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Abstract

We study B — 7’ X, within the framework of the Standard Model. Several mechanisms such as b — n'sg through the
QCD anomaly, and b— n's and B — 7n'sg arising from four-quark operators are treated simultaneously. Using QCD
equations of motion, we relate the effective Hamiltonian for the first mechanism to that for the latter two. By incorporating
next-to-leading-logarithmic(NLL) contributions, the first mechanism is shown to give a significant branching ratio for
B — 7n'X,, while the other two mechanisms account for about 15% of the experimental value. The Standard Model
prediction for B — 1’ X, is consistent with the CLEO data. © 1999 Elsevier Science B.V. All rights reserved.

PACS 13.25.Hw; 13.40.Hqg

The recent observation of B— 'K [1] and B —
7' X, [2] decays with high momentum n' mesons has
stimulated many theoretical activities [3—10]. One of
the mechanisms proposed to account for this decay is
b—sg* - sgn’ [3,4] where the ' meson is pro-
duced via the anomalous m'—g—g coupling.
According to a previous anaysis [4], this mecha
nism within the Standard Model (SM) can only
account for 1/3 of the measured branching ratio:
B(B—n'X,) = [6.2+ 1.6(stat) + 1.3(syst) 98
% (bkg) | X 107* [2] with 2.0 < p, < 2.7 GeV. There
are also other calculations of B — n'X; based on
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four-quark operators of the effective weak-Hamilto-
nian [5,6]. These contributions to the branching ratio,
typically 10~*, are also too small to account for
B — n'X,, dthough the four-quark-operator contri-
bution is capable of explaining the branching ratio
for the exclusive B — n'K decays [8,9]. These re-
sults have inspired proposals for an enhanced b — sg
and other mechanisms arising from physics beyond
the Standard Model [4,6,7]. In order to see if new
physics should play any role in B — n'X,, one has
to have a better understanding on the SM prediction.
In this letter, we carry out a careful analysis on
B — 7' X in the SM using next-to-leading effective
Hamiltonian and consider several mechanisms simul-
taneoudly.

We have observed that all earlier calculations on
b — sgn’ were either based upon one-loop result [4]
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which neglects the running of QCD renormalization
-scale from M,, to M, or only taking into account
part of the running effect [3]. Since the short-distance
QCD effect is generaly significant in weak decays,
it is therefore crucial to compute b — sgn’ using the
effective Hamiltonian approach. As will be shown
later, the process b — sgn’ aone contribute signifi-
cantly to B — ' X, while contributions from b —
n's and B — 1'sq are suppressed.

The effective Hamiltonian 3 for the B — n'X
decay is given by:

Heff(AB= 1) = % f=2u,chbe; (Cl( M’)Olf( M)
+Cy( 1) O3( 1))
6
thb( Zci(:u“)oi(/“'“)
i=3
+Cg( 1) Og( 1) ] (1)
with 4
= (51),_Alfib),

=(5f)v- A(f-b)
Oaz(ﬁbi)v—AZ( )v A’

= (Sbi)v—AZ (qj Qi)v—A’
q

Os = (Sbi)V—AZ(qJ qJ)V+A’
q

= (Sbi)V—AZ (qJ qi)v+A’
q

Og = —g—SZSo-’“’(mSPL+mbPR)TabGa (2)

4o B ™

where V+A=1+vys In the above, we have
dropped O, since its contribution is negligible. For

% For an extensive review on the subject of effective Hamilto-
nian, see Ref. [11], which contains a detailed list of origina
literatures.

*The sign of Og is consistent with the covariant derivative,
D,=39,-— |gT'°‘A;'j, in the QCD Lagrangian. See, [12].

numerical analyses, we use the scheme-independent
Wilson coefficients discussed in Ref. [13,14]. For
m, =175 GeV, a(m3)=0.118 and u=m,=5
GeV, we have [14]

C,=-0313, C,=1.150, C;=0.017,

C,= —0.037, C;=0.010, C;= —0.045. (3)

At the NLL level, the effective Hamiltonian is modi-
fied by one-loop matrix elements which effectively
change C(w)(i=3,---,6) into C(u)+ Ci(g?%pn)

with
Ca(d?, 1) = Co(0? ) = — 3C5(0?, )

= —3C5(0?,n) = — Py(d’, ), (4)
where

Q%) = 5= Col 1) (£ + G(ME.c.1)). ()
with
G(m:.a%,u)

= 4fx(1— x)Iog( M ~ X(Mlz_ L ) dx. (6)

The coefficient Cg; is equal to —0.144 a u=
5GeV °, and m, is taken to be 1.4 GeV.

