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Hamiltonian structures of generalized Manin–Radul
super-KdV and constrained super KP hierarchies
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A study of Hamiltonian structures associated with supersymmetric Lax operators is
presented. Following a constructive approach, the Hamiltonian structures of Inami–
Kanno super-KdV hierarchy and constrained modified super-KP hierarchy are in-
vestigated from the reduced supersymmetric Gelfand–Dickey brackets. By apply-
ing a gauge transformation on the Hamiltonian structures associated with these two
nonstandard super-Lax hierarchies, we obtain the Hamiltonian structures of gener-
alized Manin–Radul super-KdV and constrained super-KP hierarchies. We also
work out a few examples and compare them with the known results. ©1999
American Institute of Physics.@S0022-2488~99!02206-9#

I. INTRODUCTION

In the past decade and more, the supersymmetric integrable systems have receive
attention in the literature~for recent reviews, see Refs. 1–3 and references therein!, especially in
the explorations of the relationship to the supersymmetric conformal field theories and
theories. On the one hand, in superconformal/superstring theories, correlation functions a
erned by supersymmetric extensions of the Korteweg–de Vries~KdV! @or Kadomtsev–
Petviashvili ~KP!# systems. On the other hand, the knowledge of super-KdV/KP systems
motivated people to study nonperturbative properties of superstrings. These superintegrab
tems share many features in common: they have supersymmetric Lax representations, in
many conserved quantities and soliton solutions, etc. Furthermore, it is a common belief tha
also possess bi-Hamiltonian structures that define the dynamical flows on the correspondin
son supermanifolds. In particular, for the super-KdV-type systems, the Poisson brackets rela
their associated second Hamiltonian structures provide extended superconformal algebras~W su-
peralgebras! whose quantum versions serve as the highest weight representations of some i
dimensional symmetries in string theories.

The main purpose of this paper is to construct the Hamiltonian structures of the gener
Manin–Radul super-KdV~MR sKdV! and constrained super-KP~csKP! hierarchies~for the defi-
nitions of these hierarchies, see Sec. IV! using the method of gauge transformation. Although
Hamiltonian structures for the simplest cases have been obtained in Refs. 4 and 5, however
knowledge, those for the general cases are still unexplored. Our motivation comes from th
that, for two gauge-equivalent integrable systems, the gauge transformation between them
forms not only the Lax formulations but also the Hamiltonian structures of the correspon
hierarchies. Hence, the preparation of suitable superintegrable systems that are gauge equi
the generalized MR sKdV and csKP hierarchies is the key in this approach. Our strategy
following: First, for an odd-order super-Lax operatorL̂, we consider its associated supersymm

a!Electronic mail: mhtu@math.ccu.edu.tw
b!Electronic mail: shaw@math.nctu.edu.tw
30210022-2488/99/40(6)/3021/14/$15.00 © 1999 American Institute of Physics
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ric Gelfand–Dickey~GD! bracket6 defined by the Hamiltonian mapJ. We then consider a usua
reduction that modifies the Hamiltonian mapJ to Jc . Second, we construct out two nonstanda
superhierarchies from (L̂,Jc) that have super-Lax operators defined byKA5L̂D and KB

5D21L̂, respectively. The former is referred to the Inami–Kanno sKdV~IK sKdV! hierarchy,7

whereas the latter to the constrained modified sKP~cmsKP! hierarchy.8–10 The Hamiltonian struc-
tures associated withKi can also be constructed fromJc and are denoted byV ( i ) ( i 5A,B).
Finally, we perform a gauge transformation on the systems (Ki ,V ( i )) and denote the resulting

systems by (L̃ i ,Q ( i )), which describe the Lax operators and the Hamiltonian structures o
generalized MR sKdV and csKP hierarchies.

In summary, we shall follow the following steps to achieve the goal:

~ L̂,Jc!→~Ki ,V~ i !!→~ L̃ i ,Q~ i !!. ~1.1!

It will be shown below that each step described above automatically guarantees the requi
that the associated Hamiltonian structures should obey the super-Jacobi identity.

