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A Generalized Prediction Method for Modified
Memory-Based High Throughput

VLC Decoder Design
Yew-San Lee, Bai-Jue Shieh, and Chen-Yi Lee

Abstract—Variable-length code (VLC) is the most popular
data-compression technique which has been used in many data-
compression standards, such as JPEG, MPEG-2, and H.263. In
this paper, we present a new memory-based tree-search algorithm
and very large scale integration architecture for VLC decoders
which can achieve very high decoding throughput performance.
Different coding tables can be implemented by simply chang-
ing the contents of the memory without changing the system
hardware. The coding table is mapped onto a memory whose
space requirement has been minimized by using a new tree data
structure and efficient memory-mapping strategy. In addition, we
break the recursive dependency of iterative searching operations
by predicting method. The proposed algorithm and architecture
can predict the searching node and perform parallel operations.
As a result, the decoding throughput rate can be enhanced to
about three to eight times more than previously announced ar-
chitecture. The proposed architecture mainly consists of memory
modules and simple arithmetic unit. Based on 0.6-�m single poly
triple metal CMOS technology and MPEG-2 VLC table-15, the
decoder system achieves average decoding throughput rate of 720
Mbits/s at 3 V and a 100-MHz clock rate.

Index Terms— Decoding throughput, FIFO, H.263, JPEG,
MPEG, tree structure, VLC.

I. INTRODUCTION

RECENTLY, the development of multimedia and commu-
nication techniques has changed our lifestyle. It allows

the use of pictorial information and photographic images in
various scientific, industrial, medical, and consumer appli-
cations, such as video-on-demand, distance learning, video
conferencing, etc. Hence, the transmitted information has been
growing rapidly. In a real situation, the transmission channel
has physical bandwidth limitation. As a result, the bottleneck
of real-time applications is the transmitted bandwidth. There
are two methods to meet such real-time requirements. One
is to increase physical channel bandwidth, and the other is
to use data-compression techniques. The cost of the first
method is too high and not acceptable in practice. Numerous
researches have shown that data-compression techniques offers
an attractive approach to reduce the communication cost in
transmitting a high volume of data over long-haul links via
higher effective utilization of the available bandwidth. The
number of applications that requires storage and transmission
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Fig. 1. An example of the VLC code.

Fig. 2. Two-bit VLC code tree structure.

of large volumes of data is steadily increasing. In order
to handle such a staggering amount of data, application-
specific hardware algorithms and custom very large-scale
integration (VLSI) architectures for data compression have to
be developed as standard components for communication and
image processing systems.

The termdata compressionrefers to the process of reducing
the amount of data required to represent a given quantity of
information. The underlying basis of the reduction process is
the removal of redundant data that either provide no relevant
information or simply restate that is already known. Video
data compression is a major key technology in the field
of multimedia applications. Several international committees
have concerned about the definition of technical standards like
MPEG-2, JPEG, and H.263. The most popular lossless data-
compression technique is variable-length code (VLC), also
called the Huffman code [1]. It is an optimal code with the
average codeword length approximating the source entropy.
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Fig. 3. The original decoding tree structure.

The idea is to assign a variable length binary string to each
fixed length input symbol such that the input symbols with
higher frequency have shorter codewords and the less probable
symbols are assigned with longer codewords. The procedure
is shown in Fig. 1 with a codebook size of 4. With this coding
scheme, the symbol sources can be encoded with the average
bit rate very close to its entropy. However, the compression
data amount varies due to the contents of image data, as well
as picture compression mode. Processing bitstream at the peak
data rate would be necessary to design a high-throughput rate
decoder where any kind of bitstream could be decoded.

Up to now, several special-purpose VLSI architectures have
been proposed to implement VLC decoder system. Two classes
of architectures have been discussed in the literature, namely
hardwired architecture [2]–[7] and memory-based architecture
[8]–[12]. Although the VLC codeword length is variable, the
decoding process can still be implemented with a hardwired
look-up table. But hardwired architecture allows only one
coding table to be implemented since all the VLC codes
are hardwired permanently by a logic circuit (PLA or ROM)
which forms the look-up table. The codes are fixed with
implementation and cannot be changed later, which is the
major disadvantage with this static scheme. It can increase
throughput by using parallel and pipelined techniques. But this
approach will not be very practical for large codebook sizes
because the hardware complexity will increase rapidly and the
speed will be degraded a lot by the nature of the logic circuit.
In addition, this type of design needs to use multiple different
size look-up table and parallel detection. The hardware cost is
too high because of low hardware efficiency.