Before we discuss the dominant b — sgn’ pro-
cess, let us first work out the four-quark-operator
contribution to B — 7' X, using the above effective
Hamiltonian. We follow the approach of Ref. [3,5,15]
which uses factorization approximation to estimate
various hadronic matrix elements. The four-quark
operators can induce three types of processes repre-
sented by (1) (y/|GIbIB) (XJ3I7ql0), (2)
(n'lqr,qlo) { X I8 b|B), and (3)
(n'X{5I’;ql0) <0IGI;b|B). Here I} denotes ap-
propriate gamma matrices. The contribution from (1)
gives a ‘‘three-body’’ type of decay, B — n'sq. The
contribution from (2) gives a ‘‘two-body’’ type of
decay b — sn'. The contribution from (3) is the
annihilation type which is relatively suppressed and
will be neglected. Note that there are interferences

® For an extensive review on the subject of effective Hamilto-
nian, see Ref. [11], which contains a detailed list of original
literatures.
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between (1) and (2), so they must be coherently
added together [5].

Severa decay constants and form factors needed
in the calculations are listed below:

(O[T, ysuln') = {Oldy, ysdln') =if! p7,

<O|§YM’)’55|7)/> = If‘rls/ p,:l/a

2

OlSyesh) = i( 12~ £3) >
SysSln'y =i(fy—15)—,
5 n n 2m

1 1
fy= 7 f,cos6, + ﬁfssmf)8 ,

1
fs = ﬁ(flcosa1 — V2 fgsingy),

{(n'|ty,blB™) = (x'|dy,b|B%)

=F(n2+ )

. 5oy MBZ— s,
SGAELOE= N
q
FE‘q:i isinoS’FE‘*’H—cos@FB*’1 : (7
1,0 \/§ ‘/E 1,0 1,0

For the ' — n mixing associated with decay con-
stants above, we have used the two-angle -parametri-
zation. The numerical values of various parameters
are obtained from Ref. [16] with f; =157 MeV,
fg =168 MeV, and the mixing angles 6, = —9.1°,
0y = —22.1°. For the mixing angle associated with
form factors, we use the one-angle parametrization
with § = —15.4° [16], since these form factors were
caculated in that formulation [5,15]. In the latter
discussion of b— sgn’, we shal use the same
parametrization in order to compare our results with
those of earlier works [3,4]. For form factors, we
assume that FBm =FB7%=FB wijth dipole and
monopole g® dependence for F, and F,, respec-
tively. We used the running mass mg = 120 MeV at
w=25 GeV and FB = 0.33 following Ref. [9].
The branching ratios of the above processes also
depend on two less well-determined KM matrix ele-

ments, V,, and V,,. The dependences on V,, arise
from the penguin-diagram contributions while the
dependences on V,, and its phase vy occur through
the tree-diagram contributions. We will use y = 64°
obtained from Ref. [17], |V, |=|V,|=0.038 and
IV,,l/IV,,| = 0.08 for an illustration. We find that,
for uw=5 GeV, the branching ratio in the signal
region p, > 2.0 GeV (my <2.35 GeV) is

B(b—n'X)=10x10"%, (8)

The branching ratio can reach 2 X 10~* if all param-
eters take values in favour of B — 7' X,. Clearly the
mechanism by four-quark operator is not sufficient
to explain the observed B — 7' X, branching ratio.

We now turn to the major mechanism for B —
n' Xy b— n'sg through the QCD anomaly. To see
how the effective Hamiltonian in Eg. (1) can be
applied to calculate this process, we rearrange part of
the effective Hamiltonian such that

6 C C

Y. CO = C3+EA O+ [Co+ — O,

i=3

—2(C,—C4)0, +2(C, + C4) Oy,

(9)

where

On=3y,(1— v5)T?b ) Gy ysT 0,

q
Oy =5,(1— y5) T Y. Gy"T7. (10)

q

Since the light-quark bilinear in O,, carries the
quantum number of a gluon, one expects[3] O, give
contribution to the b — sg* form factors. In fact, by
applying the QCD equation of motion: D,G/" =
gquy MTaqv we have OV = (1/gs)§y#(1 - 75)'
T2bD,G/ °. Inthisform, O, is easily seen to give