We organize this paper as follows: In Sec. II, we recall some basic facts concerning su
seudodifferential operators~SPDOs!. We then introduce the second supersymmetric GD bra
and its reduction from a Miura transformation viewpoint. In Sec. III, the IK sKdV and the cm
hierarchies are defined. We give a detailed construction of their associated Hamiltonian stru
from the reduced supersymmetric GD bracket. We find that, up to a sign, the Poisson br
defined by their corresponding Lax operators have the same form. In Sec. IV, we defin
generalized MR sKdV and csKP hierarchies by applying a gauge transformation to the IK
and cmsKP hierarchies, respectively. We also show that this gauge transformation enable
obtain the Hamiltonian structures associated with the generalized MR sKdV and csKP hiera
In Sec. V, we give several examples to compare them with the known results. We prese
concluding remarks in Sec. VI.

II. SUPERSYMMETRIC GELFAND–DICKEY BRACKETS

To begin with, we consider the supersymmetric Lax operator of the form

L5Dn1Un21Dn211¯1U0 , ~2.1!

where the supercovariant derivativeD[]u1u](][]/]x) satisfiesD25], u is the Grassmann
variable (u250), which together with the even variablex[t1 defines the~1u1! superspace with
coordinate (x,u). The coefficientsUi are superfields that depend on the variablesu, t i and can be
represented byUi5ui(t)1uv i(t). The parity of a superfieldU is denoted byuUu, which is zero for
U being even and one forU being odd. SinceL is assumed to be homogeneous underZ2 grading,
thus uUi u5n1 i (mod 2). We will introduce the Poisson bracket associated withL on functionals
of the form

F~U !5E
B

f ~U !, ~2.2!

where f (U) is a homogeneous differential polynomial ofUi and *B[*dx du is the Berezin
integral, such that iff (U)5a(u,v)1ub(u,v), then*Bf (U)5*b. The supercovariant derivativ
D satisfies the supersymmetric version of the Leibniz rule;11

DiU5 (
k50

`

~21! uUu~ i 2k!F i
kGU @k#Di 2k, ~2.3!

whereU @k#[(DkU) and the superbinomial coefficients@k
i # are defined by
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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F i
kG55 S @ i /2#

@k/2# D for 0<k< i and ~ i ,k!Þ~0,1!mod 2,

~21!@k/2#F2 i 1k21
k G , for i ,0,

0, otherwise.

~2.4!

For a given SPDOP5(piD
i , it is convenient to separateP into a direct sum of two linear space

P5P>k% P,k with P>k5( i>kpiD
i and P,k5( i ,kpiD

i . In particular, we denoteP1

5( i>0piD
i , P25( i ,0piD

i , and (P)05p0 . We also define its super-residue as sresP5p21 and
its supertrace as StrP5*B sresP. It can be shown that, for any two SPDOsP andQ, Str@P,Q#
50 for @P,Q#[PQ2(21)uPuuQuQP, and hence StrPQ5(21)uPuuQu StrQP. Given a functional
F(U)5*Bf (U), we define its gradient as

dLF5 (
k50

n21

~21!kD2k21
d f

dUk
, ~2.5!

and its variation as

dF5~21! uFu1uLu11 Str~dLdLF !, ~2.6!

where the variational derivative is defined by

d f

dUk
5(

i 50

`

~21! uUku i 1 i ~ i 11!/2S ] f

]Uk
@ i #D @ i #

. ~2.7!

The supersymmetric second GD bracket associated withL is given by6,12,13

$F,G%~L !5~21! uFu1uGu1uLu11 Str@J~dLF !dLG#, ~2.8!

where the Hamiltonian mapJ is defined by

J~X!5~LX!1L2L~XL!1 , ~2.9!

where X5(kXkD
k. It has been shown6,13 that ~2.8! indeed defines a Hamiltonian structur

namely, it is antisymmetric and satisfies the super-Jacobi identity.
If we factorizeL5(D2Fn)(D2Fn21)¯(D2F1), which defines a supersymmetric Miur

transformation between the coefficient functionsUi and the Miura fieldsF i , then the second GD
bracket~2.8! becomes

$F,G%~L !5E
B
(
i 51

n

~21! i S D
d f

dF i
D dg

dF i
, ~2.10!

which implies that the fundamental brackets of the Miura fieldsF i are given by6,12

$F i~X!,F j~Y!%5~21! id i j Dd~X2Y!, ~2.11!

where X5(x,u), Y5(y,v) and d(X2Y)[d(x2y)(u2v). This result is what we called the
supersymmetric Kupershmidt–Wilson theorem. Equation~2.11! enables us to write down th
fundamental brackets ofUk through the super-Miura transformation.

