . . , Ik implies that tngF = {z ∈
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Rp : ∑ j∈It\It−1
zj = 0 for t = 1, . . . , k + 1} and therefore (by standard argu-

ments)(tngF )⊥ is the linear span of{eI1\I0,eI2\I1, . . . ,eIk+1\Ik}, or equivalently of
{eI1,eI2, . . . ,eIk+1} (aseI j =∑ j

u=1 eIu\Iu−1 for j = 1, . . . , k+1). Thus, the conclusion

c ∈ (tngF )⊥ implies thatc has a representationc=∑k+1
t=1 βt eIt and it remains to show

thatβ1, . . . , βk are negative. Fixs ∈ {1, . . . , k}. Let Fs ≡ (∩k
t=1,t 6=sFIt ); the minimality

of I1, . . . , Ik then assures thatF = ∩k
t=1FIt ⊂ Fs, so there is a vectorxs in Fs \ F. As

c ∈ NF , F = argmaxx∈P(n1,... ,np) cTx; further, for allx ∈ F, cTx =∑k+1
t=1 βt(eIt )Tx =∑k+1

t=1 βt(
∑

j∈It x j ) = ∑k+1
t=1 βtθ(It ). As xs 6∈ F andxs ∈ Fs = ∩k

t=1,t 6=sFIt , we have∑k+1
t=1 βtθ(It ) > cTxs = ∑k+1

t=1,t 6=sβt(
∑

j∈It xs
j ) + βs(

∑
j∈It xs

j ) =
∑k+1

t=1,t 6=sβtθ(It ) +
βs(
∑

j∈It xs
j ), and thereforeβsθ(Is) > βs(

∑
j∈It xs

j ). As
∑

j∈It xs
j ≥ θ(Is) it follows that

βs < 0.
ut

Let F be a face ofP(n1,... ,np). Theorem 5 provides a representation ofNF in terms of
a representing chain ofF which is both minimal and maximal. Further, our arguments
show that if the definition ofN(I1, . . . , Ik) is extended through (12) to subsetsI1, . . . , Ik

of {1, . . . , p} which do not form a chain, thenNF = N(I1, . . . , Ik) provided:

(a) F = ∩k
t=1FIt ,

(b) for s= 1, . . . , k, F 6= ∩k
t=1,t 6=sFIt , and

(c) eI1,eI2, . . . ,eIk+1 is a basis of(tngF )⊥ (with Ik+1 = {1, . . . , p}).
(If I1, . . . , Ik is a chain, (a) implies that it is a representing chain ofF, (b) implies
that it is minimal, and (c) implies that dimF = p− dim(tngF )⊥ = p− 1− k and,
in view of Theorem 4, the chain is maximal). Now, supposeI1, . . . , Iq is a minimal
representing chain ofF and T ≡ T(I1, . . . , Iq). It is easy to verify that{It : t =
1, . . . ,q + 1, t − 1 6∈ T} ∪ {It ∪ { j } : t ∈ T, j ∈ It+1 \ It} is a family of subset of
{1, . . . , p} that satisfy (a)–(c), hence, they yield a representation toNF . If I1, . . . , Iq is
maximal (on top of being minimal), then the constructed family is{I1, . . . , Iq} and the
derived representation ofNF reduces to the one asserted in Theorem 5.

Proof of Theorem 6.(a) The implications (i)⇒ (iii), (iii) ⇒ (ii), (ii) ⇒ (i) follow,
respectively, from Theorem 4, Lemma 4 and Theorem 1.
(b) Letv andv′ be two distinct vertices ofP(n1,... ,np) and letE ≡ conv{v, v′}.

(i)⇒ (ii): AssumeE is an edge ofP(n1,... ,np), that is, a face of dimension 1. Then
v andv′ are the only vertices ofP(n1,... ,np) in E. By Theorem 4,E has a maximal
representing chain of lengthp− 2, say I1, . . . , I p−2. Evidently,{It \ It−1 : t =
1, . . . , p − 1} has p − 2 singletons and one set containing two elements, say
Is \ Is−1 = { j, k}. Thus, the chainI1, . . . , I p−2 has exactly two proper superchains
of length p− 1 obtained by inserting eitherI ≡ Is−1 ∪ { j } or I ′ ≡ Is−1 ∪ {k}
betweenIs−1 and Is. Let π andπ ′ be the consecutive partitions corresponding
to these two superchains, respectively, thenπ and π ′ coincide on all but parts
j and k and π j ∪ πk = π ′j ∪ π ′k = {nIs−1 + 1, . . . ,nIs}. By Lemma 4,θπ ∈
∩p−2

