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Hamiltonian structures of generalized Manin—Radul
super-KdV and constrained super KP hierarchies
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A study of Hamiltonian structures associated with supersymmetric Lax operators is
presented. Following a constructive approach, the Hamiltonian structures of Inami—
Kanno super-KdV hierarchy and constrained modified super-KP hierarchy are in-
vestigated from the reduced supersymmetric Gelfand—Dickey brackets. By apply-
ing a gauge transformation on the Hamiltonian structures associated with these two
nonstandard super-Lax hierarchies, we obtain the Hamiltonian structures of gener-
alized Manin—Radul super-KdV and constrained super-KP hierarchies. We also
work out a few examples and compare them with the known results19@9
American Institute of Physic§S0022-24889)02206-9

I. INTRODUCTION

In the past decade and more, the supersymmetric integrable systems have received much
attention in the literaturéfor recent reviews, see Refs. 1-3 and references theespecially in
the explorations of the relationship to the supersymmetric conformal field theories and string
theories. On the one hand, in superconformal/superstring theories, correlation functions are gov-
erned by supersymmetric extensions of the Korteweg—de V(i&dV) [or Kadomtsev—
Petviashvili (KP)] systems. On the other hand, the knowledge of super-KdV/KP systems have
motivated people to study nonperturbative properties of superstrings. These superintegrable sys-
tems share many features in common: they have supersymmetric Lax representations, infinitely
many conserved guantities and soliton solutions, etc. Furthermore, it is a common belief that they
also possess bi-Hamiltonian structures that define the dynamical flows on the corresponding Pois-
son supermanifolds. In particular, for the super-KdV-type systems, the Poisson brackets relative to
their associated second Hamiltonian structures provide extended superconformal aljesuas
peralgebraswhose quantum versions serve as the highest weight representations of some infinite-
dimensional symmetries in string theories.

The main purpose of this paper is to construct the Hamiltonian structures of the generalized
Manin—Radul super-Kd\(MR sKdV) and constrained super-K@esKP hierarchiegfor the defi-
nitions of these hierarchies, see Sec) éing the method of gauge transformation. Although the
Hamiltonian structures for the simplest cases have been obtained in Refs. 4 and 5, however, to our
knowledge, those for the general cases are still unexplored. Our motivation comes from the fact
that, for two gauge-equivalent integrable systems, the gauge transformation between them trans-
forms not only the Lax formulations but also the Hamiltonian structures of the corresponding
hierarchies. Hence, the preparation of suitable superintegrable systems that are gauge equivalent to
the generalized MR sKdV and csKP hierarchies is the key in this approach. Our strategy is the

following: First, for an odd-order super-Lax operafqrwe consider its associated supersymmet-
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ric Gelfand—Dickey(GD) bracket defined by the Hamiltonian map We then consider a usual
reduction that modifies the Hamiltonian mago J.. Second, we construct out two nonstandard
superhierarchies from((J.) that have super-Lax operators defined Ky=LD and Kg

=D 1L, respectively. The former is referred to the Inami—Kanno sKtR/sKdV) hierarchy’
whereas the latter to the constrained modified $&RsKP hierarchy?~1° The Hamiltonian struc-
tures associated witk; can also be constructed frot, and are denoted b (" (i=A,B).
Finally, we perform a gauge transformation on the systekis@ (") and denote the resulting

systems byEi ,0M) which describe the Lax operators and the Hamiltonian structures of the
generalized MR sKdV and cskKP hierarchies.
In summary, we shall follow the following steps to achieve the goal:

(L,30)— (Ki , QD) —(L;,00). (1)

It will be shown below that each step described above automatically guarantees the requirement
that the associated Hamiltonian structures should obey the super-Jacobi identity.

We organize this paper as follows: In Sec. Il, we recall some basic facts concerning superp-
seudodifferential operatoSPDOS$. We then introduce the second supersymmetric GD bracket
and its reduction from a Miura transformation viewpoint. In Sec. Ill, the IK sKdV and the cmskKP
hierarchies are defined. We give a detailed construction of their associated Hamiltonian structures
from the reduced supersymmetric GD bracket. We find that, up to a sign, the Poisson brackets
defined by their corresponding Lax operators have the same form. In Sec. 1V, we define the
generalized MR sKdV and csKP hierarchies by applying a gauge transformation to the IK sKdV
and cmsKP hierarchies, respectively. We also show that this gauge transformation enables us to
obtain the Hamiltonian structures associated with the generalized MR sKdV and csKP hierarchies.
In Sec. V, we give several examples to compare them with the known results. We present our
concluding remarks in Sec. VI.

