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Abstract

We consider the linear recurrence relatigiix) = Y ; (a;x +b;) Vi (x) +cx + f wherem > 1,q; andb;, 1<i <m, are
integers. The RSA and LUC schemes can be defined by this relation. In this paper we show that if the linear recurrence relation
has some properties, the public-key scheme based on it cannot withstand the common modulus and chosen-message attacl
no matter what the order is and what the parameters fgrandb;, 1 <i < m, are. This implies that the LUC cryptosystem
cannot withstand the common modulus attack and the LUC digital signature scheme cannot withstand the chosen-messag
attack.00 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction as the second-ordern(= 2) linear recurrence relation
witha1 =1,b1=0,a2=0,b2=-1,¢c=0, f =0
We consider the linear recurrence relation and initial values/p(x) = —2 andVi(x) = x.
m Two well-known attacks on the RSA scheme are
Vi(x) = Z(a,-x +b)Vi—i(x) +cx + f, the common modulus attack on the RSA cryptosys-
i=1 tem [14] and the chosen-message attack on the RSA

wherea;, b;, c and f, 1< i <m, are integers. In the signature scheme [3]. It has been shown that the LUC
RSA scheme [13], the encryption, decryption, signing CryPtosystem cannot withstand the chosen-message

and verification operations are of the form attack [2]. _Other the other hand, to our best knowl-
. edge there is no known common modulus attack on the
Vi(M) = M" modn. LUC cryptosystem in the open literature. In this paper

We observe that this form can be expressed as the first-We Show that the LUC cryptosystem cannot withstand
order ¢n = 1) linear recurrence relation witly = 1, the common modulus attack either. o
b1 =0,c =0, f =0 and the initial valug/o(x) = 1. It has been discussed that the exponentiation in
Similarly, the LUC scheme [15,16] can be expressed the RSA scheme that preserves the “multiplicative”
property makes the scheme vulnerable to the chosen-
Y Research supported in part by the National Science Council mes;age attack [3,5,6]. Therefore, there are proposed
grant NSC 87-2213-E009-055, Taiwan. public-key schemes based on permutation polyno-
1 Email: tzeng@cis.nctu.edu.tw. mials [10-12] and Lucas functions [15,16] in order
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to prevent the weakness. However, Bleichenbacher R2 (commutativity. V,(Vy(x)) = Vi(V,(x)). For a

et al. [2] showed that this is not necessarily true by public-key scheme to be used as both cryptosystem

providing a chosen-message attack on the LUC sig- and digital signature, this property is almost neces-

nature scheme. One might naturally try to choose dif- sary.

ferent parameters fat;, b;, c and f, 1 <i < m, or

use a higher-order linear relation so that the public-key R3 (identity). One can find pairs(e,d) so that

scheme with the linear recurrence relation can with- Ved(x) = x (modn) for any value O< x < n. This

stand the attacks. In this paper we show that if the lin- iS to make the scheme work. Therefore, the encryp-

ear recurrence relation has some properties, which aretion/verification key ise and the decryption/signing

usually required for the public-key scheme to function, Key isd.

t_he publlc—key.scheme with the linear recurrence rela- Note that V,(V,(x)) mod n = Vi (Vy(x) mod n)

tion cannot withstand the chosen-message and com- h ; ts R1-R3. the scheme look

mon modulus attacks no matter what the oraers r_nodn. Byt € requirements ' € 100Ks

. .. like the following.

and what the parameters are. In particular, we provide

a general chosen-message attack and a general com- | et 0 < M < n be the message. Then, the en-

mon modulus attack on the public-key scheme with cryption is C = V,(M) mod n, the decryption is

a linear recurrence relation. These results show that y,(c) modn, the signing isS = V,;(M) modn, and

the design of public-key schemes along the direction the verification is to verify whetheV,(S) mod n is

of Lucas-like functions is not feasible if the chosen- equal toys.

message and common modulus attacks are considered

as major threats. The RSA and LUC schemes both fit into this
The LUC scheme has been attacked in many di- classification. In the RSA scheme the identity is

rections [2,9]. Its claimed advantages over the RSA computed byed =1 mod(p — 1)(¢ — 1) and in the

scheme seem not existent. However, it might have one LUC scheme it is computed iyl = 1 mod(p?—1) -

merit. Our common modulus attack on the LUC cryp- (q°—1).

tosystem uses three pairwise relatively prime expo-

nents. From the structure, we observe that the attack

with two relatively prime exponents might not exist. 3- Common modulus attacks

If a cryptographic protocol uses RSA-like functions

and suffers from the two-exponent common-modulus

attack, one might use Lucas-like functions as an alter-

native.