Next, let us consider the case when the constraintUn2150 is imposed in~2.1!. It can be
easily shown that such constraint for oddn is second class, which will modify the Hamiltonia
structureJ. On the other hand, for evenn, the constraint is first class and hence the induc
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Poisson brackets can not be well defined. Therefore, for the odd-order operatorL̂5D2k11

1U2k21D2k211¯1U0 , we shall consider the factorizationL̂5(D2F2k11)(D2F2k)¯(D
2F1). Then the modified Poisson bracket defined byL̂ becomes

$F,G%c5~21! uFu1uGu Str„Jc~ d̂F !d̂G…, ~2.12!

whered̂F[dL̂F5( i 50
2k21(21)iD2 i 21(d f /dUi) and

Jc~ d̂F !5J~ d̂F !1F L̂,Ex

D sres@ L̂,d̂F#G . ~2.13!

We remark that the second term is called the third GD structure, which is compatible wit
second structure. Equation~2.12! yields that the modified Poisson brackets for the Miura fieldsF i

are given by

$F i~X!,F j~Y!%c5@11~21! id i j #Dd~X2Y!, ~2.14!

which provide the free-field realizations of classicalW superalgebras associated with the odd-or
Lax operatorL̂.12,14,15Besides the usual reduction described above, there are other reduction
have been discussed in Refs. 13 and 16. Since the first Hamiltonian structure can be obtain
the second Hamiltonian structure by replacingL by L1l, wherel is called the spectral param
eter, we shall focus only on the second structure.

III. TWO NONSTANDARD SUPER-LAX HIERARCHIES

There are several superintegrable hierarchies whose Lax operators are related to the
cations or reductions of the supersymmetric Lax operator~2.1! in the literature. Here, for our
purpose, we consider the following two Lax systems:

dKi

dtk
5@~Ki

k/n!>1 ,Ki # ~ i 5A,B!, ~3.1!

with the Lax operatorsKi defined by

KA5D2n1V2n22D2n221¯1V1D, ~3.2!

KB5D2n1V2n22D2n221¯1V01D21V21 . ~3.3!

The Lax equation forKA is referred to the IK sKdV hierarchy.7 The simplest example in this cas
is just the Laberge–Mathieu super KdV~LM sKdV! hierarchy (n52), which was constructed
from aN52sKdV hierarchy.17 On the other hand, the Lax equation forKB is the generalization of
the super two-boson hierarchy~sTB! (n51),18 which we call the cmsKP hierarchy. In particula
from ~3.1! it is easy to show that the coefficient functionV21 obeys the evolution equation

dV21

dtk
52„~KB

k/n!>1* V21…, ~3.4!

which implies thatV21 is an adjoint eigenfunction associated with the Lax operatorKB .
In general, the second Poisson brackets associated with the Lax operatorsKi can be written as

$F,G%~ i !~Ki !5~21! uFu1uGu11 Str„V~ i !~diF !diG…, ~3.5!

wherediF[dKi
F, and the Hamiltonian mapsV ( i ) are defined by
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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V~A!~dAF !5~KAdAF !1KA2KA~dAFKA!11@KA ,~dAFKA!0#

1~21! uFuF Ex

D sres@dAF,KA#,KAG1~21! uFuKAD21 sres@dAF,KA#, ~3.6!

V~B!~dBF !5~KBdBF !1KB2KB~dBFKB!11@KB ,~KBdBF !0#

1~21! uFuFKB ,Ex

D sres@dBF,KB#G1~21! uFuD21 sres@dBF,KB#KB . ~3.7!

Notice that the mapV (A), in operator form, is similar to but different fromV (B). Instead of giving
V ( i ) by other methods,8–10,19 we will follow a constructive approach, analogous to that of t
supersymmetric GD structure,6 to verify the Hamiltonian mapsV ( i ) from a supersymmetric Miura
transformation point of view. To show that the mapsV ( i ) are indeed Hamiltonian, we have t
check that the Poisson brackets defined in~3.5! are antisymmetric and obey the super-Jac
identity. For antisymmetry, by direct computation, it can be easily shown that

$F,G%~ i !52~21! uFuuGu$G,F%~ i !. ~3.8!

For the super-Jacobi identity, instead of direct computation, we rewrite the Lax operatorKi as

KA5L̂AD, KB5D21L̂B , ~3.9!

whereL̂A and L̂B are superdifferential operators with order 2n21 and 2n11, respectively. Fur-
thermore, from the relation

dF5~21! uFu11 Str~dKidiF !5~21! uFu Str~dL̂ i d̂iF !, ~3.10!

whered̂i[dL̂i
, we have

d̂AF52DdAF, d̂BF5~21! uFudBFD21. ~3.11!

