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Abstract. The foundation of the direct perturbation theory for solitons is a complete set of the
squared Jost functions. With a suitable definition of the adjoint functions and inner products which
yields orthogonal relations, the expansion of the unity is obtained and the completeness is shown by
a generalized Marchenko equation. The direct perturbation method for dark solitons is generalized
to the multi-soliton case.

1. Introduction

Since optical dark solitons have been theoretically predicted and experimentally realized, it has
become important to study how these dark solitons are affected by various perturbations [1-3].
The basic difficulty one will encounter during the development of a perturbation method for
dark solitons is that the background of dark solitons, i.e. the nonvanishing boundary values,
are well known to be dependent on time when perturbations are added in. This property
has led to essential difficulties when generalizing the usual perturbation method based on the
inverse scattering transform for bright solitons [4—7] to the case of dark solitons. Despite these
difficulties, various perturbation methods for dark solitons have been proposed [3, 8-14]. These
methods cannot completely overcome those difficulties caused by the background wave and
thus cannot be regarded as rigorous methods. However, it should be mentioned thatin a method
using conservation laws (see [11] and later [12]), the varying background was considered with
atrick treating the so-called vanishing perturbations and nonvanishing perturbations separately
by assuming that the former do not affect the background. While for the latter ones, they tried
to remove the varying background and determined its evolution with an individual equation.

It has been shown that the attempt to remove the background is not only unnecessary but also
inadequate because of the interrelation (see equation (2) below) among the background and
the parameters of the dark solitons [16].

Recently, arigorous direct perturbation theory for the one-soliton case was developed [16],
based upon a complete set of the squared Jost solutions. Both of the vanishing perturbations
and nonvanishing perturbations can be treated on the same foundation. In applications of the
rigorous theory [16] to specific problems of temporal dark solitons [17—19] and spatial dark
solitons [20], it turns out that the method using conservation laws [11, 12] can still give some
correct final results except for the shift of the soliton centre, in spite of its difficulties in self-
consistency [13]. It has been pointed out that the method using conservation laws can only
yield limited information of perturbations (see, e.g., [2]).
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Further development of the direct perturbation theory is natural to generalize it to the
multi-soliton case. The key is to establish a complete set of the squared Jost solutions. For
bright soliton case the completeness was proved using the assumption of compact support [15],
which is no longer valid for dark solitons. That is why in [16] the proof for the completeness
had to use explicit expressions of the squared Jost solutions for the one-soliton case. In the
present work a generalized Marchenko equation similar to that for the Korteweg—de Vries
(KdV) equation [21-23] is derived for the nonlinear Saflinger (NLS) equation of dark
solitons (NLS for short), and the completeness of the squared Jost solutions is proved with it.
A general mathematical formalism of the direct perturbation method for dark solitons is then
developed.

2. The perturbed equation

The perturbed NLSequation can be written as [5, 16]
v, — vy + 2(|v|2 - p2)v = Er[v] (1)

wherep is a positive constang is a small parameter andv] is a functional ofv. When

e — 0, the unperturbed NL'Sequation can be solved with the boundary condition- p as

x — +oo andv — p€® asx — —oo, Whereu is a real constant. Within the framework of

the inverse scattering transform it can be shown that the poles of the transmission coefficient
a(¢) inthe complex -plane,,n = 1,2, ..., N, are related t@ anda by

N
{n:pellgn a:—%zﬂn Ogﬁn<ﬂ' (2)
n=1

Now the problem is to find a perturbed solution with the initial conditign, t = 0) =
u(x,t = 0), whereu(x, r) is usually an exact dark soliton solution of the unperturbed NLS
equation. Under perturbations, will depend ory to the order oz, and so dg anda.

Suppose [15]

v=u+eq 3)

whereu is the so-called adiabatic solution which has the same functional form as the exact
soliton solution«, but the parameters involved may bedependent, andg represents the
remaining term which is also of the ordere«f Substituting (3) into (1), we obtain

iqr — qux + 22lul? — p?)q + 2u*G = R[u] 4

where

1. .