II. SUPERSYMMETRIC GELFAND-DICKEY BRACKETS

To begin with, we consider the supersymmetric Lax operator of the form
L=D"+U,_,D" 1+---+U,, (2.1

where the supercovariant derivatiie= d,+ 09(d=d/9x) satisfiesD?=¢, 6 is the Grassmann
variable (¢>=0), which together with the even variabke=t, defines the(1/1) superspace with
coordinate X, ). The coefficientdJ; are superfields that depend on the varialfles and can be
represented by; = u;(t) + Av;(t). The parity of a superfielt) is denoted byU|, which is zero for

U being even and one fdJ being odd. Sincé is assumed to be homogeneous urdegrading,

thus|U;|=n+i(mod 2). We will introduce the Poisson bracket associated witim functionals
of the form

F(U)=fo(U), (2.2

where f(U) is a homogeneous differential polynomial bf and [g=[dx df is the Berezin
integral, such that if (U)=a(u,v) + 6b(u,v), then[gf(U)=[b. The supercovariant derivative
D satisfies the supersymmetric version of the Leibniz tle;

ulklpi—k (2.3

DiU: i (_1)U|(i—k)[i
k=0 k

whereUX=(D*U) and the superbinomial coefficier{ts] are defined by
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[i/2] . .
for O<k=i and (i,k)#(0,)mod 2,

[k/2]
M: (—1)[k’21{_'+kk_1}, for i<O,

0, otherwise.

(2.9

For a given SPD®=3p,D', itis convenient to separakinto a direct sum of two linear spaces:
P=P_®P_¢ with P_,=3_yp;D' and P_, =% p;D'. In particular, we denoteP,
=3,20piD', P_=Z;_op;D', and P),=py. We also define its super-residue as $tegp_; and
its supertrace as S&= [gsresP. It can be shown that, for any two SPD@®sandQ, St{P,Q]
=0 for[P,Q]=PQ-(—1)/PIRIQP, and hence S®Q=(—1)PIIR StrQP. Given a functional
F(U)=[gf(U), we define its gradient as

n—1

of
d.F= -k —, 2.
F=2 (-1) 50, (2.5
and its variation as
SF=(—1)IFI*It+1 st sLd, F), (2.6)
where the variational derivative is defined by
P - - af \l!]
R _nuli+ii+ne 7
oU, izo (=1 (au[k']) ' @9

The supersymmetric second GD bracket associated wishgiven by'%13
{F,G}(L)=(—21)IFIFIeI*ItI*1 57 3(d, F)d, G], (2.9
where the Hamiltonian mapis defined by
JOX)=(LX),L—L(XL), 2.9

where X==,X,D¥. It has been shovrt® that (2.8) indeed defines a Hamiltonian structure,
namely, it is antisymmetric and satisfies the super-Jacobi identity.

If we factorizeL=(D—-®,)(D—®,_,)---(D—®,), which defines a supersymmetric Miura
transformation between the coefficient functidhsand the Miura fieldsb; , then the second GD
bracket(2.8) becomes

n
{F G}(L)=f2 (—1)‘(D5—fﬁ (2.10
’ Bi=1 oD; | 5®;’ ’
which implies that the fundamental brackets of the Miura fieldsare given b§'2
{@i(X),®;(V)}=(-1)'8;D5(X~Y), (2.1

where X=(x,6), Y=(Y,w) and 6(X—-Y)=46(x—Yy)(6— w). This result is what we called the
supersymmetric Kupershmidt—Wilson theorem. Equatidril) enables us to write down the
fundamental brackets df, through the super-Miura transformation.