t=1 FIt = E, θπ′ ∈ ∩p−2
t=1 FIt = E and θπ and θπ′ are vertices ofP(n1,... ,np),

thus{θπ, θπ′ } ⊆ {v, v′}. We next demonstrate thatθπ 6= θπ′ which will imply the
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equality{θπ, θπ′ } = {v, v′}. Indeed, ifθπ = θπ ′ thenFI ∩ FI ′ 6= ∅ and Lemma 3
implies thatFI ∩ FI ′ = FI∪I ′ ∩ FI ′∩I ′ = FIs ∩ FIs−1 ; consequently,FI ⊆ ∩p−2

t=1 FIt

and{θπ} = ∩p−2
t=1 FIt ∩ FI = ∩p−2

t=1 FIt = E, a contradiction to the assertion that
dim E = 1.

(ii) ⇒ (iii): Assume that (ii) holds. Without loss of generality we assume thatv = θπ
andv′ = θπ ′. Consider the two chains of lengthp− 1 corresponding toπ andπ ′,
say I1, . . . , I p−1 and I ′1, . . . , I ′p−1, respectively. By Lemma 4,{v} = {θπ} =
∩p−1

t=1 FIt , {v′} = {θπ′ } = ∩p−1
t=1 FI ′t . Also, the asserted properties ofπ andπ ′ and the

description of chains of lengthp− 1 corresponding to consecutive partitions, imply
that I1, . . . , I p−1 and I ′1, . . . , I ′p−1 coincide, except for a single element, that is,
they have a common subchain of lengthp− 2.

(iii) ⇒ (i): Assume that (iii) holds and letJ1, . . . , Jp−2 be the common subchain

of length p− 2 of I1, . . . , I p−1 and I ′1, . . . , I ′p−1 and letF ≡ ∩p−1
t=1 FIt . Without

loss of generality assume that{v} = ∩p−1
t=1 FIt and{v′} = ∩p−1

t=1 FI ′t . We observed

above that a chain of lengthp−2 has exactly two proper superchains. As∩p−1
t=1 FIt =

{v} 6= {v′} = ∩p−1
t=1 FI ′t , it follows thatJ1, . . . , Jp−2 is maximal (for otherwise either

F = {v} or F = {v′}). Now, by part (c) of Theorem 4, dimF = (p−1)−(p−2)= 1.
So, F is an edge ofP(n1,... ,np) that contains verticesv andv′ and standard results
show thatF = conv{v, v′} = E. Thus, indeed,E is an edge ofP(n1,... ,np).

Finally, if j andk are as in (ii), trivially,v− v′ is a scalar multiple of(ej − ek).
ut

The next lemma considers the case where theθ i ’s are distinct.

Lemma 11. Suppose theθ i ’s are distinct. Then:

(a) the functionθ(.) mapping I ⊆ {1, . . . , p} into θ(I) given by (7)–(8) is strictly
supermodular,

(b) if I1, . . . , Ik are distinct subsets of{1, . . . , p} with ∩k
t=1FIt 6= ∅, thenI1, . . . , Ik

are well-ordered under set inclusion,
(c) every chain is both minimal and maximal,
(d) if I1, . . . , Ik, I ′1, . . . , I ′k′ are subsets ofN with∩k

t=1FIt = ∩k′
t=1FI ′t 6= ∅, thenk = k′

and{I1, . . . , Ik} = {I ′1, . . . , I ′k′ }, and
(e) the function mapping a partitionπ into θπ is one-to-one on the set of consecutive

partitions.

Proof. (a) Let I and J be subsets of{1, . . . , p} with I 6⊆ J and J 6⊆ I . Then|I ∪ J| −
|I ∩ J| ≥ 2 and the assumption that theθ i ’s are distinct and Lemma 2 imply that
θ(I) + θ(J) 6= θ(I∩J) + θ(I∪J).

(b) Let I1, . . . , Ik be distinct subsets of{1, . . . , p} with F ≡ ∩k
t=1FIt 6= ∅ and

let r , s ∈ {1, . . . , k}. If FIr 6⊆ FIs and FIs 6⊆ FIr , thennIr∪Is > max{nIr ,nIs} ≥
min{nIr ,nIs} > nIr∩Is implying thatnIr∪Is − nIr∩Is ≥ 2. As FIr ∩ FIs ⊇ F 6= ∅,
Lemma 3 yields a contradiction to the assertion that theθ i ’s are distinct.