Rlu] = rlu] — s[u] slul = =fiu — upe + 2(jul® — p?)} = ius ®)

€
andr = et. Since (4) is an equation of the ordereofthe factor ofe has been dropped), the
u on the left-hand side and iju] is an exact solution of the unperturbed equation, while
s[u] is the adiabatic solution becausj] includes derivatives of the discrete spectrum with
respect to the slow time (the superscript has been dropped). Equation (4) and its complex
conjugate can be written as

i —Lw}q=R (6)
where
_ (B — 2P - p? —2u?
b= ( 2ii2 By + 22 — p?) ) Q)

andg = (¢ §)7,R= (R — R)". Now, the initial condition becomegx, r = 0) = (0 0)7.
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3. Squared Jost functions

By using the Lax equations, we obtain, for example,
{19, - L)} W(x, ) = —4cA W (x, {). 8)

It is obvious that the Jost functions and their corresponding squared Jost functions have the
same analytical properties. For example, bgtéx, ¢) and ¥ (x, ¢) are analytical on the
upper-half plane oft. Since the Lax equations are invariant with respect to the reduction
transformation [5,16]; — p2¢ 1, it can be shown that (x, p2¢ 1Y) = —ip ey (x, ©),

and henceV (x, p2¢c™Y) = —p~2¢2W(x, ), etc. Furthermore, it can be concluded that
a(p?¢™Y) = a(¢) and the zeros ofi(¢) are simple and satisfy (2). From (8) we have, for
example,

{id, — La)}W(x, &) = — A hn ¥ (x, 1) 9)
{ig, = L) )W (x, &) = =4 dn W (x, 8) — 2(60 + 06, )W (x, ). (10)

4. Adjoint squared Jost functions

It is reasonable to demand that the inner product between the squared Jost function and its
adjoint are proportional to&function in the continuous spectrum. We define the inner product
to be [15]

(WEHIw () =/ dx W (x, £ W(x, ) (11)
where the adjoint function is given by

W(x, o))" = d(x, 1) (io2) = (—¢§(x, ¢) ¢i(x, ). (12)
From the first Lax equation, we have

d .

g W0, 89, ¥ (x, O = =120, = A)W(x, ¢ W (x, ¢) (13)
whereW][. - -] is the usual Wronskian. Hence we obtain

* NA I H 1 ’ 2L

[ v e i 0 = fim e W ¢ b O (14)

Noting that the rea¢ and¢’ should be replaced ky+i0 andz’ +i0 and the limitis considered
as the Cauchy principal value, we obtain

(WEHIW (@) = a(@)?2n(L— p? 738 = ¢). (15)
Since (13) is valid on the upper half-plane, by applying an operatgdid to it, taking
¢ = ¢’ = ¢, and then integrating, we obtain

(W@ (G)) = 1a()* (L= p26, )8 (16)
and the same result fo/ (£,) | ¥ (£,)).
Applying the operator

d® d d
- +3—
{d§3 d¢’ diz}
to (13), takingg = ¢’ = ¢,, and then integrating, we also have
(W@ @) = 1a@G)a) (L= p2¢ 8 +12a(6)* 0%, %0me. (17)

Due to the properties of the reduction transformation, it is unnecessary to discuss the inner
products involving¥ (x, ¢), etc. Equations (15)—(17) are the orthogonality relations we need.
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5. The expansion of the unity

Since the above squared Jost functions shall be shown later to form a complete set, then a state
| ) can be expanded as

1 [ N )
1) = Z/ dg f(§)|‘1’(§))+Z{ﬁl|‘1’(§n))+gn|‘l’(§n))}- (18)
—00 n=1

By using the orthogonality relationg,(¢), f, andg, can be expressed in forms of linear
combinations of W (¢)| f), (¥(¢,)]f) and(¥(Z,)|f). Substitution of these expressions into
(18) yields the expansion of the unity,

1 1 g
S =) = 5 /_Ood;(l_ng,z)a@)zwx,;><1><y, 07 (i)
N
1 . .
i W(x, &)@, &) + W (x, &)@y, &) )
2 (1—p2¢,:2)a(;n)2{ (@, G P, &) + W, )P, &) f(i02)

. N 2,()2@'_3 a(é‘n) } _
+i n_ + - W(x, L) D (y, &) (i02)
;{ﬂ—pzéﬁ)za@m A2, Dae) oL e) ez

(19)

where, as noted above,should be considered gst i0, and hence the factgfl — p%¢ =2)~*
in the integrand should be replacedd?/[(¢ +i0)? — p?]. Its polest = +p — i0 are on the
lower half-plane.