Next, let us consider the case when the constridint;=0 is imposed in(2.1). It can be
easily shown that such constraint for odds second class, which will modify the Hamiltonian
structureJ. On the other hand, for evem the constraint is first class and hence the induced
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Poisson brackets can not be well defined. Therefore, for the odd-order opéraf¢+?!
+ Uy D% 1+---+U,, we shall consider the factorization=(D—® . 1)(D—®y)---(D
—®,). Then the modified Poisson bracket definedﬂ)becomes

{F,G}=(—1)FI*ICl str3,(dF)dG), (2.12

wheredF=d;F=3%%(—1)'D""(5f/6U;) and

. (2.13

JC(aF)zJ(aF)+[IA_,fXD sre$L,dF]

We remark that the second term is called the third GD structure, which is compatible with the
second structure. Equati@B.12) yields that the modified Poisson brackets for the Miura fidigs
are given by

{@i(X),®;(V)}e=[1+(—1)'§;IDS(X-Y), (2.14

which provide the free-field realizations of classi¢dsuperalgebras associated with the odd-order

Lax operatorL.'21**Besides the usual reduction described above, there are other reductions that
have been discussed in Refs. 13 and 16. Since the first Hamiltonian structure can be obtained from
the second Hamiltonian structure by replacingy L +\, where\ is called the spectral param-

eter, we shall focus only on the second structure.

. TWO NONSTANDARD SUPER-LAX HIERARCHIES

There are several superintegrable hierarchies whose Lax operators are related to the modifi-
cations or reductions of the supersymmetric Lax operéat) in the literature. Here, for our
purpose, we consider the following two Lax systems:

dK; W .
dr —LKM=K] (1=AB), 3.1

with the Lax operator&; defined by
Ka=D?"+V,,_,D?""2+---+V,D, (3.2
Kg=D?"+V,,_,D?" 2+.---+Vo+D V_,. (3.3

The Lax equation foK , is referred to the IK skdV hierarchyThe simplest example in this case
is just the Laberge—Mathieu super Kd\/M sKdV) hierarchy 6=2), which was constructed
from aN=2sKdV hierarchy:’ On the other hand, the Lax equation f6g is the generalization of
the super two-boson hierarclgTB) (n=1),'® which we call the cmsKP hierarchy. In particular,
from (3.1) it is easy to show that the coefficient functidh ; obeys the evolution equation

dv,

T - (KENEVoy), (34

which implies thatV _; is an adjoint eigenfunction associated with the Lax operior
In general, the second Poisson brackets associated with the Lax op&ratars be written as

{F,G}(K))=(-1)FIFICI* 1 st (d;F)d;G), (3.5

whered;F=dy.F, and the Hamiltonian map@") are defined by
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QP (daF)=(KadaF) Ka—Ka(daFKa) 4 +[Ka,(dAFKa)o]

+(—1)Fl +(—1)FIK D tsre§d,F,K,], (3.6

X
J' D sre$daF,Kal,Ka

Q®)(dgF) = (KgdgF) . Kg—Kg(dgFKg) + +[Kg,(KgdgF)o]

+(—1)F KB,fXD sre$dgF,Kg]|+(—1)FID " sre§dgF,Kz]lKg. (3.7)

Notice that the ma®, in operator form, is similar to but different frod®). Instead of giving
QO by other method§;***°we will follow a constructive approach, analogous to that of the
supersymmetric GD structufetp verify the Hamiltonian mapQ(') from a supersymmetric Miura
transformation point of view. To show that the ma@$§’ are indeed Hamiltonian, we have to
check that the Poisson brackets defined3rb) are antisymmetric and obey the super-Jacobi
identity. For antisymmetry, by direct computation, it can be easily shown that
{F.G}V=—(-1)FlclfG,F}. (3.8
For the super-Jacobi identity, instead of direct computation, we rewrite the Lax opktadsr
Ka=La D, Kg=D 1Lg, (3.9

whereL , andL are superdifferential operators with ordenr-21 and z+ 1, respectively. Fur-
thermore, from the relation

SF=(—1)FI*1str(sK;d;F)=(—1)IFI st sL,d,F), (3.10
whered;=d; , we have
daF=—-DdsF, dgF=(—1)FldgFD 1. (3.11)
Substituting(3.9) and(3.12) into (3.6) and (3.7), we find
QM (daF)=—J.(dsF)D, Q®(dgF)=(—1)FID" 13 (dgF), (3.12

which imply that the Poisson brackets definedikycan be transformed to those definedlhyas
follows:

{F,G}V(K)) = m{F,G}(L)), (3.13

where 7,=—1 and 7g= + 1. Hence, the super-Jacobi identity associated with the rfidpss

automatically satisfied due to the fact that the reduced supersymmetric GD brackets defined by
admit Miura representation@.14).
Therefore the map@ (") provide the Hamiltonian formulation for the Lax equatidsd):

dK;

o = HHE KFO=00@H), (3.14
k

where the Hamiltonian functionalﬂfj) are given by

) n
HY = = St(K™). (3.19
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Notice that the relative signs in the Hamiltonian madp$ are crucial. It is this choice so that
QM(d;HYy are differential operators of order less tham-22, and Eq(3.14 makes sense.

