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Abstract. The foundation of the direct perturbation theory for solitons is a complete set of the
squared Jost functions. With a suitable definition of the adjoint functions and inner products which
yields orthogonal relations, the expansion of the unity is obtained and the completeness is shown by
a generalized Marchenko equation. The direct perturbation method for dark solitons is generalized
to the multi-soliton case.

1. Introduction

Since optical dark solitons have been theoretically predicted and experimentally realized, it has
become important to study how these dark solitons are affected by various perturbations [1–3].
The basic difficulty one will encounter during the development of a perturbation method for
dark solitons is that the background of dark solitons, i.e. the nonvanishing boundary values,
are well known to be dependent on time when perturbations are added in. This property
has led to essential difficulties when generalizing the usual perturbation method based on the
inverse scattering transform for bright solitons [4–7] to the case of dark solitons. Despite these
difficulties, various perturbation methods for dark solitons have been proposed [3, 8–14]. These
methods cannot completely overcome those difficulties caused by the background wave and
thus cannot be regarded as rigorous methods. However, it should be mentioned that in a method
using conservation laws (see [11] and later [12]), the varying background was considered with
a trick treating the so-called vanishing perturbations and nonvanishing perturbations separately
by assuming that the former do not affect the background. While for the latter ones, they tried
to remove the varying background and determined its evolution with an individual equation.
It has been shown that the attempt to remove the background is not only unnecessary but also
inadequate because of the interrelation (see equation (2) below) among the background and
the parameters of the dark solitons [16].

Recently, a rigorous direct perturbation theory for the one-soliton case was developed [16],
based upon a complete set of the squared Jost solutions. Both of the vanishing perturbations
and nonvanishing perturbations can be treated on the same foundation. In applications of the
rigorous theory [16] to specific problems of temporal dark solitons [17–19] and spatial dark
solitons [20], it turns out that the method using conservation laws [11, 12] can still give some
correct final results except for the shift of the soliton centre, in spite of its difficulties in self-
consistency [13]. It has been pointed out that the method using conservation laws can only
yield limited information of perturbations (see, e.g., [2]).
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Further development of the direct perturbation theory is natural to generalize it to the
multi-soliton case. The key is to establish a complete set of the squared Jost solutions. For
bright soliton case the completeness was proved using the assumption of compact support [15],
which is no longer valid for dark solitons. That is why in [16] the proof for the completeness
had to use explicit expressions of the squared Jost solutions for the one-soliton case. In the
present work a generalized Marchenko equation similar to that for the Korteweg–de Vries
(KdV) equation [21–23] is derived for the nonlinear Schrödinger (NLS) equation of dark
solitons (NLS+ for short), and the completeness of the squared Jost solutions is proved with it.
A general mathematical formalism of the direct perturbation method for dark solitons is then
developed.

2. The perturbed equation

The perturbed NLS+ equation can be written as [5, 16]

ivt − vxx + 2(|v|2 − ρ2)v = εr[v] (1)

whereρ is a positive constant,ε is a small parameter andr[v] is a functional ofv. When
ε → 0, the unperturbed NLS+ equation can be solved with the boundary conditionv→ ρ as
x → +∞ andv → ρeiα asx → −∞, whereα is a real constant. Within the framework of
the inverse scattering transform it can be shown that the poles of the transmission coefficient
a(ζ ) in the complexζ -plane,ζn, n = 1, 2, . . . , N , are related toρ andα by

ζn = ρeiβn α = − 1
2

N∑
n=1

βn 06 βn < π. (2)

Now the problem is to find a perturbed solution with the initial conditionv(x, t = 0) =
u(x, t = 0), whereu(x, t) is usually an exact dark soliton solution of the unperturbed NLS+

equation. Under perturbations,ζn will depend ont to the order ofεt , and so doρ andα.
Suppose [15]

v = ua + εq (3)

whereua is the so-called adiabatic solution which has the same functional form as the exact
soliton solutionu, but the parameters involved may beεt dependent, andεq represents the
remaining term which is also of the order ofε. Substituting (3) into (1), we obtain

iqt − qxx + 2(2|u|2 − ρ2)q + 2u2q̄ = R[u] (4)