In implementating a public-key cryptosystem as
described in Section 2, the system may use the same
modulusn for every user so that uséhas the public
key (e;, n) and private keyd;, n). We note that a user
with some(e;, d;) pair can factor the moduk. If a
2. Preliminaries messageV is encrypted and sent to every user, the

adversary (not one of the users) can use the public

We first assume that the public-key scheme is de- keys (e¢;,n) and the ciphertexty,, (M) mod n to
signed along the RSA-like direction. The scheme compute the plaintexd/. We show that the public-
serves two purposes, cryptosystem and digital signa- key cryptosystem with an ordet-linear recurrence
ture, simultaneously. The operations of the scheme arerelation that satisfies the requirements R1-R3 cannot
on Zy, i.e., “modn” with few exclusions on finding withstand the common modulus attack with+ 1
multiplicative inverses. In Section 5, we consider the pairwise relatively prime exponents.
schemes with operations on other algebraic objects. Lete;, 1<i <m + 1, be pairwise relatively prime.
The requirements (assumptions) for our attacks to suc- Assume that O< M < n and gcdM,n) = 1. We
ceed are: consider the system of equations:

R1 (efficiency. Givena andx, a >0, 0 < x < n, riej —rit1eiy1 =1 1<i<m.
V.(x) mod n is polynomial-time computable in the The integer solutions for;, 1 <i <m + 1, exist and
size ofa andn. We assume that,,(x) = V,(V,(x)). can be found by Euclid’s algorithm.
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Lemmal. If ¢;, 1 <i <m+ 1, are pairwise rel-
atively prime, then the system of equationg; —
riviei+1 =1, 1 <i < m, has integer solutions faf;,
1<is<m+1.

Proof. We prove this theorem by induction en For
the induction base: = 1, sincee; ande; are relatively

prime, we use Euclid’s algorithm to find an integer so-

lution (r1,r5) for rie1 — rze2 = 1. For the induction
hypothesisn = k, we assume that{,r;, ..., 4)
is an integer solution for;e; — rit1ei41 =1, 1<
i <k. Let E; beerer---ej_1ei11---ex+1. We can
see that IG_ + tE]_,ré + tEy,. ..,r;H_l + tEry1) IS
also an integer solution for an arbitrary integer
We consider the case = k + 1 now. For the first
k equationsrie; — riz1eiy1 = 1, 1 < i <k, we
find integer solutionsrf +tE1,ry +tE2,...,1; 4 +
tEyy1) for an arbitrary integer by the hypothe-
sis. We then substitute; ., + 1Exi1 for rgqq in
the (k + 1)th equationryiier+1 — rrq2ekr2 = 1 to
obtain (r;H_l + tEry1)er+1 — rev2er+2 = 1, which
iS te1en---epr1 — rrs2eki2 = 1 — r,i+1ek+1. Since
gcdlerez - - - ex+1, ex+2) = 1, we use Euclid’s algo-
rithm to find an integer solutio@’, ;. ,) for (¢, ri+2).
Therefore, £y +t'E1,r5 +t'Ez, ..., 14 + t'Exy1,
r,é+2) is an integer solution for;e; — rit1ei+1 =1,
1<i<k+1. O

Theorem 2. The public-key cryptosystem with an
ordern linear recurrence relation that satisfies the
requirementsR1-R3 cannot withstand the common
modulus attack withn 4 1 pairwise relatively prime
exponents.

Proof. In fact, rje;, 1<i <m+ 1, arem + 1 con-

secutive numbers. If the adversary obtains the cipher-

texts V,; (M) modn, 1<i<m+1, it can compute
the values/,.,., (M) modn, 1<i <m+ 1, in polyno-

mial time. Therefore, the adversary can solve the linear

equation

Virer (M) modn

m+1
= (Z(a,'M+b,')Vrl.ei (M)+cM+f> modn.
i=2

to obtain the messagd. O
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4. Chosen-message attacks

In the chosen-message attack, the adversary can
guery a signer to sign some messages and then uses
the signed messages to deduce the signature of some
other message of its choice.

Theorem 3. If the public-key signature scheme with
an orderm linear recurrence that satisfies the require-
mentsR1-R3 then it cannot withstand the chosen-
message attack with queries.

Proof. Let (d, n) be the signing key of the signer and
(e, n) be the verification key. The adversary chooses
a messaga?, 0 < M <n and gcdM,n) = 1. The
adversary computes the valu&s_;(M) mod n for

1 <i < m and asks the signer to sign them. It then
uses the query resultg; (V,_;(M) mod n) mod n,
1<i < m, forthe equation

M =V,;(M) modn
= Ve(Va(M)) modn

= (Z (@i Va(M) + b)) Ve—i (Va(M))

i=1

+cVy(M) + f) modn

= < (ai Va(M) modn + b;) Vy
=1

X (Ve—i (M) modn) + cVa(M) + f) modn

to solveV;(M) modn, which is the signature of the
messagé/. 0O

5. Computing on other algebraic objects

We have illustrated our attacks on the public-key
scheme with a linear recurrence relation that satisfies
the requirements R1-R3 and is of operationsZgn
It can be extended to other algebraic objects if the
algebraic objects satisfy the following criteria.

(1) For efficiency, the general operations, such as ad-
dition, multiplication, additive inverse, multiplica-
tive inverse, should be able to be computed effi-
ciently.
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(2) For the trapdoor property (security), the opera-
tions, such as factoring and discrete logarithm,
should be polynomially infeasible to compute.

The finite fieldsF,~ and elliptic curves over a finite

field satisfy the above criteria.

6. Conclusion and open problems

We would like to ask whether the LUC cryptosys-
tem can withstand the common modulus attack with
only two relatively prime exponents. This can be gen-
eralized to ask whether the public-key cryptosystem
with an orders linear recurrence relation can be at-
tacked with less tham + 1 pairwise relatively prime
exponents. We note that there existandey, for ex-
ample,e; = 3 ande, = 4, such thatrie;, r2¢; and
raek, i, j, k € {1, 2}, cannot be three consecutive num-
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