Substituting~3.9! and ~3.11! into ~3.6! and ~3.7!, we find

V~A!~dAF !52Jc~ d̂AF !D, V~B!~dBF !5~21! uFuD21Jc~ d̂BF !, ~3.12!

which imply that the Poisson brackets defined byKi can be transformed to those defined byL̂ i as
follows:

$F,G%~ i !~Ki !5h i$F,G%c~ L̂ i !, ~3.13!

wherehA521 andhB511. Hence, the super-Jacobi identity associated with the mapsV ( i ) is
automatically satisfied due to the fact that the reduced supersymmetric GD brackets defineL̂ i

admit Miura representations~2.14!.
Therefore the mapsV ( i ) provide the Hamiltonian formulation for the Lax equations~3.1!:

dKi

dtk
5$Hk

~ i ! ,Ki%
~ i !5V~ i !~diHk

~ i !!, ~3.14!

where the Hamiltonian functionalsHk
( i ) are given by

Hk
~ i !52

n

k
Str~Ki

k/n!. ~3.15!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Notice that the relative signs in the Hamiltonian mapsV ( i ) are crucial. It is this choice so tha
V ( i )(diHk

( i )) are differential operators of order less than 2n22, and Eq.~3.14! makes sense.
Before ending this section, two remarks are in order. First, we note that both Piosson br

defined byKi , up to a sign, are mapped to the same reduced supersymmetric GD bracket d
by L̂ i , which is different from the situation in the bosonic case, where typeA is mapped to the
differenceof the second and the third GD structures,20 whereas typeB is thesumof the second and
the third ones.20,21 Second, both Lax operatorsKA and KB can be factorized into multiplicative
forms, i.e.,

KA5~D2F2n21!~D2F2n22!¯~D2F1!D,
~3.16!

KB5D21~D2F2n11!~D2F2n!¯~D2F1!,

where the Miura fieldsF i obey the Poisson brackets,

$F j~X!,Fk~Y!%~ i !5h i@11~21! jd jk#Dd~X2Y!. ~3.17!

IV. GENERALIZED MR SKDV AND CONSTRAINED SKP HIERARCHIES

Having constructed the Hamiltonian structures of two nonstandard super-Lax hierarch
the previous section, we are now ready to discuss gauge equivalences related to these tw
standard hierarchies. Based on the fact that gauge transformations are canonical transform
we can use them to obtain new integrable Hamiltonian systems from the known ones.
following, we will show that the second Hamiltonian structures of the generalized MR sKdV
csKP hierarchies are just the ones that can be obtained in this way.

Let us perform the following gauge transformation to the Lax operatorsKi :

L̃ i5T21KiT ~ i 5A,B!, ~4.1!

where the gauge operatorT is defined byT5exp(2*x V2n22 /n), and hence the next leading ter
of Ki can be gauged away. The resulting differential operatorsL̃ i are thus given by

L̃A5D2n1U2n23D2n231¯1U0 ,
~4.2!

L̃B5D2n1U2n23D2n231¯1U01fD21c,

wheref[T21 andc[V21T. It can be proved thatT21 is an even eigenfunction associated w
the operatorL̃ i , i.e., ]T21/]tk5„(L̃ i

k/n)1T21
…0 , and the nonstandard Lax equations in~3.1! are

then transformed to the standard ones,

dL̃i

dtk
5@~ L̃ i

k/n!1 ,L̃ i #. ~4.3!

Therefore the gauge transformation~4.1! provides a connection betweenKi and L̃ i in the Lax
formulation. ForL̃A , the Lax equation~4.3! gives the generalization of the MR sKdV hierarch
(n52), which was originally constructed from the MR sKP hierarchy by reduction.11 On the
other hand, the Lax equation~4.3! for L̃B describes the csKP hierarchy that contains the sAK
hierarchy (n51)5,22 as the simplest example. It can be easily shown that the Lax equation~4.3!
for L̃B is consistent with the following equations:

]f

]tk
5„~ L̃B

k/n!1f…0 ,
]c

]tk
52„~ L̃B

k/n!1* c…0 , ~4.4!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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and thusf and c are an even eigenfunction and an odd adjoint eigenfunction of the c
hierarchy, respectively.