6. Proof of the completeness

To prove (19) it is necessary to show the completeness of the squared Jost functions. For the
potentialx, we have the Marchenko equation and a complete set of the usual Jost functions,

o]

1 > 1
4—f w(x,c)w(y,o%ldu—/ r OV, OY(y, O o1 dg
T J o 4 —00

N
=3 el (. )V (3. G oL = 8(x — ). (20)

n=1

For the other potential’, we have

1 *© 7 / T 1 *© / / / T
- f Ve OV 0. 0) aldc+—/ POV (e, OY (3, ) o de
T J_s A J_ o

N/
i3 W L W (0. ) oL = 8(x — ). (21)

n'=1

We now consider a kernéf (x, y) that transforms the Jost functign(x, ¢) to the Jost function
Y’ (x, ¢) such that

Vv'(x,0) = w(x,§)+/ dy M(x, )¢ (y,¢) (22)

and the inverse kerné¥ (x, y)

P8 = ¥(x.0) +f dy N e, )W (. ©). (23)
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By a procedure similar to that for the NLS equation and for the KdV equation [16, 21, 22],
substituting (22) into (20) we obtain

[e¢]

1 © 1
= f w/(x,;)w(y,c)%ldu—/ rOY x, O (v, O o1 dg
7T J o A J_o

N 00
S5 D e )60 o1 =5 =)+ [ A MG 53— .

n=1
(24)
Similarly, we have
1 oo 7 T 1 oo ’ ’ T
[ e oue o nd s o [ rewe ove o o
T J o0 4r —00
N/
—i3 Y ¥ L Y (3, G) o
n'=1
=8(x —y) +f ds 8(x — s)o1N (s, y) oy. (25)
y
Subtracting (24) from (25), we obtain in the caseof x,
1 [ A
ym /_Oo{r’(é) — W OV (. O ords — I%;c;/f,;w’(x, GV, &' o
N
3D ealn¥ (5, L)Y (3, G) o1 = —M(x, y). (26)
n=1
By using (22) again, we obtain the generalized Marchenko equation
Map e+ [ EMED2en =0y (27)
where
Qx,y) =31 Yl GV (3. G) o1 — 31 Yl (e, GV (3, G) o
1 o0
+Ef d¢ {r' () = r©OW &, DY (v, £) o1 (28)
We find
u(x) —u'(x) = —2M (x, x)12 u(x) —u'(x) = =2M(x, x)1. (29)
Whenédu(x) = u(x) — u'(x) is small, we obtain
M(X»J’)%_Q(x’y) (30)
and
— . . 1 [*
Su(x) = —%l 2[5(6119)\1’()6, Cn) + Cn8nd8, W (x, &)] + Ef d¢ or(e)W(x, ¢) (31)
where
— ([ du(x)
Su(x) = <8u(x)>' (32)
Equation (31) implies that the squared Jost functions
su(x) 8u(x) su(x) .
sre) XV gy XY T 39

form a complete set.
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7. Secularity conditions

Suppose the unknown functidg) in (6) can be expanded ag) in (18). Then substituting
the expansion into (6) and evaluating the inner productiag,,)| with the resulted equation,
we obtain

(1= p2¢,2)a(Cn)*(ignt + Mnngn} = (W(2)|R) (34)

etc. Since the initial values @f, vanish, its value may go to infinity unless the right-hand side
of (34) vanishes. Hence we demand it to vanish,

(W) IR) = 0. (35)
A similar discussion for the inner product td (z,)| demands
(W()IR) = 0. (36)

These are the secularity conditions. From them the adiabatic soliton solution, for example, the
time dependence of the parameters characterizing the soliton solution of the oraemofe
determined.

After determining the adiabatic solution, the inner product{wf¢)| with the above
resulting equation is

i(L— p%2)a@)™if,(0) + drf (D)) = (¥(O)IR) (37)

which can be solved since the terms on the right-hand side has been determined.

The secularity conditions (35) and (36) can be easily reduced to the one-soliton case, which
has already been given in [16]. Shown in the case of one soliton, equation (36) corresponds to
two equations, one containing limited terms and the other containing terms diverging with the
length of the system [16]. So for thé-soliton case, we just haveN3independent equations
for 3N independent parameters. No difficulty of self-consistency found in the method using
conservation laws [13] appears. For specific problems, such asfigem (37) is solved, one
can find that it is singular d@t = 4+p. However, such singularities cause no secular behaviour
of ¢ becausetp should be treated akp — i0* in order to satisfy the completeness (see also
[16]). Therefore, there is no additional secularity conditions at +0 suggested by [14].
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