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For a pure gravity theory without matter, the scale symmetric phase represents an
equivalent class of gravity theories, to which the Einstein gravity plus a cosmological
constant belongs under a special gauge choice. The one-loop quantum correction of
this scale-invariant theory is calculated by using Vilkovisky-Dewitt TS method. It is
shown that the resulting effective potential is gauge-independent as expected. Some
discussions of the Vilkovisky-DeWitt method through this calculation are given.

PACS. 04.50.4+h — Gravity in more than four dimensions, Kaluza-Klein theory, unified
field theories; alternative theories of gravity.
PACS. 04.62.4+v - Quantum field theory in curved spacetime.

I. Introduction

As the effective potential is taken from the zeroth order of the momentum expansion
of the effective action, the effective potential is off-shell except at the vacuum, where the
field configuration satisfies the equation of motion. For this reason, it is not unexpected
that there exist some ambiguities when the conventional Coleman-Weinberg formalism [1]
is applied to field theories [2].

The first ambiguity is that the conventional effective action is not invariant under
field reparameterizations. For two classically equivalent theories with different field param-
eterizations, their effective potentials given by conventional methods are not only different
in form from the other but also cannot be transformed to each other by a field reparame-
terization.

Second, for gauge theories or theories with continuous internal symmetries, their
conventional effective potentials are gauge-variant and gauge-dependent. In some cases,
the gauge invariance of the effective action can be achieved technically by splitting each
field into a quantum- and a background-part, and making an arrangement so that the
gauge of the quantum-field-part is fixed by a gauge-invariant fixing term, while the effective
action which is a function of background-field-part is gauge-invariant [3]. But it is not
guaranteed that the same effective action can be obtained if one initially chooses another
gauge condition or another field parameterization for quantum fields. Even if a gauge
invariant effective potential is worked out, usually there still remains a dependence on
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the coupling factor of the gauge fixing term. This factor gives rise to another ambiguity,
especially in direct applications of the effective potential in practical situations. Fortunately,
the whole problem was resolved by Vilkovisky (4] and DeWitt [5].

Recalling Einstein T'S idea in formulating the theory of general relativity: the coor-
dinate repararmeterization dependence can be eliminated by simply choosing all variables
and derivatives to be covariant, Vilkovisky and DeWitt pointed out that the space of the
field configurations may not be trivially flat. Thus, in order to obtain an effective action
independent of the field reparameterization, one should properly construct covariant vari-
ables and derivatives in the configuration space. Furthermore, it is possible to define a
gauge-invariant metric in the configuration space, so that a gauge independent effective
potential can be uniquely derived without any ambiguity.

Many Vilkovisky-Dewitt (VD) effecive potentials for varieties of gauge theories have
been worked out [2, 6]. Besides, VD method can be applied as well to systems with con-
tinuous internal symmetries such as the reparameterization symmetry in general relativity
[4,7] and the scale symmetry. In this paper, we will use the VD method to calculate the
one-loop correction of a gravity theory with scale symmetry.

Il. Scale-invariant Gravity

The simplest gravity model with scale symmetry is [8]
4 1 -, 1, s.07 . Ay
5= [d'ay=g |- R+ 30,400+ 5, (1)

where ¢ is a scalar field, and X is a coupling constant. The action § is invariant under the
local scale transformations

9ur(2) = g,.,(2) = Q*(2)g,.(2), (2)

$(z) — ¢'(z) = Q7' (2)¢(z). (3)

(One would see below that ¢ is in fact an auxiliary field in the spectrum. This is a man-
ifestation of the scale symmetry.) To fix the degree of freedom corresponding to the scale
symmetry, one can put a constraint, the Einstein gauge,

¢ = (4)
with v being a non-zero constant, or equivalently,
0% (z) = v 2¢?%, (5)

so that the action S becomes

1
SEG:/d4CB\/_g [—E;C—;R-Jr 2A4 (6)
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where the gravitational constant G = 3/(47v?) and the cosmological constant A = Av*/48.
We thus see that the scalar-tensor gravity (1) is no more than a generalized form of the
Einstein gravity Sg¢.In general, S represents a set of pure gravity theories with arbitrary
space-time varying gravitational and cosmological ¥Constants¥ interconnected by the local
scale transformation.

