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Abstract

We consider the linear recurrence relationVt (x)=∑m
i=1(aix+bi )Vt−i(x)+ cx+f wherem> 1,ai andbi , 16 i 6m, are

integers. The RSA and LUC schemes can be defined by this relation. In this paper we show that if the linear recurrence relation
has some properties, the public-key scheme based on it cannot withstand the common modulus and chosen-message attacks,
no matter what the orderm is and what the parameters forai andbi , 16 i 6m, are. This implies that the LUC cryptosystem
cannot withstand the common modulus attack and the LUC digital signature scheme cannot withstand the chosen-message
attack. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the linear recurrence relation

Vt(x)=
m∑
i=1

(aix + bi)Vt−i(x)+ cx + f,

whereai , bi , c andf , 16 i 6m, are integers. In the
RSA scheme [13], the encryption, decryption, signing
and verification operations are of the form

Vt(M)=Mt modn.

We observe that this form can be expressed as the first-
order (m = 1) linear recurrence relation witha1 = 1,
b1 = 0, c = 0, f = 0 and the initial valueV0(x)= 1.
Similarly, the LUC scheme [15,16] can be expressed
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as the second-order (m= 2) linear recurrence relation
with a1 = 1, b1 = 0, a2 = 0, b2 = −1, c = 0, f = 0
and initial valuesV0(x)=−2 andV1(x)= x.

Two well-known attacks on the RSA scheme are
the common modulus attack on the RSA cryptosys-
tem [14] and the chosen-message attack on the RSA
signature scheme [3]. It has been shown that the LUC
cryptosystem cannot withstand the chosen-message
attack [2]. Other the other hand, to our best knowl-
edge there is no known common modulus attack on the
LUC cryptosystem in the open literature. In this paper
we show that the LUC cryptosystem cannot withstand
the common modulus attack either.

It has been discussed that the exponentiation in
the RSA scheme that preserves the “multiplicative”
property makes the scheme vulnerable to the chosen-
message attack [3,5,6]. Therefore, there are proposed
public-key schemes based on permutation polyno-
mials [10–12] and Lucas functions [15,16] in order
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to prevent the weakness. However, Bleichenbacher
et al. [2] showed that this is not necessarily true by
providing a chosen-message attack on the LUC sig-
nature scheme. One might naturally try to choose dif-
ferent parameters forai , bi , c andf , 16 i 6 m, or
use a higher-order linear relation so that the public-key
scheme with the linear recurrence relation can with-
stand the attacks. In this paper we show that if the lin-
ear recurrence relation has some properties, which are
usually required for the public-key scheme to function,
the public-key scheme with the linear recurrence rela-
tion cannot withstand the chosen-message and com-
mon modulus attacks no matter what the orderm is
and what the parameters are. In particular, we provide
a general chosen-message attack and a general com-
mon modulus attack on the public-key scheme with
a linear recurrence relation. These results show that
the design of public-key schemes along the direction
of Lucas-like functions is not feasible if the chosen-
message and common modulus attacks are considered
as major threats.

The LUC scheme has been attacked in many di-
rections [2,9]. Its claimed advantages over the RSA
scheme seem not existent. However, it might have one
merit. Our common modulus attack on the LUC cryp-
tosystem uses three pairwise relatively prime expo-
nents. From the structure, we observe that the attack
with two relatively prime exponents might not exist.
If a cryptographic protocol uses RSA-like functions
and suffers from the two-exponent common-modulus
attack, one might use Lucas-like functions as an alter-
native.

2. Preliminaries

We first assume that the public-key scheme is de-
signed along the RSA-like direction. The scheme
serves two purposes, cryptosystem and digital signa-
ture, simultaneously. The operations of the scheme are
on Zn, i.e., “modn” with few exclusions on finding
multiplicative inverses. In Section 5, we consider the
schemes with operations on other algebraic objects.
The requirements (assumptions) for our attacks to suc-
ceed are:

R1 (efficiency). Given a and x, a > 0, 0 < x < n,
Va(x) mod n is polynomial-time computable in the
size ofa andn. We assume thatVab(x)= Va(Vb(x)).

R2 (commutativity). Va(Vb(x)) = Vb(Va(x)). For a
public-key scheme to be used as both cryptosystem
and digital signature, this property is almost neces-
sary.

R3 (identity). One can find pairs(e, d) so that
Ved(x) ≡ x (mod n) for any value 0< x 6 n. This
is to make the scheme work. Therefore, the encryp-
tion/verification key ise and the decryption/signing
key isd .

Note thatVa(Vb(x)) mod n = Va(Vb(x) mod n)
modn. By the requirements R1–R3, the scheme looks
like the following.

Let 0 < M < n be the message. Then, the en-
cryption is C = Ve(M) mod n, the decryption is
Vd(C) modn, the signing isS = Vd(M) modn, and
the verification is to verify whetherVe(S) mod n is
equal toM.

The RSA and LUC schemes both fit into this
classification. In the RSA scheme the identity is
computed byed ≡ 1 mod(p − 1)(q − 1) and in the
LUC scheme it is computed byed ≡ 1 mod(p2− 1) ·
(q2− 1).

3. Common modulus attacks

In implementating a public-key cryptosystem as
described in Section 2, the system may use the same
modulusn for every user so that useri has the public
key (ei, n) and private key(di, n). We note that a user
with some(ei , di) pair can factor the modulin. If a
messageM is encrypted and sent to every user, the
adversary (not one of the users) can use the public
keys (ei, n) and the ciphertextsVei (M) mod n to
compute the plaintextM. We show that the public-
key cryptosystem with an order-m linear recurrence
relation that satisfies the requirements R1–R3 cannot
withstand the common modulus attack withm + 1
pairwise relatively prime exponents.