6 By applying the QCD equation of motion or performing a
direct calculation, it was shown that the operator basis of O3 — Og
are suitable to describe nonleptonic weak decays although effec-
tive vertices such as s— d+gluons are encountered. Here the
operator basis on the r.h.s of Eq. (9) is more suitable for our
purpose. For detail, see Ref. [18].
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riseto b—sg* vertex. Let us write the effective
b—sg* vertex as

GF % gs
ﬁ\/ts Ly

X (AFlé(qzyM -4q/q,)LT®
—iF,m,50,,q"RT?b). (11)

In the above, we define the form factors AF, and F,
according to the convention in Ref. [4]. Inferring
from Eq. (9), we arrive at

477
AF, = 7(C4( ) +Cs( ), Fp=—2C(p).
(12)

We note that our relative sign between AF, and F,
agree with those in Ref. [4,6], and shall result in a
destructive interference for the rate of b — sgn’. We
stress that this relative sign is fixed by treating the
sign of Og and the convention of QCD covariant
derivative consistently. * To ensure the sign, we also
check against the result by Simma and Wyler [19] on
b—sg” form factors. An agreement on sign is
found. Findly, we remark that, at the NLL level,
AF, should be corrected by one-loop matrix ele-
ments. The dominant contribution arises from the
operator O, where its charm-quark-pair meets to
form a gluon. In fact, this contribution, denoted as
AF, for convenience, has been shown in Egs. (4)-(6),
namely AF, = %7(C,(g?,u) + Co(g% w)).

To proceed further, we recall the distribution of
the b(p)— s(p)+g(k) + n'(k) branching ratio
[4]:

bsg — _
I,

d2%(b— syn') o[ 9s( 1) \*a2(w)mé
————— =0.2cos? >
dxdy A7 4
2 .\ G
X [IAF] c0+Re(AF1F;)7
C
+|AF2|2y—2 , (13)

where a,(u) = Ne a( )/, is the strength of
n' —g—g vertex: agcoseewaﬁq“kﬁ with g and k
the momenta of two gluons;, x=(p + k)?/m3 and

" We thank A. Kagan for pointing out this to us, which helps us
to detect a sign error in our earlier calculation.

y=(k+Kk)?/m; c,, c, and c, are functions of x
and y as given by:

Co=[-2x2y+ (1-y)(y-x)(2x+y-X)]/2,
o =(1-y)(y-x)%

¢, =[2x2y2 — (1—-y)(y—x)(2xy—y+X)] /2,
(14)

with X' =m?, /mg; and the o' — n mixing angle 6 is
taken to be —15.4° as noted earlier. Findly, in
obtaining the normalization factor: 0.2, we have
taken into account the one-loop QCD correction [20]
to the semi-leptonic b — ¢ decay for consistency.

In previous one-loop calculations without QCD
corrections, it was found AF; = —5 and F, = 0.2
[3,4]. In our approach, we obtain AF, = —4.86 and
F, = 0.288 from Egs. (3) and (12). However, AF; is
enhanced significantly by the matrix-element correc-
tion AF,(g?u). The latter quantity develops an
imaginary part as g® passes the charm-pair thresh-
old, and the magnitude of its real part also becomes
maximal at this threshold. From Egs. (3), (4) and (5),
one finds Re(AF,(4m?,u)) = —258 at u=5 GeV.
Including the contribution by A F,(q2,u) with u=5
GeV, and using Eqg. (13), we find % (b — sgn’) =

56x 10~* with the cut m,=(k+p)* <235
GeV imposed in the CLEO measurement [2]. This
branching ratio is consistent with CLEO’s measure-
ment on the B — n'X, branching ratio [2]. Without
the kinematic cut, we obtain %(b — sgn’) = 1.0 X
1073, which is much larger than 4.3 X 10~* calcu-
lated previously [4]. We also obtain the spectrum
d%(b - sgn') /dm, as depicted in Fig. 1. The peak
of the spectrum corresponds to my = 2.4 GeV.