where

R[u] = r[u] − s[u] s[u] = 1

ε
{iut − uxx + 2(|u|2 − ρ2)} = iuτ (5)

andτ = εt . Since (4) is an equation of the order ofε (the factor ofε has been dropped), the
u on the left-hand side and inr[u] is an exact solution of the unperturbed equation, whileu in
s[u] is the adiabatic solution becauses[u] includes derivatives of the discrete spectrum with
respect to the slow timeτ (the superscripta has been dropped). Equation (4) and its complex
conjugate can be written as{

i∂t − L(u)
}
q = R (6)

where

L(u) =
(
∂xx − 2(2|u|2 − ρ2) −2u2

2ū2 −∂xx + 2(2|u|2 − ρ2)

)
(7)

andq = (q q̄)T ,R = (R − R̄)T . Now, the initial condition becomesq(x, t = 0) = (0 0)T .



Foundation of direct perturbation method for dark solitons 3941

3. Squared Jost functions

By using the Lax equations, we obtain, for example,{
i∂t − L(u)

}
9(x, ζ ) = −4κλ9(x, ζ ). (8)

It is obvious that the Jost functions and their corresponding squared Jost functions have the
same analytical properties. For example, bothψ(x, ζ ) and9(x, ζ ) are analytical on the
upper-half plane ofζ . Since the Lax equations are invariant with respect to the reduction
transformation [5, 16],ζ → ρ2ζ−1, it can be shown thatψ(x, ρ2ζ−1) = −iρ−1ζ ψ̃(x, ζ ),
and hence9(x, ρ2ζ−1) = −ρ−2ζ 29̃(x, ζ ), etc. Furthermore, it can be concluded that
a(ρ2ζ−1) = ã(ζ ) and the zeros ofa(ζ ) are simple and satisfy (2). From (8) we have, for
example, {

i∂t − L(u)
}
9(x, ζn) = −4κnλn9(x, ζn) (9){

i∂t − L(u)
}
9̇(x, ζn) = −4κnλn9̇(x, ζn)− 2

(
ζn + ρ4ζ−3

n

)
9(x, ζn). (10)

4. Adjoint squared Jost functions

It is reasonable to demand that the inner product between the squared Jost function and its
adjoint are proportional to aδ function in the continuous spectrum. We define the inner product
to be [15]

〈9(ζ ′)|9(ζ)〉 =
∫ ∞
−∞

dx 9(x, ζ ′)A9(x, ζ ) (11)

where the adjoint function is given by

9(x, ζ )A = 8(x, ζ )T (iσ2) =
(−φ2

2(x, ζ ) φ
2
1(x, ζ )

)
. (12)

From the first Lax equation, we have
d

dx
{W [φ(x, ζ ′), ψ(x, ζ )]}2 = −i2(λ− λ′)9(x, ζ ′)A9(x, ζ ) (13)

whereW [· · ·] is the usual Wronskian. Hence we obtain∫ ∞
−∞

dx 9(x, ζ ′)A9(x, ζ ) = lim
L→∞

1

−i2(λ− λ′) {W [φ(x, ζ ′), ψ(x, ζ )]}2|L−L. (14)

Noting that the realζ andζ ′ should be replaced byζ + i0 andζ ′ + i0 and the limit is considered
as the Cauchy principal value, we obtain

〈9(ζ ′)|9(ζ)〉 = a(ζ )22π(1− ρ2ζ−2)δ(ζ − ζ ′). (15)

Since (13) is valid on the upper half-plane, by applying an operator d2/dλ2 to it, taking
ζ = ζ ′ = ζn and then integrating, we obtain

〈9(ζm)|9̇(ζn)〉 = iȧ(λn)
2(1− ρ2ζ−2

n )δmn (16)

and the same result for〈9̇(ζm)|9(ζn)〉.
Applying the operator{

d3

dζ 3
+ 3

d

dζ ′
d2

dζ 2

}
to (13), takingζ = ζ ′ = ζn, and then integrating, we also have

〈9̇(ζm)|9̇(ζn)〉 = iȧ(ζn)ä(ζn)(1− ρ2ζ−2
n )δmn + i2ȧ(ζn)

2ρ2ζ−3
n δmn. (17)