The VLC code can be represented by tree structure. The
decoding processes can be considered as traversing the tree
where the route is determined by decoded bitstream. The
memory-based architecture can exploit the natural of the tree
structure. We can map the tree structure into a memory format
useful for decoding process. It has good flexibility since the
coding table mapping results can be stored in an on-chip
memory. Various coding tables can be implemented by simply
changing the contents of the memory dynamically. In addition,
this approach can achieve a high decoding rate even for large
coding table size.

The motivation behind our research is to develop a high-
throughput algorithm and architecture for the VLC decoder
system design. In this paper, we propose a new scheme for

Fig. 4. The node types for decoding tree structure.

mapping VLC code tree onto memory, which leads to a
memory-space-efficient solution. The proposed scheme will
reduce about 20% of memory space requirement, compared
to the traditional memory-mapping scheme [8]. We also break
the recursive dependency among the iterative tree-search op-
erations, which enhances decoding throughput rate effectively.
In addition, we design a high-speed synchronous static random
access memory (SRAM) and register file for improving the
performance of the designed VLC decoder system.

This paper is organized as follows. In Section II, we first
discuss the tree-based code and tree structure. Then, we present
the proposed tree structure and memory-mapping strategy. In
Section III, we will describe the proposed decoding algorithm
in detail. After that, we propose an efficient memory-based ar-
chitecture for VLSI implementation of VLC decoder system in
Section IV. In Section V, we provide performance evaluation
to highlight the achieved improvement. Concluding remarks
are made in Section VI.

II. M EMORY MAPPING AND DECODING ALGORITHM

A. Tree-Based Code and Tree Structure

Tree-based codes are codes that can be represented by tree
structure. The sequence of zero’s and one’s on the unique path
from the root of the tree to a leaf node represents the code for
the symbol represented by that leaf node, as shown in Fig. 2.
VLC code is a tree-based code. It can be represented by tree
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structure such as binary tree, two-bit tree, quad-tree, etc. Thus,
the VLC decoding is inherently serial operations, since the tree
must be traversed one edge at a time. In order to speed up the
decoding process, a multibit tree was proposed, where each
edge of the tree represents a maximum ofbits of input code.
If the length of a codeword is bits, then it is represented by

edges from the root of the tree to a leaf node of which
only the last edge (the one terminating at the leaf node) could
possibly have a label less thanbits long. Each node of the
-bit tree can have a maximum of children.
The VLC code is instantaneous and exhaustive, since no

codewords can appear as the prefix of any other codeword. As
a result, the VLC code tree is an unbalanced tree structure.
If we use high-order tree structure to speed up the decoding
process, more memory locations will be wasted to store the
unused node information. Hence, we choose two-bit tree
structure [11], [12] to map the VLC code onto a memory in
our proposed decoder system. It can reduce about 30% of tree
nodes compared with binary tree structure. Thus, the memory
space requirement will be reduced effectively. Besides, the
decoding process can be sped up to meet the high throughput
requirement.

B. Decoding Tree Structure and Memory-Mapping Strategy

In VLC coding, the coded data is normally sent through a
continuous stream of bits with no specific guard-bit(s) assigned
to separate between two consecutive symbols. As a result,
decoding procedure in this case must recognize the code
length as well as the symbol itself. Using tree structure of
VLC code, we can simply perform the decoding process by
a tree traversal, starting from the root to the relative leaf
nodes (symbol node). With input bitstream data, we can decide
which child node is the searching destination. We are unable
to find out the next searching node before getting relative
input bitstream data. The searching operations continue until
a terminal node is reached, which means that a complete
decoded symbol has been found. The dependency between
searching steps and the input bitstream data limits the decoding
throughput. It becomes a challenge to break the recursive
dependency between the searching steps. In this section,
we will propose a new tree structure and memory-mapping
scheme which breaks the decoding throughput bottleneck
and can perform parallel operations. We address both issues
of memory management and fast access to a source sym-
bol.