Before ending this section, two remarks are in order. First, we note that both Piosson brackets
defined byK;, up to a sign, are mapped to the same reduced supersymmetric GD bracket defined
by I:i , which is different from the situation in the bosonic case, where #yj® mapped to the
differenceof the second and the third GD structuf@syhereas typ® is thesumof the second and
the third one$%?! Second, both Lax operatos, and Ky can be factorized into multiplicative
forms, i.e.,

Ka=(D=P5,-1)(D=®y, ) -«(D—-Py)D,

(3.1
Kg=D D —®pq,1)(D—Ppp)-(D—Dy),
where the Miura fieldsb; obey the Poisson brackets,
{@(X), @)}V =71+ (= 1)) 83 IDS(X-Y). (3.1

IV. GENERALIZED MR SKDV AND CONSTRAINED SKP HIERARCHIES

Having constructed the Hamiltonian structures of two nonstandard super-Lax hierarchies in
the previous section, we are now ready to discuss gauge equivalences related to these two non-
standard hierarchies. Based on the fact that gauge transformations are canonical transformations,
we can use them to obtain new integrable Hamiltonian systems from the known ones. In the
following, we will show that the second Hamiltonian structures of the generalized MR sKdV and
csKP hierarchies are just the ones that can be obtained in this way.

Let us perform the following gauge transformation to the Lax operd€ors

Li=T KT (i=AB), (4.1

where the gauge operatdris defined byT=exp(—f*V,,_»/n), and hence the next leading term
of K; can be gauged away. The resulting differential operdtomre thus given by

tA: D2n+ U2n_3D2n_3+' "+U01
(4.2
Lg=D?+U,,_3D?" 3+ +Uy+ D 1y,

where¢=T ! andy=V_,T. It can be proved thaf ! is an even eigenfunction associated with

the operatoll;, i.e., aT Y/ at,=((L¥™,T~1)o, and the nonstandard Lax equationg3nl) are
then transformed to the standard ones,

d~Li Tkiny T
d_tk:[(l—i )+ Lil. (4.3

Therefore the gauge transformati¢fil) provides a connection betwedq) andL; in the Lax
formulation. ForL », the Lax equatior(4.3) gives the generalization of the MR sKdV hierarchy
(n=2), which was originally constructed from the MR skP hierarchy by reducfigdn the
other hand, the Lax equatidd.3) for Lz describes the cskP hierarchy that contains the SAKNS
hierarchy fi=1)%?2 as the simplest example. It can be easily shown that the Lax equdti®n
for Lg is consistent with the following equations:

d¢ Iy

J

— =LK"Yy d)o, ——=—(LEM* ¢, (4.4
ty Ity



J. Math. Phys., Vol. 40, No. 6, June 1999 M.-H. Tu and J.-C. Shaw 3027

and thus¢ and ¢ are an even eigenfunction and an odd adjoint eigenfunction of the cskKP
hierarchy, respectively.

Moreover, since the hierarchy flows associated withhave Hamiltonian descriptions, it is
quite natural to ask whether we can use such gauge equivalence to obtain the second Hamiltonian
structures of the generalized MR sKdV and cskKP hierarchies. The answer is yes. To see this,
consider an infinitesimal gauge transformatkop-K;+ Q, whereQ is a homogeneous superdif-
ferential operator of order, at mostn2 2. Then, in view of(4.1), we can read off the linearized
mapT’ and its transposed map ' as

1| (x -
T:Q—-T QT+ ﬁ[f q2n—2’Li}i (4.9

—1)lPI+1
T’T:P—>TPT_1+( )

X ~
f sre$P,L;], (4.6)
whereP is an arbitrary SPDQy,,,_,=sresQD2"*1), and the adjoint of an operatBis defined

by Str(PRQ) = (—1)RIPI str(RTPQ). UsingT’ andT’", a straightforward but tedius calculation
(see Appendix A shows that

T'OOT T(P)=(L;P),L;-Li(PL)) +3HXres{P E-]E-}+£Hjxsre$P E])D E}
I + =1 I 17+ n 1=1dr =l n 1=l 1=l

fx
That means the Hamiltonian ma@® and ®(®, in terms of their own Lax operators, have
the same form. Sinc®() are canonical equivalent to the Hamiltonian m@f’, the Poisson
brackets defined b® () are also antisymmetric and obey the super-Jacobi identity. As a result,
0 M (0®)) can be defined as the Hamiltonian map of the generalized MR ksKM hierarchy.