As such, we will adopt the VD method to handle the scale symmetry. Instead of
displaying the full VD calculation of the one-loop effective potential, we begin with the
conventional Coleman-Weinberg formalism and modify it to the VD calculations when
necessary. A brief account of the VD method and a detailed calculation of the effective”’
potential are given in Appendix A.

IlIl. One-loop effective potential

Expanding the gravitational field and the scalar field about the ground-state back-
ground, one has

Guv = My + h/w’ (7)

p=¢+o, (8)

where 7, is a flat metric, ¢ is a constant field, and the quantum field k,, is graviton.
To evaluate the one-loop effective potential, it suffices to expand the action (1) up to the
second order in the quantum fields, namely,

¢’ 1 1, _ .
Y] W why = 5 hoh# =2 hyp P + 3 PRy p — 4097 (R * — B*Y )| (9)
1 1 " 1
+%G,”U"‘ + %th + EVlhO' + EV o? - ZVhWh’“”

where h=h,, and VI =§V/§¢. One may write the quadratic part of the Lagrangian in
the following form,

1
‘Cq :Ez/japab'l/)b, (10)

where a, b=0, ---, 10 and ¢, represent the quantum fields ¢ and ten independent compo-
nents of h,,, respectively.

Suppose a transformation

Puv = hp + 2077#,,¢"1 (11)

is performed, the quadratic Lagrangian becomes
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2 1 v v 1 v
£2 = —Z; (§p82p + puua aﬁp#ﬁ - palial/p” - _ipﬂyazp# >
+K <1p2 - Puupw> + UAp + U-BU’
4 \2
v v (12)
A = ? - E’
Vu 7 4V
Beg-Z 1%

Here the kinetic term of ¢ field vanishes, in other words, ¢ is an auxiliary field. This gives
a hint that there are some symmetries in this Lagrangian. Indeed, they originate from the
scale transformations (2) and (3). When the Einstein gauge (5) is chosen, the gravitational
field becomes

9= v P G- (13)

Substituting the background field expansions (7) and (8) into the above transformation,
one would obtain the infinitesimal version of the scale transformation,

Puv = hypy = By + 207,071 + o(¥*), (14)

if y=¢. This is exactly the transformation (11).
One can go further by letting

'’ A _(1 4A> +ih 15
a_a+2Bp— +B g 2BV (15)

so that the Jacobian with respect to the field reparametrization (h,,,o) — (p,“,, al) equals
unity. Then the last two terms in Eqg. (12) turn into

2
cAp+aBo = p(A—)p+U'BU’, (16)

4B
where ¢’ is now decoupled. The field equation ¢’ = 0 corresponds to the Einstein gauge
(4). We thus conclude that the only difference between the Einstein gravity and the Weyl
gravity (1) is that the latter has the gravitational wave with a mass term proportional to
p? as shown in the right-hand side of Eq. (16). Nevertheless, this difference dissappears by

choosing a traceless gauge p = 0.

In fact, after the Lagrangian (10) being diagonized, there are other vanishing kinetic
terms, which correspond to four degrees of freedom of the reparameterization symmetry.
This property is not surprising in systems with internal symmetries. Consider a symmetry
transformation operator U operating on a quantum field by Tﬁa—>¢,',=Uab1/)b- Assume the
quadratic Lagrangian is invariant under such a symmetry transformation, then P =UTPU
where UT denotes the transverse of U. This would imply that det P =0 if det U # 1. In
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our model (9), the determinants of the operators corresponding to the scale transformation
and reparameterization are indeed not equal to unity. As such, the corresponding operator
Peb (v =0) is not invertible, and hence its propagator cannot be defined. Similar situations
occur in the theory of electromagnetism, where one can interpret P as a projection operator
[9].

It is therefore preferable to set the gauge condition in a form of a first derivative with
respect to the corresponding quantum field in this case. For example, in electromagnetism,
one may choose the Lorentz gauge 9, A* =0, whose corresponding gauge fixing term reads

Loy o

with an arbitrary factor . Once this term is added into the Lagrangian of electromag-
netism, the propagator of photon is then well-defined up to the factor cr.
In the present case, the reparameterization symmetry can be fixed by choosing

1

huuay _§h’7u = 01 (18)

while the gauge condition for the scale symmetry (4) is equivalent to
9,0 = 0. (19)

Hence, the gauge fixing term then reads

$? 1 ) 1
ﬁgf = 2_a h”p,,‘ —Eh'p) h p,,, ke —h + -—ﬂU (20)

where a and 3 are arbitrary factors.