Moreover, since the hierarchy flows associated withKi have Hamiltonian descriptions, it i
quite natural to ask whether we can use such gauge equivalence to obtain the second Ham
structures of the generalized MR sKdV and csKP hierarchies. The answer is yes. To se
consider an infinitesimal gauge transformationKi→Ki1Q, whereQ is a homogeneous superdi
ferential operator of order, at most, 2n22. Then, in view of~4.1!, we can read off the linearized
mapT8 and its transposed mapT8† as

T8:Q→T21QT1
1

n F Ex

q2n22 ,L̃ i G , ~4.5!

T8†:P→TPT211
~21! uPu11

n Ex

sres@P,L̃ i #, ~4.6!

whereP is an arbitrary SPDO,q2n22[sres(QD22n11), and the adjoint of an operatorR is defined
by Str(PRQ)5(21)uRuuPu Str(R†PQ). UsingT8 andT8†, a straightforward but tedius calculatio
~see Appendix A! shows that

T8Q~ i !T8†~P!5~ L̃ i P!1L̃ i2L̃ i~PL̃i !11
1

n F Ex

res@P,L̃ i #,L̃ i G1 1

n F S Ex

sres@P,L̃ i # DD,L̃ i G
2

2

n2 F ExS S Ex8
sres@P,L̃ i # DU2n23D ,L̃ i G[Q~ i !~P!. ~4.7!

That means the Hamiltonian mapsQ (A) and Q (B), in terms of their own Lax operators, hav
the same form. SinceQ ( i ) are canonical equivalent to the Hamiltonian mapV ( i ), the Poisson
brackets defined byQ ( i ) are also antisymmetric and obey the super-Jacobi identity. As a re
Q (A)(Q (B)) can be defined as the Hamiltonian map of the generalized MR sKdV~csKP! hierarchy.
A further consistent check shows thatQ ( i ) map the Hamiltonian one-formsd̃i H̃k

( i ) to ~pseudo-!
superdifferential operators of order, at most, 2n23. Now we can write down the Hamiltonia
flows associated with the Lax operatorsL̃ i as

dL̃i

dtk
5$H̃k

~ i ! ,L̃ i%5Q~ i !~ d̃i H̃k
~ i !!, ~4.8!

where the Hamiltonian functionals, in view of~3.15! and ~4.1!, are defined by

H̃k
~ i !52

n

k
StrL̃ i

k/n . ~4.9!

From the Hamiltonian flows~4.8! we can read off the Poisson brackets for the coefficient fu
tions of L̃ i .

In fact, for L̃B , we can express the associated Poisson brackets forUi , f, and c more
precisely. Let us rewriteL̃B5 l 1fD21c and denoteH5*Bh as one of the Hamiltonian function
als H̃k

(B) . Then the Hamiltonian one-form can be expressed as

d̃BH5dlH1X, ~4.10!

whereX is a superdifferential operator and

dlH5 (
k50

2n23

~21!kD2k21
dh

dUk
. ~4.11!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Then, from the relation

dH52Str„~d l 1dfD2c1fD21dc!~dlH1X!…52Str~d ldlH !1E
B
S df

dh

df
1dc

dh

dc D ,

~4.12!

we have the following identifications:

dh

df
5~X* c!0 ,

dh

dc
5~Xf!0 . ~4.13!

Inserting~4.10! with X satisfying~4.13! into the Hamiltonian mapQ (B) gives

dl

dt
5~ ldlH !1l 2 l ~dlHl !11„~ ldlH !1fD21c…12~fD21c~dlHl !1!11S l

dh

dc
D21c D

1

2S fD21
dh

df
l D

1

1
1

n F Ex

res@ d̃BH,L̃B#,l G2 2

n
fcEx

sres@ d̃BH,L̃B#

1
1

n F Ex

sres@ d̃BH,L̃B#,l G1 2

n2 F ExS U2n23Ex8
sres@ d̃BH,L̃B# D ,l G ,

df

dt
5„~ ldlH !1f…01S l

dh

dc D
0

1fF ExS Dc
dh

dc D2ExS Df
dh

df D G1
1

n
fEx

res@ d̃BH,L̃B#

2
1

n
~Df!Ex

sres@ d̃BH,L̃B#1
2

n2 fExS U2n23Ex8
sres@ d̃BH,L̃B# D ,

dc

dt
52„~ l * ~dlH !* …1c!02S l *

dh

df D
0

1cF ExS Df
dh

df D2ExS Dc
dh

dc D G2
1

n
cEx

res@ d̃BH,L̃B#

1
1

n S DcEx

sres@ d̃BH,L̃B# D2
2

n2 cExS U2n23Ex8
sres@ d̃BH,L̃B# D , ~4.14!

where

res@ d̃BH,L̃B#5res@dlH,l #1~Dc!
dh

dc
2fS D

dh

df D2sres~dlHfc!2f„D~dlH !* c…,

sres@ d̃BH,L̃B#5sres@dlH,l #2c
dh

dc
1f

dh

df
. ~4.15!