Due to the properties of the reduction transformation, it is unnecessary to discuss the inner
products involving9̃(x, ζ ), etc. Equations (15)–(17) are the orthogonality relations we need.
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5. The expansion of the unity

Since the above squared Jost functions shall be shown later to form a complete set, then a state
|f 〉 can be expanded as

|f 〉 = 1

2π

∫ ∞
−∞

dζ f (ζ )|9(ζ)〉 +
N∑
n=1

{fn|9(ζn)〉 + gn|9̇(ζn)〉}. (18)

By using the orthogonality relations,f (ζ ), fn andgn can be expressed in forms of linear
combinations of〈9(ζ)|f 〉, 〈9(ζn)|f 〉 and〈9̇(ζn)|f 〉. Substitution of these expressions into
(18) yields the expansion of the unity,

δ(x − y) = 1

2π

∫ ∞
−∞

dζ
1

(1− ρ2ζ−2)a(ζ )2
9(x, ζ )8(y, ζ )T (iσ2)

−i
N∑
n=1

1

(1− ρ2ζ−2
n )ȧ(ζn)2

{
9̇(x, ζn)8(y, ζn)

T +9(x, ζn)8̇(y, ζn)
T
}
(iσ2)

+i
N∑
n=1

{
2ρ2ζ−3

n

(1− ρ2ζ−2
n )2ȧ(ζn)2

+
ä(ζn)

(1− ρ2ζ−2
n )ȧ(ζn)3

}
9(x, ζn)8(y, ζn)

T (iσ2)

(19)

where, as noted above,ζ should be considered asζ + i0, and hence the factor(1− ρ2ζ−2)−1

in the integrand should be replaced byζ 2/[(ζ + i0)2 − ρ2]. Its polesζ = ±ρ − i0 are on the
lower half-plane.

6. Proof of the completeness

To prove (19) it is necessary to show the completeness of the squared Jost functions. For the
potentialu, we have the Marchenko equation and a complete set of the usual Jost functions,

1

4π

∫ ∞
−∞

ψ̃(x, ζ )ψ(y, ζ )T σ1 dζ +
1

4π

∫ ∞
−∞

r(ζ )ψ(x, ζ )ψ(y, ζ )T σ1 dζ

−i 1
2

N∑
n=1

cnζnψ(x, ζn)ψ(y, ζn)
T σ1 = δ(x − y). (20)

For the other potentialu′, we have

1

4π

∫ ∞
−∞

ψ̃ ′(x, ζ )ψ ′(y, ζ )T σ1 dζ +
1

4π

∫ ∞
−∞

r ′(ζ )ψ ′(x, ζ )ψ ′(y, ζ )T σ1 dζ

−i 1
2

N ′∑
n′=1

c′n′ζ
′
n′ψ
′(x, ζ ′n′)ψ

′(y, ζ ′n′)
T σ1 = δ(x − y). (21)

We now consider a kernelM(x, y) that transforms the Jost functionψ(x, ζ ) to the Jost function
ψ ′(x, ζ ) such that

ψ ′(x, ζ ) = ψ(x, ζ ) +
∫ ∞
x

dy M(x, y)ψ(y, ζ ) (22)

and the inverse kernelN(x, y)

ψ(x, ζ ) = ψ ′(x, ζ ) +
∫ ∞
x

dy N(x, y)ψ ′(y, ζ ). (23)
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By a procedure similar to that for the NLS equation and for the KdV equation [16, 21, 22],
substituting (22) into (20) we obtain
1

4π

∫ ∞
−∞

ψ̃ ′(x, ζ )ψ(y, ζ )T σ1 dζ +
1

4π

∫ ∞
−∞

r(ζ )ψ ′(x, ζ )ψ(y, ζ )T σ1 dζ

−i 1
2

N∑
n=1

cnζnψ
′(x, ζn)ψ(y, ζn)T σ1 = δ(x − y) +

∫ ∞
x

ds M(x, s)δ(s − y).