In our decoding algorithm, we use two-bit tree structure for
improving decoding speed, as shown in Fig. 3. Each node has
“T S1 S2” three-bits used to indicate the situation of that node.
The tree structure contains three types of nodes that need to be
mapped onto the memory: 1) regular nodes; 2) special nodes;
and 3) terminal nodes. The regular node is a nonleaf node,
where all the edges from the node to its child nodes have
labels of 2 bits (node N0 in Fig. 3). The special node is a
nonleaf node, in which at least one of the edges connecting
the node to its child node has a single bit label (node N2 in
Fig. 3). There are three cases for this node type, as shown
in Fig. 4. The terminal node is a leaf node that represents an
output symbol (nodes N1, N3, N5, N7, N8, N9, and N11 in
Fig. 3). Note that both N6 and N10 locations are unused. The

Fig. 5. Decoding tree structure with “Loc” nodes.

data field for a nonleaf node (regular or special) contains the
searching information for that node, and the data field for a
terminal node contains memory location of the symbol at that
node. The three control bits T, S1, and S2 are used to identify
the different types of nodes. The function of these control bits
are listed as follows:

-
-
-

The searching dependency problem still exists in the tree
structure of Fig. 3. To solve this problem, we merge the child
nodes of the same parent node into a “Loc,” as shown in Fig. 5.
The stored values of each “Loc” node are four sets of “T S1
S2” data. With this approach, a greater amount of memory
space can be saved, especially for the tree, which has many
internal nodes (large coding table size). Besides, we construct
two register files “T” and “C” for storing some additional
data used to perform prediction. With these memory-mapping
results, we can predict the next searching node before we
get the input bitstream data. In other words, we can access
next searching node information and input bitstream data
concurrently.

The th location of “ ” register file stores the number of
terminal nodes appeared inth “Loc” node. In addition, the
th value of “ ” register file indicates the number of nodes

which has child nodes extension inth “Loc” node. Finally,
we can use current “Loc” node value and “” value to predict
next “Loc” node location and control the decoding steps. The
recursive dependency of the iterative searching steps is broken
by the proposed scheme. Thus, the decoding throughput rate
can be enhanced effectively. With this decoding tree structure
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Fig. 6. An example of VLC code tree withCmaxth “Loc” node.

and memory-mapping scheme, the memory space requirement
can be reduced by about 20%, compared to [8].

Aside from the recursive dependency problem, the VLC
code tree gets progressively sparse as it grows from the
root. This sparsity in the tree may cause tremendous waste
of memory space, unless a proper structure and mapping
technique are adopted. For the parent nodes of terminal level,
it is found that the number of its child nodes is often less
than four, and all its child nodes are terminal nodes, such
as “Loc-2” and “Loc-5” in Fig. 6. This situation will waste
memory space to store unused node information. We therefore
modify the memory-mapping strategy for these nodes in order
to further reduce memory requirement. It is interesting to note
that all “Loc” nodes labeled greater than th “Loc” node
have only terminal nodes, as shown in Fig. 6
This situation happens frequently in VLC code tree structure.
For the “Loc” nodes labeled greater than value, we can
use 4-bit data “ ” to indicate valid terminal nodes, instead
of using 12-bit data. With this modification, we can further
reduce memory requirement up to 30%.

The discussion mentioned above shows that we have pro-
posed a new tree structure and efficient memory-mapping
strategy. However, it is not suitable for hardware implementa-
tion because “ ” and “ ” register files are used to store total
number of terminal nodes and extension nodes appearing inth

“Loc” node, respectively. If we want to predict the next “Loc”
location, it needs to find out the total number of extension
nodes needed before theth “Loc” node. As a result, we must
accumulate the values of It is the
same situation for using “” values to predict the decoded
symbol location. It is difficult to implement a variable number
accumulator for our predicting requirement. The hardware cost
is too high for implementing such a functional module. In
addition, it will form a critical path in the system, resulting
in slowing down the system operation rate, especially for a
high order of Consequently, the decoding throughput will
be limited by this critical path.