(c) As theθ i ’s are distinct, Lemma 8 implies that every chain is minimal. Also, trivially,
for every chainI1, . . . , Ik, T(I1, . . . , Ik) = ∅ and therefore it must be maximal by
Theorem 4.
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(d) SupposeI1, . . . , Ik, I ′1, . . . , I ′k′ are subsets ofN with F ≡ ∩k
t=1FIt = ∩k′

t=1FI ′t 6= ∅.
By part (b),I1, . . . , Ik and I ′1, . . . , I ′k′ are, respectively, well ordered by set inclu-
sion, hence, by possibly permuting the sets in each group we may assume that
I1, . . . , Ik and I ′1, . . . , I ′k′ are chains. Consider an enumeration of the distinct sets

in {I1, . . . , Ik, I ′1, . . . , I ′k′ }, sayI ′′1 , . . . , I ′′k′′ . Then∩k′′
t=1FI ′′t = F 6= ∅ and, again by

part (b), after possible permutation we may assume thatI ′′1 , . . . , I ′′k′′ is a chain, fur-
ther, by part (c), this chain is minimal. AsI1, . . . , Ik and I ′1, . . . , I ′k′ are subchains

of I ′′1 , . . . , I ′′k′′ with ∩k′′
t=1FI ′′t = ∩k

t=1FIt = ∩k′
t=1FI ′t = F 6= ∅, the minimality of

I ′′1 , . . . , I ′′k′′ implies that{I ′′1 , . . . , I ′′k′′ } = {I1, . . . , Ik} = {I ′1, . . . , I ′k′ }.
(e) Let π andπ ′ be consecutive partitions withθπ = θπ′ and let I1, . . . , I p−1 and

I ′1, . . . , I ′p−1 be chains of lengthp−1 corresponding toπ andπ ′, respectively. Then

∩p−1
t=1 FIt = {θπ} = {θπ′ } = ∩p−1

t=1 FI ′t and part (d) assures that{I1, . . . , I p−1} =
{I ′1, . . . , I ′p−1}, implying thatπ = π ′.

ut
The next example shows that the last conclusion of Lemma 11 is false for non-

consecutive partitions, even when theθ i ’s are distinct.

Example 5.Supposeθ i = i for i ∈ N = {1,2,3,4,5}, p = n1 = 2 andn2 = 3. Then
π1 = ({1,4}, {2,3,5}) andπ2 = ({2,3}, {1,4,5}). Thenθπ1 = θπ2 = (5,10) ∈ R2.

ut
Proof of Theorem 7.Proposition 1 established the representation of nonempty faces of
P(n1,... ,np) as intersections∩k

t=1FIt , in fact, with the setsI1, . . . , Ik well-ordered by set
inclusion. The uniqueness of these representations follows from part (d) of Lemma 11.

ut
Proof of Corollary 2.

(a): The first conclusion is immediate from Corollary 1.
(b): Lemma 7 shows the characterization of nonempty faces via the existence of repre-

senting chains and Lemma 11 gives the uniqueness of representing chains when the
θ i ’s are distinct. Theorem 3 and Theorem 4 establish the existence of minimal and
maximal representing chains, thus, the unique representing chain of a nonempty
face must be both minimal and maximal.

(c): Recall the notationN(P ) for the normal fan of a polytopeP. Let F be a face of
P(n1,... ,np). By part (b),F has a unique representing chain, sayI1, . . . , Ik, and part
(c) of Lemma 11 assures that this chain is both minimal and maximal; thus, by
Theorem 5,N(I1, . . . , Ik) defined through (12) equalsNF . ThusN(P(n1,... ,np)) ⊆
N ≡ {N(I1, . . . , Ik) : I1, . . . , Ik is a chain on{1, . . . , p}. To see that this inclusion
holds as equality observe that ifI1, . . . , Ik is a chain on{1, . . . , p}, the above
arguments show thatN(I1, . . . , Ik) = NF for F = ∩k

t=1FIt .
The family of conesN depends only onp and not on the values of thenj ’s or the
θ i ’s; and we proved that when theθ i ’s are distinctN = N(P(n1,... ,np)). Thus, with
p fixed, the normal fans of all partition polytopes coincide, as long as the data has
theθ i ’s distince; in particular, they all coincide with the normal fan of the standard
permutahedron.
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(d): We have seen that the unique representing chain of a face is both minimal and
maximal. Listed properties (i)–(ii) of the chain corresponding to a faceF follow
from Theorem 3 and the minimality of the chain, whereas (iii)–(iv) follow from
Theorem 4 and its maximality.