In the one-loop level, only quadratic terms are needed in path-integral calculation.
Since the corresponding ghost Lagrangian,

['ghost = 7_)(—32)77“7 (21)

is totally decoupled from the system in this level, the ghost field can be neglected here. So
the relevant quadratic part of the Lagrangian considered in this approximation is

1 , 1 1. o9 1. 8,0,,,
Ly = Zh#,,alh“ - Zhazh + -2—h”,,a3 azph"” - Eh 57 ML o
1 390 ,a, 1 .90 3 v
_EhuUQSWhpv 4+ = O'ﬁla + 062h+ O',B hﬂ

where
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_ B e
ME T T g
_ (11N, AP
0‘2__(12+2a>k¢ 48
11
'a3:a4:(ﬁ+&>k2¢2,
as =0, (23)
_ 1\, A¢?
ﬂl-(l‘i'ﬁ)k + 2>
k2¢ >\¢3
=gt
kl
,63:_'3_¢7

with a replacement —8? — k2. Let us write £, in the form of Eq. (10), the eigenvalues of
Pe® are found to be

Al=Xy = A3 = —kif - 52%4-,

A=Ay = X6 = @— z—f,

\oe sz_k;f_%’ (24)
AoreA1o = ¢* [4;6;3 + A <961aﬁ - 481a - 11;2ﬂ> ¢

1 1 1 5
A?)2 < _ _ ) 2 A2 3] .
+(A ) 3456  64a 23040 + 13824( ¢ )
Indeed, if 1/ and 1/83 are set to be zero such that Ly; vanishes, there would be five
elements of the eigenvector which have no kinetic terms: they are A4, As, Ag and two of
the three eigenvalues A, Mg and Aio.
In terms of A’s, the unrenormalized one-loop effective potential can be written as

. 10
1
Vle—§ZTrln)\a. (25)

a=0

Obviously, the conventional effective potential obtained by substituting the eigenvalues (24)
into Eq. (25) depends on arbitrary factors @ and 8. To eliminate this ambiguity, one should
introduce the Vilkovisky-DeWitt effective potential.

From Appendix A, the Vilkovisky-DeWitt method changes the eigenvalues into
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Ae=As = g = k:‘fz, 20
Aodehio = % (kz + ng) ,

by combining the original quadratic Lagrangian (22) with the correction (A47). The one-
loop VD effective potential then reads
Apt 51 1 1 ( 15
VD _ T 4 240 )+ =Trin{ k* + =X¢*) + constant, 27
Vi 2 +2Tr1n<k +2¢)+2 6 (27)
which does not depend on the gauge-fixing factors.

I1V. Discussion

Note that £, + £' (Eq. (9) and Eq. (A47)) is invariant under the infinitesimal trans-
formations (419) and (A20) as expected. This invariance guarantees that the one-loop
VD effective potential is independent of gauge-choices, because different gauge-conditions
of L4y can be related to each other by a gauge-transformation while L.+ L' is unchanged
after the transformation.

Also, gauge-invariance of the one-loop expansion implies that the determinant of
6% [ d*z(Ly+ L')/6%46v s vanishes, hence the gauge parameter in gauge fixing Lagrangian
L4; which is not gauge-invariant can be factored out in the determinant of &2 [d*zL,/6vs
§+p. This can be easily seen by noting that the only a-independent term of det(aA + B)
is det B. In language of perturbation theory, this means that the vertices representing
the interaction between the unphysical and physical fields are removed, that is to say, the
unphysical fields are decoupled from the system.

The effect of VD method on the eigenvalues A4, A5 and Ag is to remove the vertex
term —\¢?/24 (see Egs. (24) and (26)), so that the loops of 4,15 and v are decoupled
from the system. The same decoupling can also be achieved by naively choosing the Landau
gauge: a =0 = 0. It is, however, not the case in calculating AgAgAip. The complicated
mixing between these quantum fields makes the VD residual non-zero vertex term different
from that obtained from the Landau gauge. Thus in general, the equality between the naive
and the VD effective potentials occurs only in some special cases by accident.