To cope with this problem, both “” and “ ” register files
must be exploited to store accumulation value for avoiding the
requirement of the accumulator. It is now recognized that they
need to be stored with the total number of terminal nodes or
extension nodes appearing from 0 to th “Loc” node,
respectively. In this mapping modification, the size of the
register files will be increased because of storing accumulation
values. However, real cases show that we still save up to a
20% memory space requirement compared to [8]. The final
memory-mapping results of Fig. 5 are given in Fig. 7. A high-
level description of the algorithm to generate decoding tree
structure and memory-mapping results for “Loc” nodes, “”
“ ” and “ ” is given in Appendix I.
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Fig. 7. The final memory-mapping result for the proposed decoding tree
structure.

III. D ECODING ALGORITHM

A. Basic Decoding Algorithm

Decoding of an input VLC bitstream is performed by a
tree traversal, starting from the root to the terminal node
which forms the decoded symbol. We give an example for
explaining our decoding algorithm. Assume current location
is at the fourth node of “Loc 1” in Fig. 7, which means the
previous input bitstream are “11.” We can calculate OFSC
2 from the information of “Loc 1” node. OFSC is the number
of that appears previously to the 4th field in “Loc 1.”
It indicates the total number of nodes which have child node
extension appearing in first through fourth nodes of “Loc 1.”
As a result, we can simply add with OFSC to predict
the location of next searching node “Loc 3” before we get
next input bitstream data “1.” Since the label of predicting
node “Loc 3” is larger than we will access
instead of “Loc 3.” At the same time, we also access
that indicates the total number of terminal nodes appearing
before “Loc 3” node. The and next input bitstream
data will be accessed concurrently. The bitstream data will be
used as an index to decide which field of is the searching
destination. Then, we can calculate OFST2 from
where the searching destination is the third field of For
the case of searching “Loc” node labeled smaller than
value, OFST will be calculated from “Loc” values. OFST will
be added with to predict symbol memory location of
decoded symbol “” Finally, we will access decoded symbol
“ ” from symbol memory.

Simulation results show that our proposed decoding al-
gorithm is better than traditional method and achieves high
decoding throughput rate. The decoding steps are summarized
in Appendix II and the decoding flow chart is given in Fig. 8.

B. Advanced Decoding Algorithm

According to the proposed basic decoding algorithm,
“Loc0”and “Loc1” must be used for processing in the first

decoding cycle of each codeword. In other words, the accesses
of “Loc0” and “Loc1” do not depend on input VLC bitstream
data. In addition, we define the first searching “Loc” node
as “LocX,” which depends on bitstream data. From the
tree structure, we notice that the “LocX” will be one of
“Loc2”–“Loc5” nodes. As a result, the decoder system needs
to decide which “Loc” node information is correct for “LocX.”
Since the possible locations of “LocX” have been known, we
can simply use input bitstream data to decide the correct node
information for “LocX” in the first decoding cycle, instead of
the second decoding cycle.

For an advanced decoding algorithm, we use individual
registers to store “Loc0” and “Loc1” information. They will
be accessed for processing in the first decoding cycle of
each codeword. In addition, we modify the tree structure
for simplifying the decision of actual “LocX” location. We
consider the input bitstream data as an
offset value for accessing correct “LocX” information. The
strategy is listed as follows:

Since the bitstream data is considered as
an offset value, we need to add “Unused Loc” for dummy node
in the tree structure, as “Loc4” in Fig. 9. Consequently,and

register files will be added dummy value into “Unused Loc”
location. The “Unused Loc” consists of four sets of unused “T
S1 S2” data (“111”) and the inserted dummy values ofand

are the same with previous ones, as shown in Fig. 9. The
modified decoding operations in the first decoding cycle of
each codeword are listed as follows.

1) If the pattern includes a terminal node
in Loc1 we use Loc0, Loc1,
and input stream data to determine
decoded symbol memory location.

2) If the pattern includes a terminal node
in “LocX” (Loc2–Loc5), we use Loc1 and input stream
data (bitstream[2, 1]) to determine decoded symbol
memory location.

3) If the pattern contains no terminal node,
we use “LocX” and to predict next searching
“Loc” node location.