Equation~4.14! can be regarded as the supersymmetric generalization of the second Hamil
structures of constrained KP hierarchy derived by Oevel and Strampp.23

V. EXAMPLES

In this section we work out a number of examples to illustrate the previous results expl
We write down the Poisson brackets for these systems according to the formulas given abo
compare them with the known results.
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A. Laberge–Mathieu super-KdV hierarchy

For KA5]21v2]1v1D, the first equations in~3.1! are given by

d

dt0
S v1

v2
D5S v1x

v2x
D ,

~5.1!
d

dt1
S v1

v2
D5

1

4 S ~v1xx13v1~Dv1!2 3
2 v1v2

223v1v2x!x

„v2xx2
1
2 v2

313v1~Dv2!…x
D ,

which represents the first equations of the LM sKdV hierarchy. The Hamiltonian formulatio
these equations is given by~3.14!, where the second Poisson structure can be obtained by su
tuting dAHk

(A)52D22(dhk
(A)/dv1)1D23(dhk

(A)/dv2) into ~3.6!. We find

d

dtk
S v1

v2
D5S 22v1]2v1x 2]22v2]1v1D2~Dv1!

]22v2]1v1D2v2x 22D31~Dv2!22v1
D S dhk

~A!

dv1

dhk
~A!

dv2

D , ~5.2!

where the first Hamiltonian functionals are given by

H0
~A!522 StrKA

1/252E
B
v1 ,

~5.3!

H1
~A!52

2

3
StrKA

3/252
3

8 EB
F1

2
v1v2

21v1v2x2v1~Dv1!G .
To compare with the known result, we consider the change of variables as follows:

~v1 ,v2!→„2~Du!2t,22u…, ~5.4!

then the Poisson structure in~5.2! becomes

1

2 S 2D]1t 2u]2~Du!D12ux

2u]2~Du!D1ux 2D]213t]1~Dt!D12tx
D , ~5.5!

which is just the form presented in Ref. 24.

B. Super-two-boson hierarchy

For KB5]1v01D21v21 the first Lax equations in~3.1! are given by

d

dt1
S v0

v21
D5S v0x

v21x
D ,

~5.6!
d

dt2
S v0

v21
D 5S v0xx12~Dv21!x1~v0

2!x

2v21xx12~v0v21!x
D ,

which represents the first equations of the sTB hierarchy. The Hamiltonian description for
equations are given by~3.14!, where the second Poisson structure can be obtained by substi
dBHk

(B)5D21(dhk
(B)/dv0)1(dhk

(B)/dv21) into ~3.7!. It turns out that
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Thu, 01 May 2014 08:40:26



n of

3030 J. Math. Phys., Vol. 40, No. 6, June 1999 M.-H. Tu and J.-C. Shaw

 This article is copyrig
d

dtk
S v0

v21
D5S 2D31~Dv0!12v21 ]21v0]1v21D1v0x

2]21v0]1v21D2~Dv21! 2v21]1v21x
D S dhk

~B!

dv0

dhk
~B!

dv21

D , ~5.7!

where the first Hamiltonian functionals are given by

H1
~B!52StrKB52E

B
v21 ,

H2
~B!52

1

2
StrKB

25E
B
v0v21 . ~5.8!

Equation~5.7! provides the second Hamiltonian formulation of the sTB hierarchy.
If we make the following identification:

~v0 ,v21!→„2~DJ0!,J1…, ~5.9!

then the second Poisson structure in~5.7! becomes

S 2D12D21J1D212D21J0xD
21 2D31D~DJ0!2D21J1D

D31~DJ0!D1DJ1D21 J1D21D2J1
D , ~5.10!

which is the form of the second Poisson structure discussed in Ref. 18.