A further consistent check shows th@f) map the Hamiltonian one-fornmH ("’ to (pseudo)
superdifferential operators of order, at mosh-23. Now we can write down the Hamiltonian
flows associated with the Lax operatdrsas

2

n2

(fxl sreSEPL])Um—s)L}E@i)(P)' @9

SRy Ti—e @A), @9

where the Hamiltonian functionals, in view 3.15 and(4.1), are defined by

n

O
A ”

StrLiM, (4.9
From the Hamiltonian flow$4.8) we can read off the Poisson brackets for the coefficient func-
tions of L, .

In fact, for Ly, we can express the associated Poisson bracketsl forg, and ¢ more
precisely. Let us rewrite g=1+ ¢D ~ 1y and denotdd = [ zh as one of the Hamiltonian function-
alsH{® . Then the Hamiltonian one-form can be expressed as

dgH=dH+X, (4.10

whereX is a superdifferential operator and

2n—-3 5h
dH= > (LD k" 1_——. (4.10)
=0 oUy
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Then, from the relation

6H=—Str((&l+5¢D’¢+¢>D’15¢//)(d|H+X))=—Str(5|d|H)+J (5¢ 5o ;)
B

(4.12
we have the following identifications:
on X* oh _ X 4.1
56 =(X*)o, w—( $)o- (4.13

Inserting(4.10 with X satisfying(4.13 into the Hamiltonian ma®® gives

gi = (diH) = T(dHD .+ ((1dH) 4+ 4D ). = (¢D~H(diHI) ) + 52/[) ('/’)

, oh 1[ X 2 X
—| ¢D %I ++ﬁ f regdgH,Lg],| —wa sre$dgH, Lg]
+% stre{dBH,[B],l +522-“X(U2n3fx, sre$aBHIB]),|},
do éh x éh
E:((|d|H)+¢)o+(|5_¢ o+¢ f (szg/,)—f (D¢> +o ¢f regdgH, Lg]

1 X - - 2 X x’ ~ ~
_E(D(ﬁ)J' Sre$dBH:LB]+?¢J' (Uznsf Sre$dBH,|—B])1

dy . . , oh x )
St @mnn(1r 5]+ [[oogg]-[lougy||-fuf et

1 X _ —~ 2 X x’ ~ ~
+H(D¢f sre$dBH,LB])—F¢;f (Uzn_3f sre$dBH,LB]), (4.19

where

~ o~ oh oh
fef{dBH.LB]=reﬁ{d|H,|]+(Dl//)5—¢—¢>( 5¢> sregdiHo ) — H(D(diH)* ),

sh

58 (4.19

sre$dgH,Lg]=sre$dH,I]— ¢5—2+¢

Equation(4.14 can be regarded as the supersymmetric generalization of the second Hamiltonian
structures of constrained KP hierarchy derived by Oevel and Str&mpp.

V. EXAMPLES

In this section we work out a number of examples to illustrate the previous results explicitly.
We write down the Poisson brackets for these systems according to the formulas given above and
compare them with the known results.
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A. Laberge—Mathieu super-KdV hierarchy

For Ky=d?+v,d+v,D, the first equations ii3.1) are given by

:(le)

Vox/ '

1(01)_1 (vt 301(Dv1) = 3v105— 301020y
dt; \v2/ 4 (v oxx— 3V3+3v1(Dvy))y ,

d
dty

U1
U2

(5.7

which represents the first equations of the LM sKdV hierarchy. The Hamiltonian formulation for
these equations is given 8.14), where the second Poisson structure can be obtained by substi-
tuting dyHM = — D ~2(8h{V/ 6v,) + D ~3(6hM/ 8v,) into (3.6). We find