Because the VLC code is instantaneous and exhaustive,
only one case will be detected. With this modified decoding
algorithm, the system can search to level-3 of the tree structure
in the second decoding cycle. For the basic decoding algorithm
mentioned earlier, it needs three decoding cycles for searching
to level-3. Thus, the modified decoding algorithm can reduce
one decoding cycle time for each codeword. As a result, the
decoding throughput rate can be enhanced.

C. Adaptive Decoding Algorithm

By observing VLC code, some long codewords will have
the same long parent path. We can consider these long parent
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Fig. 8. The basic decoding algorithm flow.

Fig. 9. Decoding tree structure with “Unused Loc” nodes.

paths as special case and detect it in the beginning of decoding
steps. Thus, we can reduce more decoding cycles to decode
these long codeword patterns. According to VLC algorithm,
the probability of long codeword is smaller than for short code-
word. However, one long parent path will be shared by many
long codeword patterns, as shown in Fig. 10. The probability
of a long parent path will gain the sum of probabilities of
relative long codeword patterns. Hence, the detection of a long

parent path is meaningful and can be exploited to improve
decoding rate. We propose a strategy to choose long parent
path and let the required detection hardware be low cost and
low complexity.

The proposed strategy of choosing long parent path pattern
is as follows.

1) The long parent path patterns need to be greater than
8-bit ( level-4 of tree structure). The long parent path
patterns smaller than 8-bit are meaningless.

2) All long codewords sharing the same long parent path
must have the same codeword length. It can reduce the
complexity of detecting and searching steps.

3) After extracting all the long parent paths from the tree
structure, we select short “long parent path” patterns,
because their probabilities are higher than long “long
parent path” patterns.

We use additional registers to store data for each long parent
path pattern. Besides, the searching of the long parent path pat-
terns will be performed in parallel. For example, the maximum
codeword length is 16-bit and the amount of “Loc” nodes is 63.
The data format for long parent path detection is shown at the
bottom of the page. The “parent path length” indicates the valid
pattern length in the field of “parent path pattern.” When the
“Used” field is “1,” the VLC input bitstream will be compared
with relative “parent path patterns.” If it is matched, the next
searching “Loc” node location is “next_search_Loc.” The “la-
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Fig. 10. Using MPEG-2 VLC table 15 as example of long parent path.

bel bit” field is used to indicate the label situation of edge fol-
lowing the long parent path. Note that “label bit”0 indicates
one-bit and “label bit” 1 is two-bit. In Appendix III, a high-
level description is given to illustrate the strategy of long par-
ent paths search and relative mapping data format generation.

With long parent paths detection, we can perform an adap-
tive searching operation. The VLC bitstream can be processed
in an adaptive rate which is greater than two-bit/cycle (the rate
of basic decoding algorithm). In this manner, more decoding
cycles can be reduced for long codeword patterns. The average
decoding throughput can be further improved. Finally, we give
complete decoding steps in Appendix IV.

IV. DECODER SYSTEM ARCHITECTURE

The decoder system architecture is shown in Fig. 11. The
major elements of the architecture are synchronous SRAM
(SSRAM) modules, a set of combinational logic and register
files. We use two memory modules to store “Loc” data
and symbols table separately. With this architecture, we can
perform parallel access operations. Thus, we can continuously
decode next input bitstream and read previously decoded
symbol from symbol memory in parallel. The architecture also
includes three register files for storing prediction information

and It is important to use a pipeline technique and
parallel operations in the decoder architecture for improving
the operating speed [4], [5], [13], [14]. The long parent path
detection circuit is not shown in Fig. 11 to simplify the data
flow description.

An SSRAM was chosen over dynamic random access
memory (DRAM) because the decoder system requires a
fast and reliable memory module. The speed of memory
is important, since the access time is a major performance
factor of the decoder system. The SSRAM module is
designed with a fully custom methodology that achieves
an access time of 4.2 ns with 3-V power supply (size: 256

16). We develop basic cells used to compile different
size of SSRAM in layout. With this compiled scheme, we
can generate any size of memory modules to fit the system
and application requirements. It will increase the memory
efficiency and shorten the design cycle time.