(24)

Similarly, we have
1

4π

∫ ∞
−∞

ψ̃ ′(x, ζ )ψ(y, ζ )T σ1 dζ +
1

4π

∫ ∞
−∞

r ′(ζ )ψ ′(x, ζ )ψ(y, ζ )T σ1 dζ

−i 1
2

N ′∑
n′=1

c′n′ζ
′
n′ψ
′(x, ζ ′n′)ψ(y, ζ

′
n′)

T σ1

= δ(x − y) +
∫ ∞
y

ds δ(x − s)σ1N(s, y)
T σ1. (25)

Subtracting (24) from (25), we obtain in the case ofy > x,

1

4π

∫ ∞
−∞
{r ′(ζ )− r(ζ )}ψ ′(x, ζ )ψ(y, ζ )T σ1 dζ − i 1

2

N ′∑
n′=1

c′n′ζ
′
n′ψ
′(x, ζ ′n′)ψ(y, ζ

′
n′)

T σ1

+i 1
2

N∑
n=1

cnζnψ
′(x, ζn)ψ(y, ζn)T σ1 = −M(x, y). (26)

By using (22) again, we obtain the generalized Marchenko equation

M(x, y) +�(x, y) +
∫ ∞
x

dzM(x, z)�(z, y) = 0 y > x (27)

where

�(x, y) = 1
2i
∑
n

cnζnψ(x, ζn)ψ(y, ζn)
T σ1− 1

2i
∑
n′
c′n′ζ

′
n′ψ(x, ζ

′
n′)ψ(y, ζ

′
n′)

T σ1

+
1

4π

∫ ∞
−∞

dζ {r ′(ζ )− r(ζ )}ψ(x, ζ )ψ(y, ζ )T σ1. (28)

We find

u(x)− u′(x) = −2M(x, x)12 u(x)− u′(x) = −2M(x, x)21. (29)

Whenδu(x) = u(x)− u′(x) is small, we obtain

M(x, y) ≈ −�(x, y) (30)

and

δû(x) = − 1
2i
∑
n

[δ(cnζn)9(x, ζn) + cnζnδζn9̇(x, ζn)] +
1

4π

∫ ∞
−∞

dζ δr(ζ )9(x, ζ ) (31)

where

δû(x) ≡
(
δu(x)

δu(x)

)
. (32)

Equation (31) implies that the squared Jost functions

δû(x)

δr(ζ )
∝ 9(x, ζ ) δû(x)

δ(cnζn)
∝ 9(x, ζn) δû(x)

δζn
∝ 9̇(x, ζn) (33)

form a complete set.
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7. Secularity conditions

Suppose the unknown function|q〉 in (6) can be expanded as|f 〉 in (18). Then substituting
the expansion into (6) and evaluating the inner product of〈9(ζn)| with the resulted equation,
we obtain

i(1− ρ2ζ−2
n )ȧ(ζn)

2{ignt + 4κnλngn} = 〈9(ζn)|R〉 (34)

etc. Since the initial values ofgn vanish, its value may go to infinity unless the right-hand side
of (34) vanishes. Hence we demand it to vanish,

〈9(ζn)|R〉 = 0. (35)

A similar discussion for the inner product to〈9̇(ζn)| demands

〈9̇(ζn)|R〉 = 0. (36)

These are the secularity conditions. From them the adiabatic soliton solution, for example, the
time dependence of the parameters characterizing the soliton solution of the order ofε can be
determined.

After determining the adiabatic solution, the inner product of〈9(ζ)| with the above
resulting equation is

i(1− ρ2ζ−2)a(ζ )2{ift (ζ ) + 4κλf (ζ )} = 〈9(ζ)|R〉 (37)

which can be solved since the terms on the right-hand side has been determined.
The secularity conditions (35) and (36) can be easily reduced to the one-soliton case, which

has already been given in [16]. Shown in the case of one soliton, equation (36) corresponds to
two equations, one containing limited terms and the other containing terms diverging with the
length of the system [16]. So for theN -soliton case, we just have 3N independent equations
for 3N independent parameters. No difficulty of self-consistency found in the method using
conservation laws [13] appears. For specific problems, such as whenf (ζ ) in (37) is solved, one
can find that it is singular atζ = ±ρ. However, such singularities cause no secular behaviour
of q because±ρ should be treated as±ρ − i0+ in order to satisfy the completeness (see also
[16]). Therefore, there is no additional secularity conditions atζ = ±ρ suggested by [14].
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