Shi®
d (vl>_ _21)1(9_01)( —&2—v26+le—(Dv1)) 5()1 (5 2)
dt \v2) |\ P—vyd+vD—vy  —2D%+(Duy)—2v, shid | '
51)2
where the first Hamiltonian functionals are given by
H{Y = —2 StrK?= - f v,
B
(5.3
2 3((1
H(lA)= — §StrKf\/2= ~3 fB Evlvg-i-vlvzx—vl(Dvl) .
To compare with the known result, we consider the change of variables as follows:
(v1,v2)— (= (Du)—7,—2u), (5.9
then the Poisson structure (6.2) becomes
1 —Do+r 2ud—(Du)D +2u,
. , 5.
2\2us—(Du)D+uy, —D@?*+379+(D7)D+27, 5.9
which is just the form presented in Ref. 24.
B. Super-two-boson hierarchy
For Kg=d+vo+D v _; the first Lax equations i3.1) are given by
d [ v )_( Uox )
dt;\v— ooy
(5.6

d Uo UOxx+2(DU71)x+(v(2))x
a5 = :

U1 — U _1xx T 2(vov - 1)x

which represents the first equations of the sTB hierarchy. The Hamiltonian description for these
equations are given b§B.14), where the second Poisson structure can be obtained by substituting
dgH® =D "1(6h®) 6v0) + (6h{P sv _,) into (3.7). It turns out that
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Shi®)
i( o )_ 2D3+(Dvg)+2v_4 P+ved+tv_1D+vgy S, 5.7
dt\v-1/ \—d?+vgd+v_D—(Dv_y) 20_10+v_1y oh® | '
5U71
where the first Hamiltonian functionals are given by
H(lB)z—StrKBz—va_l,
(B) 1 2
H2 :_EstrKB: BUoU,l. (58)

Equation(5.7) provides the second Hamiltonian formulation of the sTB hierarchy.
If we make the following identification:

(vg,v—1)—(—(DJg),J1), (5.9
then the second Poisson structurgn7) becomes

2D+2D"1,D"*-D " Y,D ! —-D3+D(DJy)-D 1D

, 5.1
D3+(DJy)D+DJ,D ! J,D?+D?J, (.19
which is the form of the second Poisson structure discussed in Ref. 18.
C. Manin—Radul super-KdV hierarchy
For Ly=d%— ¢D+a, the first Lax equations if4.3) are given by
da [ ax
dtg\ @/ |y’
(5.1)

d ( a) _ 1 ( ‘Pxxx_3((P(DQD))x+6(aQD)x)

dy ¢ 4 axxx_3((P(Da))x+3(a2)x

which represents the first equations of the MP sKdV hierarchy. The Hamiltonian formulation of
these equations are given 4.8), in which the first Hamiltonian functionals are given by

AP -—2siTi- | o

) ) (5.12)
AP =— §Strii’2= - ‘—J [¢(Dep)—2¢a],
B

and the second Poisson structure can be obtained by substitigiA¢f* =D ~*(sh{"V/ sa)
+D~2(8h{M1 8¢) into (4.7). It turns out that

ShA
d [a _ Paa Pa<p da (5.13
dtele) (P P,/ | shV | '

S¢
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where the second Poisson matrix is given by

Paa=3Dd*—3¢d*+4aDi+ (2(Da)—3¢,)d+2a,D+3¢(De)+(D3%)—4ap— @y
+¢D Y(Da)—(Da)D '¢—¢D oD tp— D o+ oD te],

P,=3ld*—2¢Dd+4ai— ¢,D+2a,+¢D }(De)],

(5.14
Poa=3*+2¢Dd+(4a—2(D¢))d+ ¢,D+2a,—(D3¢)+(Dp)D o],

Poo=124¢d+2¢,].

Equation(5.13 provides the second Hamiltonian formulation of the MR sKdV hierarchy reported
in Ref. 4.

Starting from the Lax operatd = 9>+ v,d+v,D associated with the LM sKdV hierarchy,
one can perform the gauge transformation exp(— [*v,/2)’ on the Lax operatoK , as follows:

2 -1
- D
KAHLA:efx,,Z,zKAe_W:azﬂlD_<v4_2+ o, 2alD o)

(5.19

Then the Lax operatdr o= 3°— ¢D +a associated with the MR sKdV hierarchy is related to the
Lax operatorK, as

b= v, a= V3 Vo U1(D_1vz))
=—p,, a=- A

which provides the gauge equivalence between the LM sKdV hiergilly and the MR sKdV
hierarchy(5.11). Moreover, it has been shof#that the second Hamiltonian structufe5) of the
LM sKdV hierarchy can be transformed to the second Hamiltonian stru¢fuid) of the MR
sKdV hierarchy via this gauge transformation.