We use an input (first in first out) FIFO for buffering the
VLC input bitstream. In addition, a parallel-to-serial converter
is used to extract valid data from input FIFO for decoding
operations. When we get the current “Loc” data from tree-node
memory (SSRAM-TN), it will be fed into terminal-node calcu-
lator and extension-node calculator. The computed results are
OFST and OFSC. The sum of OFSC and “” is the predicted
searching “Loc” location. The predicting result will be used
to access “ ” “ ” “ ” and SSRAM-TN in parallel. These
accessed data are provided to perform next prediction. Mean-
while, the decoded symbol location is predicted by the sum
of OFST and “ ” In the case of current “Loc” node’s label
larger than value, it is required to calculate OFSTR value
by using “ ” data. Note that “ ” will be added with OFSTR
instead of OFST to form the predicting memory location of
decoded symbol. Thus, we need a multiplexer to select correct
prediction memory location for accessing decoded symbol.

- - - - -
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TABLE I
THROUGHPUT COMPARISON (MPEG-2 VLC TABLE-15)

Fig. 11. The decoder system architecture.

The critical path of the decoder architecture is from MDR
of SSRAM-TN, extension nodes calculator, adder, to MARC
register. It forms a loop and these operations must be finished
in a decoding cycle time. Consequently, it limits the decoder
system clock rate and decoding throughput rate. Besides, the

TABLE II
PERFORMANCE COMPARISON

capacity of SSRAM modules and register files are designed
large enough to decode 128-entry symbols and a 16-bit code-
word length VLC table. The proposed decoder architecture
can run up to 100 MHz in 0.6-m single poly triple metal
(SPTM) CMOS technology.

V. PERFORMANCE EVALUATION

Memory-based architecture provides the capability to imple-
ment different VLC codebooks dynamically by changing the
contents of the memory. This flexibility becomes important
in signal processing. The previous discussion has shown that
the proposed algorithm and architecture can achieve a high
decoding rate. In addition, the proposed memory-mapping
scheme is efficient in reducing the memory space requirement
and achieving high memory efficiency.

We choose MPEG-2 VLC table-15 as test pattern for
performance comparison, as shown in Tables I and II. We
generate sequential codeword patterns randomly by exploiting
the probabilities of relative source symbols. Moreover, two
images, which are encoded by MPEG2 VLC codewords, are
used to perform the comparison in actual applications. Note
that both [8] and [9] are memory-based architectures. Assume,
under the same working frequency, the throughput of our
proposal is about 3.2 times of [9] and 8 times of [8].

VI. CONCLUSION

In this paper, we have presented a new memory-based
tree-search algorithm and VLSI architecture for very-high-
throughput VLC decoder system design. The architecture is
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based on an efficient scheme of mapping new two-bit tree
structure onto memory format. Different tables can be updated
by simply changing the contents of the memory dynamically.
It can be used to implement lossless variable-length coding, as
well as tree-base coding. In addition, we break the recursive
dependency of iterative searching operations by prediction
method. The proposed algorithm and architecture can predict
the searching node and perform parallel operations. As a
result, the decoding throughput rate can be enhanced up to 8
times, compared to available solutions. The approach is well

suited for large coding tables and high throughput system
design.

Base on 0.6- SPTM CMOS technology and a syn-
chronous SRAM module with an access time of 4.2 ns, the
decoder system can operate at 3-V power supply with clock
rate up to 100 MHz. According to the MPEG-2 VLC table-
15, simulation results show that the proposed algorithm and
architecture can achieve average decoding throughput rate of
720 Mbit/s. It is sufficient for many high-throughput real-time
applications.

APPENDIX I
ALGORITHM FOR DECODING TREE STRUCTURE AND MEMORY MAPPING STRATEGY

Begin

Create root node;
=� Create tree node�=
For(i=0; i<Symbolnumber; i++)

Begin
pointer= root;
currentlevel= 0;
len= length of symbolcode[i];
For(j=0; j<len; j=j+2)

Begin
currentlevel= currentlevel+1;
s1= symbol code[i][j];
IF ( j+ != len)

Begin
s2= symbol code[i][j+1];
check= 0;

End
Else Begin

s2= 0;
check= 1;

End
IF ( check== 1)