C. Manin–Radul super-KdV hierarchy

For L̃A5]22wD1a, the first Lax equations in~4.3! are given by

d

dt0
S a
w D5S ax

wx
D ,

~5.11!
d

dt1
S a

w
D 5

1

4 S wxxx23„w~Dw!…x16~aw!x

axxx23„w~Da!…x13~a2!x
D ,

which represents the first equations of the MP sKdV hierarchy. The Hamiltonian formulatio
these equations are given by~4.8!, in which the first Hamiltonian functionals are given by

H̃0
~A!522 StrL̃A

1/25E
B
w,

~5.12!

H̃1
~A!52

2

3
StrL̃A

3/252
1

4 EB
@w~Dw!22wa#,

and the second Poisson structure can be obtained by substitutingd̃AH̃k
(A)5D21(dh̃k

(A)/da)
1D22(dh̃k

(A)/dw) into ~4.7!. It turns out that

d

dtk
S a
w D5S Paa Paw

Pwa Pww
D S dh̃k

~A!

da

dh̃k
~A!

dw

D , ~5.13!
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where the second Poisson matrix is given by

Paa5 1
2@D]323w]214aD]1„2~Da!23wx…]12axD13w~Dw!1~D3a!24aw2wxx

1wD21~Da!2~Da!D21w2wD21wD21w2wD21wx1wxD
21w#,

Paw5 1
2@]322wD]14a]2wxD12ax1wD21~Dw!#,

~5.14!
Pwa5 1

2@]312wD]1„4a22~Dw!…]1wxD12ax2~D3w!1~Dw!D21w#,

Pww5 1
2@4w]12wx#.

Equation~5.13! provides the second Hamiltonian formulation of the MR sKdV hierarchy repo
in Ref. 4.

Starting from the Lax operatorKA5]21v2]1v1D associated with the LM sKdV hierarchy
one can perform the gauge transformationT5exp(2*x v2/2)7 on the Lax operatorKA as follows:

KA→L̃A5e*xv2/2KAe2*xv2/25]21v1D2S v2
2

4
1

v2x

2
1

v1~D21v2!

2 D . ~5.15!

Then the Lax operatorL̃A5]22fD1a associated with the MR sKdV hierarchy is related to t
Lax operatorKA as

f52v1 , a52S v2
2

4
1

v2x

2
1

v1~D21v2!

2 D , ~5.16!

which provides the gauge equivalence between the LM sKdV hierarchy~5.1! and the MR sKdV
hierarchy~5.11!. Moreover, it has been shown24 that the second Hamiltonian structure~5.5! of the
LM sKdV hierarchy can be transformed to the second Hamiltonian structure~5.14! of the MR
sKdV hierarchy via this gauge transformation.

D. Super-AKNS hierarchy

For L̃B5]1fD21c, the first equations in~4.3! are given by

d

dt1
S f
c D5S fx

cx
D ,

d

dt2
S f
c D5S fxx12f~Dfc!

2cxx22c~Dfc! D , ~5.17!

which are the first equations in the sAKNS hierarchy. Hamiltonian formulations for these e
tions are given by~4.14!, where the first Hamiltonian functions are given by

H̃1
~B!52StrL̃B5E

B
fc,

~5.18!

H̃2
~B!52

1

2
StrL̃B

25E
B
fxc.

From ~4.14!, the Hamiltonian flow can be expressed as
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d

dtk
S f
c D5S Pff Pfc

Pcf Pcc
D S dh̃k

~B!

df

dh̃k
~B!

dc

D , ~5.19!

where the Poisson brackets are given by

Pff52fD21f2fD22fD2~Df!D22f22fD22fcD22f,

Pfc5D21fD21c1fD22~Dc!1~Df!D22c12fD22fcD22c,
~5.20!

Pcf5D21cD22fD1~Dc!D22f12cD22fcD22f,

Pcc52~Dc!D22c2cD22~Dc!22cD22fcD22c,

which is just the second Poisson structure obtained in Ref. 5. Equation~5.19! provides the second
Hamiltonian formulation of the sAKNS hierarchy.

Starting from the Lax operatorKB5]1v01D21v21 associated with the sTB hierarchy, on
can perform the gauge transformationT5exp(2*x v0)

22,25 to the Lax operatorKB as follows:

KB→L̃B5e*xv0KBe2*xv05]1e*xv0D21e2*xv0. ~5.21!