(e) and (f): These conclusions are immediate from parts (a) and (b) of Theorem 6 and
the established uniqueness of the representing chain of a face.

ut

Appendix

Proof of Proposition 2.

(a): LetF be a nonempty face ofP. The definition of a face assures thatF is the set of
maximizers overP of a linear function; that is,NF 6= ∅. Also, it is easy to verify
that if c, d ∈ NF andα, β > 0 thenαc+ βd ∈ NF ; that is,NF is a cone inRp.

(b): Standard results show that for eachc ∈ Rp the function mappingx ∈ P into cTx
attains a maximum over (the bounded set)P and the definition of faces assures that
the corresponding set of maximizers is a face; so, eachc ∈ Rp defines a nonempty
face F with c ∈ NF . Further, as argmaxx∈P cTx is well defined, theNF ’s are
necessarily disjoint.

(c): SupposeF and G are two faces ofP with cl NG ⊆ cl NF and letx ∈ F. Let
c ∈ NG (such a vector exists by part (a)). Thenc ∈ NG ⊆ cl NG ⊆ cl NF ,
implying that there exists a sequence of vectors{cn}n=1,2,... in NF which converges
to c asn→∞. In particular, for eachy ∈ P, (cn)

Tx ≥ (cn)
Ty for n = 1,2, . . . ,

implying thatcTx ≥ cTy. Thus,x ∈ argmaxx∈P cTx = G. Thus we proved that
F ⊆ G.
Next assume thatF ⊆ G and letc ∈ NG. Then argmaxx∈P cTx = G ⊇ F, that
is, cTx ≥ cTy for everyx ∈ F and y ∈ P. Now, let c∗ be a vector inNF (such
a vector exists by part (a)). Then argmaxx∈P(c

∗)Tx = F, that is,(c∗)Tx ≥ (c∗)Ty
for everyx ∈ F andy ∈ P with strict inequality holding fory ∈ P \ F. For each
ε > 0, (c+ εc∗)Tx ≥ (c+ εc∗)Ty for everyx ∈ F andy ∈ P with strict inequality
holding for y ∈ P \ F, implying thatc+ εc∗ ∈ NF . As c = limε↓0(c+ εc∗) and
eachc+ εc∗ is in NF , it follows thatc ∈ cl NF . ThusNG ⊆ cl NF , implying that
cl NG ⊆ cl NF .

(d): SupposeF andG are two faces withNF = NG. Then clNF = cl NG, and two
applications of part (c) imply thatF = G.

(e): Let F be a nonempty face ofP. If u ∈ NF , thenuTx = uTy for everyx, y ∈ F
implying thatuT[α(x−y)] = 0 for everyα ∈ R, that is,uTz= 0 for everyz∈ tngF;
so, NF ⊆ (tngF )⊥ implying that tngNF ⊆ (tngF )⊥. In order to prove that this
inclusion holds as equality it suffices to show that dim(tngNF ) = dim[(tngF )⊥].
By part (a) there exists a vector inNF , sayc, and withγ ≡ maxx∈P cTx andV as
the set of vertices ofP, we have that

cTv

{= γ if v ∈ V ∩ F, and

< γ if v ∈ V \ F .
(A.1)
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Let ν ≡ dim(tngF )⊥. Then there existν linearly independent vectors in(tngF )⊥,
sayu1, . . . ,uν. Fix j ∈ {1, . . . , ν}. As u j ∈ (tngF )⊥, (u j )T(v− v′) = 0 for each
pair of vectorsv, v′ ∈ F, implying that(u j )Tv is constant overF; let β j be the
common value of(u j )Tv whenv ranges overF. As (A.1) implies thatcTv > cTw

for all v ∈ V ∩ F andw ∈ V \ F, we have that for sufficiently small positiveε,

γ + εβ j = cTv+ ε(u j )Tv < cTw+ ε(u j )Tw for all v ∈ V ∩ F andw ∈ V \ F ;
as F = convV ∩ F and P = convV, it follows thatγ + εβ j = cTv + ε(u j )Tv

for eachv ∈ F and γ + εβ j < cTw + ε(u j )Tw for eachw ∈ P \ F, that is,
argmaxx∈P(c+ εu j )Tx = F. Thus, for sufficiently small positiveε, c+ εu j ∈ NF

and therefore (asc ∈ NF ) u j ∈ tngNF . As u1, . . . ,uν are linearly independent,
we conclude that dim(tngNF) ≥ ν = dim(tngF )⊥ completing the proof that
tngNF = (tngF )⊥; in particular, dim(tngNF) = (tngF )⊥ = p− dim F. ut
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