Begin =� 1-bit Label�=
Create pointer->child[s1] node;
pointer->child[s1]->tt = 1;
pointer->child[s1]->label1= s1;
pointer->child[s1]->label2= 0;
pointer->child[s1]->location= ‘unknown;’
pointer->child[s1]->level= currentlevel;
pointer->child[s1]->T = 0;
pointer= pointer->child[s1];

End
Else

Begin
Creater pointer->child[s1][s2] node;
pointer->[s1][s2]->tt = 0;
pointer->[s1][s2]->label1= s1;
pointer->[s1][s2]->label2= s2;
pointer->[s1][s2]->location= ‘unknown;’
pointer->child[s1][s2]->level= currentlevel;
pointer->child[s1][s2]->T = 0;
pointer= pointer->child[s1][s2];

End
End

pointer->T = 1; =� This is a Termaninal node�=
pointer->symbol= i; =� Setup Symbol value for Terminal node�=

End
=� Memory-mapping tree node for M and S�=
=� root node using this memory location: 0�=
loc = 1;
pointer= root;
s pointer= 0;

For(i=0; i<=tree level; i++)
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Begin
currentlevel= i;
do (search all tree node which has level== currentlevel,

and setup pointer to indicate it)
f

do ( search all possible child node of pointer in this oder
f child0, child00, child01, child1, child10, child11g,
and all exists child node must do this same process in
sequential)

f
IF ( pointer->child->T == 1 )

Begin
pointer->child->location= loc;
S[s pointer]= pointer->child->symbol;
s pointer= s pointer+1;

End
Else

Begin
pointer->child->location= loc;

End
g

IF ( child0 doesn’t exist and child1 doesn’t exist)
Begin

pointer->S1= 0; pointer->S2= 0; =� Regular node�=
End

Else IF(child 0 exist and child1 doesn’t exist)
Begin

pointer->S1= 1; pointer->S2= 0; =� one 1-bit Label=0 �=
End

Else IF( child0 doesn’t exist and child1 exist)
Begin

pointer->S1= 0; pointer->S2= 1; =� one 1-bit Label=1 �=
End

Else
Begin

pointer->S1= 1; pointer->S2= 1; =� two 1-bit Label�=
End

p= pointer->label1� 2 + pointer->label2;
M[loc][3p+0] = pointer->T;
M[loc][3p+1] = pointer->S1;
M[loc][3p+2] = pointer->S2;
loc = loc +1; =� remember all child nodes of pointer has same memory location�=
continue do until no node has same level;
g

End
=� Memory-Mapping tree node for T and C�=
T[0] = 0;
C[0] = 1;
For( i=1; i<loc ; i++)

Begin
c tmp= 0;
IF ( M[i][0] == 0) c tmp= c tmp+ 1;
IF ( M[i][3] == 0) c tmp= c tmp+ 1;
IF ( M[i][6] == 0) c tmp= c tmp+ 1;
IF ( M[i][9] == 0) c tmp= c tmp+ 1;
C[i] = C[i�1] + c tmp;
IF ( c tmp != 0) Cmax= i; =� Record the last un-terminal node�=
t tmp= 0;
IF ( M[i][0] ==1 and M[i][1] ==0 and M[i][2] ==0) t tmp= t tmp+1;
IF ( M[i][3] ==1 and M[i][4] ==0 and M[i][5] ==0) t tmp= t tmp+1;
IF ( M[i][6] ==1 and M[i][7] ==0 and M[i][8] ==0) t tmp= t tmp+1;
IF ( M[i][9] == and M[i][10] ==0 and M[i][11] ==0) t tmp= t tmp+1;
T[i] = T[i�1] + t tmp;

End
=� Memory-Mapping tree node for R�=
For( i= Cmax+1; i<loc; i++)

Begin
For( j=0 ; j < 4; j++)
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Begin
IF( mem[i][3j+0] ==1 and mem[i][3j+1] ==0 and mem[i][3j+2] ==0)