Recall that when a constrained or gauge system is quantized in the path integral
formalism, the constraints or gauge conditions ¢(F'[¢]) are loosed into a distribution e=F'l%e
where « can be understood as the width of this distribution. In other words, all of the off-
shell field configurations, which are weighted by this distribution, are taken into account,
and the constraint F[¢] =0 is true only when the system is on-shell. Therefore, to choose
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the Landau gauge, a@— 0. is equivalent to narrowing the distribution to a delta-like
function. However, if the configuration space is curved, the direction that ¢ — 0 may not
be orthogonal to the on-shell surface F[¢]= 0 everywhere because a is not a covariant
guantity in M. Hence taking the Landau gauge naively without considering the curvature
effect may give the wrong result.

For example, if we choose the Landau gauge in the conventional effective potential
obtained from Eq. (24), the resulting effective potential would be identical to the conven-
tional effective potential obtained from Einstein gravity (6) with a — 0. It should .be
emphasized that the Einstein gravity is the consequence of choosing the gauge, ¢ =0, in
the scale invariant gravity (12) before quantization. However, neither of them is equal to the
VD effective potential (27). Although the Einstein gravity and the scale invariant gravity
are classically equivalent, the off-shell structure as well as the quantum theory of them are
quite different.

Our final remark is that the field o, which has no kinetic term, can be identified as
an auxiliary field in the classical theory. One may substitute the equation of motion with
respect to o in the Lagrangian to eliminate the auxiliary field and get a new pure graviton
theory. If we include only the graviton gauge-fixing a-term to compute the one-loop VD
effective potential for this new theory, the results would depend on «. This is because we
have ignored the scale symmetry hidden in the new theory. Therefore, if one finds that the
obtained VD effective potential still depends on some arbitrary factor which corresponds to
the known symmetry of a system, then the system would have to carry some extra hidden
symmetry. In this case, one may apply the method developed by Dirac [10] to find all the
constraints and then run the quantization process again.
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Appendix A: Vilkovisky-Dewitt method

In this appendix, would briefly introduce the Vilkovisky-Dewitt method [2,4-7] and
calculate the one-loop VD effective potential for the scale invariant gravity (1).

Let the naive metric of the space of the configuration of the quantum fields M be
Gij, where i and 7 are indices which runs over all the quantum fields at every point of the
whole space-time. G;; does not have to be gauge invariant.

In the calculation of the one-loop effective potential, one needs to know the second
derivative (variation) of the action S[¢] with respect to the quantum fields. Since S is a
scalar in M, S,,-=;—65/6¢5" is a vector in M. If G;; describes a non-trivial curved space, one
should take the covariant derivative of S ;,
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6
D,’S’j = 5 - I\’F-Sk, (Al)

'@, )

instead of §25/6¢'é¢’ because the corresponding effective potential should not depend on
the choice of special background field configurations. Here the connection I‘fj can be written
as

1 |
= 16H(Gu, + Gy - i), | -

which is the Christoffel symbal.

In gauge theories, it is possible to define a gauge independent metric from the naive
one. Suppose that a general infinitesimal transformation of the fields is a pure gauge
transformation, then

5¢i = QLGQ, (A3)

where Q' is the generator of the gauge symmetry, and €* is a parameter. In general, ¢
should include the gauge transformation part and the physical transformation part. The
line element of the general transformation §¢*in M can be written as

682 = G,Jéd)zédfi (A4)

Define the projection operator as

Ii= 6 — QLN*?Q5Gy;, (A5)
satisfying

Q7 =0, (A6)

LI =10}, (A7)

to project out the gauge transformation part of a genera infinitesimal transformation of
the field. Here N°# is the inverse of

Nos= G;QLQ3%. (A8)
The component of ¢ in the physical space can then be defined by
§.¢'= Misy, (A9)

and the line element of the physical transformation reads

18" = GybLd'6,. ¢ = 7,;6¢'8¢, (A10)

where
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vij = Gull} (A11)

is taken to be the gauge independent metric which measures the physical transformation
part of a general transformation. Using <;;, the connection in the usual definition can be
constructed in terms of G;j and @ as

r =T%, + T, (A12)
where

Th = —2Q4,:B5) + QuB{B)Q (A13)
with

Bf = N**Q3G,;, (A14)

@k = 70k +THL. (A15)

Here the convention of symmetrization,
!
A(,-Bj) = —2-(A,B] + AjB,‘), (A16)
is understood. Now the covariant derivative of S; with the connection T™¥ is gauge
invariant so that the effective potential VIVD constructed from it is gauge independent.