D. Super-AKNS hierarchy

ForLg=d+ ¢D 1y, the first equations if4.3) are given by

M|

i(qﬁ)_( bxx+2¢(D i) )
dt, \ ) ’

)=\ = o 20(D b (.17

which are the first equations in the sSAKNS hierarchy. Hamiltonian formulations for these equa-
tions are given by4.14), where the first Hamiltonian functions are given by

AP = —stTo- | on,
B
(5.18
- 1.
H(ZB)=——StrL§=f buib.
2 B

From (4.14), the Hamiltonian flow can be expressed as
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HP
Py P
selullors ool e
Sy
where the Poisson brackets are given by
Pys=—¢D '¢p— 4D ?¢D—(D$)D ?¢p—2¢D 2¢yD ¢,
Pyy=D?+¢D Y+ D" *(Dy) +(D$)D ?y+ 24D *¢yD 2y,
(5.20

P,s=D?+yD 24D+ (Dy)D 2¢p+2yD 2¢pyD 24,

Pyy=—(D§)D 2y~ yD 2(Dy)~2yD 2pyD %y,

which is just the second Poisson structure obtained in Ref. 5. Equ&tib® provides the second
Hamiltonian formulation of the SAKNS hierarchy.

Starting from the Lax operatdtz=d+v,+ D v_, associated with the sTB hierarchy, one
can perform the gauge transformatidr exp(— [*vo)*2?°to the Lax operatoKg as follows:

Kg—Lg=e/voKge o= g+el™vop~1e= /"o, (5.21)

Then the Lax operatdrg= d+ ¢D ~ 1y associated with the SAKNS hierarchy is related to the Lax
operatorKg as

p=el"vo, a=y_,e o, (5.22

which provides the gauge equivalence between the sTB hier@scBlyand the SAKNS hierarchy
(5.17). Moreover, it can be provéd that the second Hamiltonian structuf®.10 of the sTB
hierarchy can be transformed to the second Hamiltonian struu26 of the SAKNS hierarchy
via this gauge transformation.

VI. CONCLUDING REMARKS

In this paper, we investigate the Hamiltonian structures associated with several supersymmet-
ric extensions of the KdV hierarchy. Starting with the reduced super-GD bracket, the Hamiltonian
structures of two nonstandard super-KdV hierarchies can be constructed via supersymmetric
Miura transformations. We then perform a gauge transformation on these two nonstandard Lax
hierarchies to obtain the Hamiltonian structures of the generalized MR sKdV hierarchy and con-
strained sKP hierarchy in a unified fashion. To compare the obtained Hamiltonian structures with
the known results, we work out a few examples, including the LM sKdV, sTB, MR sKdV, and
SAKNS hierarchies.

Our approach on the gauge transformation relies on the algebra of superpseudodifferential
operators, which provides an effective method to achieve the goal. In fact, the gauge transforma-
tion (4.1) that mapsQ® to ®) is by no means unique. There is another gauge transformation
triggered byS=D ~1T?>?®that also bring€)() to ). Since the parity oS is odd, the gauge
equivalence of the Hamiltonian maps given @7 should be replaced bg' Qs T=—-@0),
where the minus sign will be compensated by that induced from the transformation of the Hamil-
tonians such that the hierarchy floi&14) are transformed t(4.8).

Finally, we would like to comment briefly on the algebraic structures associated with the
Poisson brackets defined by the Hamiltonian m@@s and® (. As we shows in Eq(3.13, the
Poisson brackets defined 63" are encoded by the Poisson bracket defined byHowever, it
has been showfA*®that in the space of the supersymmetric Lax operator of odd order, the reduced
supersymmetric GD brackéR.12 defines an infinite series of classiddl=2W superalgebras,
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which containN=2 super-Virasoro algebra as a subalgebra. Therefore, through the Miura trans-
formation, the differential polynomials of the coefficient functidh=f K; can be identified as the

N=2 supermultiplets, and E¢3.17) provides the free-field realizations of the correspondivig
superalgebras. On the other hand, for the MR sKdV and cskKP hierarchies, the Poisson algebras
defined by® () are not quite clear so far, even for the simplest cases. It seems not so obvious to
construct the super-Virasoro generator by covariantizing the supersymmetric Lax ojhe rer

to the fact thatU,,,_,=U,,_,=0. Therefore, to explore the algebraic structures associated with
0", the decompositions of coefficient functiobs into primary fields remain to be worked out.