R[i][j] = 1; =� This is Terminal node�=
End

Else Begin
R[i][j] = 0; =� This is not Terminal node�=

End
End

End
End

APPENDIX II
THE BASIC DECODING STEPS

T1: Mar 1; T,S1,S2 root node initial value
A[0]  next bit of bitstream
if (S1=S2=0) fA[1]  next bit of bitstreamg

else if (S1=S2=1) fA[1]  0g
else if (A[0]=S2) fA[1]  0g

T2: if (MAR MAX)
f MDR  MEM[MAR]
T,S1,S2  MDR3A:(3A+2)
OFSC  �MDR0 + � � �+ �MDR3A
OFST  MDR0�(�MDR1)�(�MDR2)+ � � �+MDR3A�(�MDR3A+1)�(�MDR3A+2)
if (T=0) f A[0]  next bit of bitstrea

if (S1=S2=0) fA[1]  next bit of bitstreamg
else if (S1=S2=1) fA[1]  0g

else if (A[0]=S2) fA[1]  0g
else if (A[0]6=S2) fA[1]  next bit of bitstreamg

Mar MEMC[MAR] + OFSC
repeat T2g

else fMAR <- MEMT[MAR] + OFSTg
g

else if (MAR> MAX) f R  MEMR[MAR]
OFST  R0+ R1+ � � �+ RA
MAR  MEMT[MAR] + OFSTg

T3: Symbol<- MEMS[MAR]
repeat T1

APPENDIX III
ALGORITHM OF SEARCHING LONG PARENT PATH

The steps for searchingn long parent path:
i=0;
for(layer=4;layer<max layer; layer++)f

if(children of (layer�2)bit path are all 1 bit label)f
Long parent path[i]= (layer�2) bit path;
parentlenght[i]= (layer�2)
label bit[i]=0; =� 1 bit label�=
next Loc addr[i]=child Loc addr of (layer�2)bit

path;
i=i+1; g

else if(children of (layer�2)bit path are all 2 bit
label)f

Long parent path[i]= (layer�2) bit path;
label bit[i]=1; =� 2 bit label�=
next Loc addr[i]=child Loc addr of (layer�2)bit

path;
i=i+1; g
if(i>n)fbreak;g

g
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APPENDIX IV
THE ADVANCED DECODING STEPS

=� Define: OFSC= �MDR[0]+ � � �+�MDR[ini A1];
OFST1=Loc1[0]��Loc1[1]��Loc1[2]+ � � �

+Loc1[ini A0]��Loc1[ini A0+1]�

�Loc1[ini A0+2];
OFST=MDR[0]��MDR[1]��MDR[2]+ � � �

+MDR[ini A1]��MDR[ini A1+1]�

�MDR[ini A1+2];
�=

T1:
Loc Memory access: Loc0, Loc1, LocX;

MDR  LocX;
T,S1,S2 LocX[3ini A1:3ini A1+2];

if(used[i]=1 && bit stream= parent path[i])f
Z=parent length[i];
if(label bit=0) f A[0:1]= f bit[Z],bit[Z+1]g; g
else f A[0:1]= f bit[Z], 0g; g
MAR = next Loc addr; g

else if(Loc1[3�ini A0]=1)f =� ini A0[1:0]
 fbit0,bit1g �=

According “Loc0[0:2]” to decide iniA0[0:1]
= fbit0,bit1 g or fbit0,0g;

Symbol address= T[1] + OFST1;g
else if(T=1)f =� ini A0[1:0]  fbit0,bit1g �=

Accord “Loc1[3�ini A0 : 3�ini A0+2]” to decide
ini A1[0:1]= fbit2,bit3gorfbit2,0g;

Symbol address= T[ini A0+2] + OFST; g
elsef

Accord “T S1 S2” to decide A[0:1]
= fbit4,bit5gorfbit4,0g;

MAR = C[ini A0+2] + OFSC; g

T2:
Loc Memory access: Loc[MAR];

MDR  Loc [MAR] ;
T,S1,S2 MDR[3A:3A+2];
OFSC=�MDR[0]+ � � �+�MDR[A]
OFST=MDR[0]��MDR[1]��MDR[2]+ � � �

+MDR[A] ��MDR[A+1]��MDR[A+2];
if(T=0)f

Accord “T,S1,S2” to decide A[0:1]=
fbit[2�cycle],bit[2�cycle+1]gorfbit[2�cycle],0g;

MAR = C[X] + OFSC;
Repeat T2; g

elsef Symbol addr=T[MAR]+OFST;g
T3:
Symbol memory access: Symbol MEMS[Symbol addr];
Repeat T1;
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