Let ei , 16 i 6m+ 1, be pairwise relatively prime.
Assume that 0< M < n and gcd(M,n) = 1. We
consider the system of equations:

riei − ri+1ei+1= 1, 16 i 6m.
The integer solutions forri , 16 i 6m+ 1, exist and
can be found by Euclid’s algorithm.
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Lemma 1. If ei , 1 6 i 6 m + 1, are pairwise rel-
atively prime, then the system of equations: riei −
ri+1ei+1 = 1, 16 i 6m, has integer solutions forri ,
16 i 6m+ 1.

Proof. We prove this theorem by induction onm. For
the induction basem= 1, sincee1 ande2 are relatively
prime, we use Euclid’s algorithm to find an integer so-
lution (r ′1, r ′2) for r1e1 − r2e2 = 1. For the induction
hypothesism = k, we assume that (r ′1, r ′2, . . . , r ′k+1)
is an integer solution forriei − ri+1ei+1 = 1, 1 6
i 6 k. Let Ei be e1e2 · · ·ei−1ei+1 · · ·ek+1. We can
see that (r ′1 + tE1, r

′
2 + tE2, . . . , r

′
k+1 + tEk+1) is

also an integer solution for an arbitrary integert .
We consider the casem = k + 1 now. For the first
k equationsriei − ri+1ei+1 = 1, 1 6 i 6 k, we
find integer solutions (r ′1+ tE1, r

′
2+ tE2, . . . , r

′
k+1+

tEk+1) for an arbitrary integert by the hypothe-
sis. We then substituter ′k+1 + tEk+1 for rk+1 in
the (k + 1)th equationrk+1ek+1 − rk+2ek+2 = 1 to
obtain (r ′k+1 + tEk+1)ek+1 − rk+2ek+2 = 1, which
is te1e2 · · ·ek+1 − rk+2ek+2 = 1 − r ′k+1ek+1. Since
gcd(e1e2 · · ·ek+1, ek+2) = 1, we use Euclid’s algo-
rithm to find an integer solution(t ′, r ′k+2) for (t, rk+2).
Therefore, (r ′1 + t ′E1, r

′
2 + t ′E2, . . . , r

′
k+1 + t ′Ek+1,

r ′k+2) is an integer solution forriei − ri+1ei+1 = 1,
16 i 6 k+ 1. 2
Theorem 2. The public-key cryptosystem with an
order-m linear recurrence relation that satisfies the
requirementsR1–R3 cannot withstand the common
modulus attack withm + 1 pairwise relatively prime
exponents.

Proof. In fact, riei , 16 i 6 m + 1, arem + 1 con-
secutive numbers. If the adversary obtains the cipher-
texts Vei (M)modn, 16 i 6m+ 1, it can compute
the valuesVriei (M)modn, 16 i 6m+ 1, in polyno-
mial time. Therefore, the adversary can solve the linear
equation

Vr1e1(M)modn

=
(
m+1∑
i=2

(aiM + bi)Vriei (M)+ cM + f
)

modn.

to obtain the messageM. 2

4. Chosen-message attacks

In the chosen-message attack, the adversary can
query a signer to sign some messages and then uses
the signed messages to deduce the signature of some
other message of its choice.

Theorem 3. If the public-key signature scheme with
an order-m linear recurrence that satisfies the require-
mentsR1–R3, then it cannot withstand the chosen-
message attack withm queries.

Proof. Let (d,n) be the signing key of the signer and
(e,n) be the verification key. The adversary chooses
a messageM, 0< M < n and gcd(M,n) = 1. The
adversary computes the valuesVe−i(M) mod n for
16 i 6 m and asks the signer to sign them. It then
uses the query resultsVd(Ve−i(M) mod n) mod n,
16 i 6m, for the equation

M = Ved(M)modn

= Ve
(
Vd(M)

)
modn

=
(

m∑
i=1

(
aiVd(M)+ bi

)
Ve−i

(
Vd(M)

)
+ cVd(M)+ f

)
modn

=
(

m∑
i=1

(
aiVd(M)modn+ bi

)
Vd

× (Ve−i (M)modn
)+ cVd(M)+ f) modn

to solveVd(M) modn, which is the signature of the
messageM. 2

5. Computing on other algebraic objects

We have illustrated our attacks on the public-key
scheme with a linear recurrence relation that satisfies
the requirements R1–R3 and is of operations onZn.
It can be extended to other algebraic objects if the
algebraic objects satisfy the following criteria.
(1) For efficiency, the general operations, such as ad-

dition, multiplication, additive inverse, multiplica-
tive inverse, should be able to be computed effi-
ciently.
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(2) For the trapdoor property (security), the opera-
tions, such as factoring and discrete logarithm,
should be polynomially infeasible to compute.

The finite fieldsFpm and elliptic curves over a finite
field satisfy the above criteria.

6. Conclusion and open problems

We would like to ask whether the LUC cryptosys-
tem can withstand the common modulus attack with
only two relatively prime exponents. This can be gen-
eralized to ask whether the public-key cryptosystem
with an order-m linear recurrence relation can be at-
tacked with less thanm+ 1 pairwise relatively prime
exponents. We note that there existe1 ande2, for ex-
ample,e1 = 3 ande2 = 4, such thatr1ei , r2ej and
r3ek, i, j, k ∈ {1,2}, cannot be three consecutive num-
bers. Therefore, our common modulus attack on the
LUC cryptosystem cannot succeed with only two rel-
atively prime exponents.

The similar questions can be asked about the chosen-
message attack. What is the minimum number of
queries needed for a successful chosen-message at-
tack?
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