Then the Lax operatorL̃B5]1fD21c associated with the sAKNS hierarchy is related to the L
operatorKB as

f5e*xv0, a5v21e2*xv0, ~5.22!

which provides the gauge equivalence between the sTB hierarchy~5.6! and the sAKNS hierarchy
~5.17!. Moreover, it can be proved25 that the second Hamiltonian structure~5.10! of the sTB
hierarchy can be transformed to the second Hamiltonian structure~5.20! of the sAKNS hierarchy
via this gauge transformation.

VI. CONCLUDING REMARKS

In this paper, we investigate the Hamiltonian structures associated with several supersy
ric extensions of the KdV hierarchy. Starting with the reduced super-GD bracket, the Hamilt
structures of two nonstandard super-KdV hierarchies can be constructed via supersym
Miura transformations. We then perform a gauge transformation on these two nonstanda
hierarchies to obtain the Hamiltonian structures of the generalized MR sKdV hierarchy and
strained sKP hierarchy in a unified fashion. To compare the obtained Hamiltonian structure
the known results, we work out a few examples, including the LM sKdV, sTB, MR sKdV,
sAKNS hierarchies.

Our approach on the gauge transformation relies on the algebra of superpseudodiffe
operators, which provides an effective method to achieve the goal. In fact, the gauge trans
tion ~4.1! that mapsV ( i ) to Q ( i ) is by no means unique. There is another gauge transforma
triggered byS5D21T25,26 that also bringsV ( i ) to Q ( i ). Since the parity ofS is odd, the gauge
equivalence of the Hamiltonian maps given by~4.7! should be replaced byS8V ( i )S8†52Q ( i ),
where the minus sign will be compensated by that induced from the transformation of the H
tonians such that the hierarchy flows~3.14! are transformed to~4.8!.

Finally, we would like to comment briefly on the algebraic structures associated with
Poisson brackets defined by the Hamiltonian mapsV ( i ) andQ ( i ). As we shows in Eq.~3.13!, the
Poisson brackets defined byV ( i ) are encoded by the Poisson bracket defined byJc . However, it
has been shown12,15that in the space of the supersymmetric Lax operator of odd order, the red
supersymmetric GD bracket~2.12! defines an infinite series of classicalN52W superalgebras
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which containN52 super-Virasoro algebra as a subalgebra. Therefore, through the Miura
formation, the differential polynomials of the coefficient functionsVi of Ki can be identified as the
N52 supermultiplets, and Eq.~3.17! provides the free-field realizations of the correspondingW
superalgebras. On the other hand, for the MR sKdV and csKP hierarchies, the Poisson a
defined byQ ( i ) are not quite clear so far, even for the simplest cases. It seems not so obvi
construct the super-Virasoro generator by covariantizing the supersymmetric Lax operatorL̃ i due
to the fact thatU2n215U2n2250. Therefore, to explore the algebraic structures associated
Q ( i ), the decompositions of coefficient functionsUi into primary fields remain to be worked ou
Work in this direction is still in progress.
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APPENDIX: PROOF FOR „4.7…

To prove~4.7!, let P be an arbitrary superpseudodifferential operator; then

T8V~A!T8†P5T8Q, ~A1!

where

Q[V~A!T8†P5~KAT8†P!1KA2KA~T8†PKA!11@KA ,~T8†PKA!0#

1~21! uPuF Ex

D sres@T8†P,KA#,KAG
1~21! uPuKAD21 sres@T8†P,KA#. ~A2!

Using ~4.6!, each term inQ can be calculated as follows:

~1!5~TLPT21!1KA1
~21! uPu11

n
DS Ex

sres@P,L# DKA ,

~2!52KA~TPLT21!11
~21! uPu

n
KAS DEx

sres@P,L# D2
1

n S Ex

sres@P,L# DD,

~3!5@KA ,~TPLT21!0#1
~21! uPu11

n FKA ,S DEx

sres@P,L# D G ,
~4!5~5!50,

which imply that

Q5~TLPT21!1KA2KA~TPLT21!11@KA ,~TPLT21!0#1
1

n F S Ex

sres@P,L# DD,KAG
~A3!

and
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1

n E
x

q2n225
1

n E
x

sres~QD22n11!

5~TPLT21!01
1

n E
x

res~T@P,L#T21!

1
1

n E
xF S Ex8

sres@P,L# D ~DV2n22!

n G2
2

n2 ExF S Ex8
sres@P,L# DV2n23G .

~A4!

Substituting~A3! and ~A4! into ~4.5!, we obtain the desired result~4.7!.
Since the proof forKB is parallel to the above one, we hence omit it here.
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