Work in this direction is still in progress.
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APPENDIX: PROOF FOR (4.7)

To prove(4.7), let P be an arbitrary superpseudodifferential operator; then
TONTTP=T'Q, (A1)
where
Q=0T TP=(KAT'TP) 1 Ka=Ka(T"TPKp) . +[Ka (T "PKa)o]

X
+(—1)lPl j Dsre$T TP, KA],Ka

+(—1)PIK,D Lsre$T' TP,K 4] (A2)
Using (4.6), each term inQ can be calculated as follows:

__1\IP|+1 X
(1)=(TLPT—1)+KA+%DU sre$P,L]

Ka,

— 1)IPI X X
(2)=—KA(TPLT‘1)++( i) KA(DJ sre$P,L])—%(f sre$P,L])D,
—1)IPI+1 X
(3)=[KA,(TPLT1)O]+( 2 Ka, Df sre$P,L]H,
(4)=(5)=0,

which imply that

Q=(TLPT ) Ky—KA(TPLT 1), +[Ka (TPLT Yo+ %H fxsre$P,L]) D,Ku
(A3)

and
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1 (x 1 (x
HJ Q2n—2:ﬁJ sresQD "1
=(TPLT‘1)0+%JXres{T[P,L]T‘l)

" %f U sre@,u)M —%”( J sreiP,L])VZn_s}.

n
Substituting(A3) and (A4) into (4.5), we obtain the desired result.?).
Since the proof foKg is parallel to the above one, we hence omit it here.

(Ad)

1B. A. KupershmidtElements of Super Integrable Systefidkiwer, Dordrecht, 1981
23, Stanciu, “Supersymmetric integrable hierarchies and string theghgth/9403120
3H. Aratyn et al, Supersymmetry and Integrable ModéBpringer-Verlag, Berlin, 1998
4W. Oevel and Z. Popowicz, Commun. Math. Ph§89, 441 (1991).

SH. Aratyn and A. Das, Mod. Phys. Lett. A3, 1185(1998.

6J. M. Figueroa-O’Farrill and E. Ramos, Phys. Lett282, 265 (1997).

’T. Inami and H. Kanno, Int. J. Mod. Phys. A 419(1992.

8Q. P. Liu, Phys. Lett. A235, 335(1997).

9F. Delduc and L. Gallot, Commun. Math. Phyi€0, 395 (1997).

10F, Delduc and L. Gallot, “Supersymmetric Drinfeld—Sokolov reduction,” solv-int/9802013.
11y, 1. Manin and A. O. Radul, Commun. Math. Ph@8, 65 (1985.

123, M. Figueroa-O’Farrill and E. Ramos, Nucl. Phys3B8, 361 (1992.

133, M. Figueroa-O’Farrill and E. Ramos, Commun. Math. PHys5, 43 (1992.

14K, Huitu and D. Nemeschansky, Mod. Phys. Lett6A3179(1991).

W, J. Huang, J. Math. Phy85, 2570(1994.

163, M. Figueroa-O’Farrill, J. Mas, and E. Ramos, Rev. Math. PBy#79 (1991).

17C. Laberge and P. Mathieu, Phys. Lett2®B5 718 (1988.

18], C. Brunelli and A. Das, Phys. Lett. 87, 303 (1994); ibid. 354 307 (1995; Int. J. Mod. Phys. AL0, 4563(1995.
%A, Das and S. Panda, Mod. Phys. Lett.14 723(1996.

20Q. P. Liu, Lett. Math. Phys43, 65 (1998.

213, C. Shaw and M. H. Tu, J. Phys. 30, L725 (1997.

22H. Aratyn and C. Rasinariu, Phys. Lett. 31, 99 (1997.

28W. Oevel and W. Strampp, Commun. Math. Phy§7, 51 (1993.

24C. Morosi and L. Pizzocchero, J. Math. Ph@s, 2397 (1994.

25]. C. Shaw and M. H. Tu, J. Phys. 3, 6517(1998.

263, C. Shaw and M. H. Tu, J. Phys. 3{, 4805(1998.