NOW we turn to our case of the scale invariant gravity (1). Following Vilkovisky TS
prescription [4], we take the naive metric,

Goydy) = V=9¢72*6(z — y), (A17)

1 -27 vo v v, po
Gou(@)gels) =5V =99 294 (g"P 9" + g*7g"" - g* " )é(z —y), (A18)

and the infinitesimal transformations,

6<Z>:—e°8a<£—wq3£Qfae°+wa, (A19)
69u = —Gau0r € — 9o, 0u€” — €040, + 2wg,, = Juvex 4 Qirrw, (A20)

where €¢* and w are parameters corresponding to the reparameterization and scale transfor-
mations respectively. Then the generators of these transformations are

QD)) = ~0.98(z — 2), (A21)

QfZZg) = -gaﬂavé(z - z)- gm,a#(S(z -z)-— g(z— w)aogpu(’z)’ (A22)
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Q%) = ~(2)6(z - 2), (A23)

Q¥ =2g,(2)6(z — 2). (A24)

Here the derivative 9, always acts on the first argument of the ¢ function. Note that the
background value of v/det G has a ¢° factor, which will cancel the same factor from the
product of eigenvalues X TS in path integral.

A straightforward calculation gives the quantities (A8) evaluated at the ground-state
backgrourld values (7) and (8),

Nea()er (1) log = —26°7050°8(z — 9), (A25)
No@owlyy = —15¢°6(z = ), (A26)
Nsa(x)u(y)lbg = —Nu(y)ea(z).lbg = —4¢23a5($ -9), (A27)

whose inverses read

a 98
c@Pw) gz _Lasl , 40°0 -
N ], = ¢ ( 57 5 4+ — 3 5 é(z —v), (A28)
e o 1 oo
= —g5h70(z —y), (A29)
3 « - 80
NCEW) = - N, = —~¢ —5(96 - 9), (A30)

Hence, the background values of the quantities defined in Eq. (A14) are

By by = "'22—3‘75_1;5(“ -2, (A31)
B3y = *1§¢_15(u - 2), (A32)
By ihhy = (‘77 > %V?) + % %; + 283 a;?;?) §(u - z), (A33)
etlig = o (6:}?V - 77“") 6(u ~2). (A34)

It follows that T, in Eq. (A13) are given by

&() - 4 ~15(z

(2)8(y) b9 ~273 - 2)8(y - 2), (A35)
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47

po 9po(2) _ _xy _
g (Z)Td‘,(x)é(y)lbg - 23¢ 6(1; y)7 (A36)
5 159#9v 3
0 _(189*r 3 L\ ~
b (2)80) b0 = <46 3 16" )5(“’ 2)8(y - 2), (A37)
()T Dy = ~4—8-¢‘177"”5(z ~ ) (A38)
g guu(z)d(y) b9 23 )
a(2) _ 32 0°9Po* ¥ 46(#77V)(aaﬁ)
9aﬁ(z)9»u(y)lbg =¢ T 93 9292 + 52
15 8°0° orov
3\ o A39
23 (T’ g T g > (A439)
~ Loty (e - 2)8(y - 2)
23 ?
o po(2) _ 16 a"aﬁa“a” a(l"r]l/)(aaﬂ)
g9” (Z)T:aa(f)guu(y)lbg - |:% 5252 -2 52
15 aco8 o8 oY
—_— 124 af
T3 (" 7 T H ) (A40)

—%n""n“”} 6(z — 2)8(y - 2).

On the other hand, the connection of the naive metric (417) and (A18) are

rﬁﬁ;;&(y) = $~18(z ~ 2)8(y — 2), (A41)
Fj“(i)(xwy) - %guué(z - 2)8(y - 2), (A42)
Lo (e)gastv) = —B(97 9% + 9% g™ — g g**)6(z — 2)b(y — 2), (A43)
g (TEC) = §25(g — ), (A44)
g (TP, = 20707 6(e — ), (A45)
g ()T oy =0 (A46)

Combining these with Ti’;-, the gauge independent connection (412) and hence the covariant
derivative (A1) can be worked out. This is equivalent to adding the correction terms,
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oo () (-50) ()

1 5. 4\ 040"0°0° 1 2\ 9%05, s A
z -= —_— Z - 47
+2h’pu < 46 A¢ ) 6282 haﬁ + zhpa < A¢ ) 82 h ( )

o+ 0 1 233 1
- 4 - it 4 - 4 pv
+h (368>‘¢ ) —hu + 2h< 2208)‘(75 > h+ hy, (6)\¢ ) R,
to the original quadratic Lagrangian (22).
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