It is interesting to note that the CLEO analysis[2]
indicates that, without the anomaly-induced contribu-
tion, the recoil-mass(m, ) spectrum of B — 1’ X, can
not be well reproduced even if the four-quark opera-
tor contributions are normalized to fit the branching
ratio of the process. On the other hand, if b— sg~
— sgn’ dominates the contributionsto B — 1’ X, as
shown here, the m, spectrum can be fitted better as
shown in Fig. 2 of Ref. [2]. It is aso interesting to
remark that although the four-quark operator contri-
butions can not fit the branching ratio nor the spec-
trum, it does play arole in producing a small peak in
the spectrum, which corresponds to the B — 1'K



X.-G. He, G.-L. Lin / Physics Letters B 454 (1999) 123-128 127

x10™

dB(b— s+g+n')/dmy (GeV'')

0 1 2 3 4
my (GeV)

Fig. 1. The distribution of %(b — s+ g+ 7') asafunction of the
recoil mass my,.

mode. Specifically, the B — n'K mode is accounted
for by the b — s’ type of decays discussed earlier.
Based on results obtained so far, one concludes that
the Standard Modd is not in conflict the experimen-
tal data on B — n'X,. It can produce not only the
branching ratio for B — 1’ X, but aso the recoil-mass
spectrum when contributions from the anomaly
mechanism and the four-quark operators are properly
treated.

Up to this point, a,(w) of the n' —g— g vertex
has been treated as a constant independent of invari-
ant-masses of the gluons, and w is set to be 5 GeV.
In practice, a,( ) should behave like a form-factor
which becomes suppressed as the gluons attached to
it go farther off-shell [3,4,6]. However, it remains
unclear how much the form-factor suppression might
be. It is possible that the branching ratio we just
obtained gets reduced significantly by the form-fac-
tor effect in " — g — g vertex. Should a large form-
factor suppression occur, the additional contribution
from b — n'sand B — 7'sq discussed earlier would
become crucial. We however like to stress that our
estimate of b— sgn’ with a evaluated at u©=5
GeV is conservative. To illustrate this, let us com-
pare branching ratios for b— sgn’ obtained at
p=>5GeV and u=25 GeV respectively. In NDR
scheme 8, branching ratios at the above two scales
with the cut my, <235 GeV are 49x 10"* and

% In NDR scheme, apart from a different set of Wilson coeffi-
cients compared to Eq. (3), the congtant term: % at the r.h.s. of
Eq. (5) is replaced by 2. For details, see, for example Ref. [21].

9.1x10"* respectively. One can clearly see the
significant scale-dependence! With the enhancement
resulting from lowering the renormalization scale,
there seems to be some room for the form-factor
suppression in the attempt of explaining B — 7' X,
by b— sgn’ °.

It should be noted that the above scale-depen-
dence is solely due to the coupling constant a ()
appearing in the o' — g — g vertex. In fact, the b —
sg* vertex is rather insensitive to the renormaliza
tion scale. Indeed, from Eq. (11), we compute in the
NDR scheme the scae-dependence of gJ(AF, +
AF(g?). We find that, as u decreases from 5 GeV
to 2.5 GeV, the peak value of the above quantity
increases by only 10%. Therefore, to stabilize the
scale-dependence, one should include corrections be-
yond those which simply renormalize the b — sg*
vertex. We shall leave this to a future investigation.

It is instructive to compare our results with those
of Refs. [3,4]. With the kinematic cut, our numerical
result for (b — sgn’) is only dlightly smaller than
the branching ratio, 8.2 x 10~4, reported in Ref. [3],
where the a( ) coupling of n' —g—g vertex is
evaluated a& w=1 GeV, and AF, receives only
short-distance contributions from the Wilson coeffi-
cients C, and C;. Although we have a much smaller
ag, which is evaluated at u =5 GeV, and the inter-
ference of AF; and F, is destructive [4] rather than
constructive [3], there exists a compensating en-
hancement in AF, due to one-loop matrix elements.
The branching ratio in Ref. [4] is 2 — 3 times smaller
than ours since it is given by a AF; smaller than
ours but comparable to that of Ref. [3]. Concerning
the relative importance of AF, and F,, we find that
AF, done gives &(b— sgn')=65x10"* with
the kinematic cut my < 2.35 GeV. Hence the inclu-
sion of F, lowers down the branching ratio by only
14%. Such a small interference effect is quite distinct
from results of Refs. [3,4] where 20%-50% of inter-

® We do notice that B(b — sgn') is suppressed by more than
one order of magnitude if a,(u) in Eq. (13) is replaced by

a,(m,)-

o (m2 - q?
tion for a, stems from the assumption that g* — gn’ form factor
behaves in the same way as the QED-anomaly form factor y * —

vy, It remains unclear as raised in Refs. [3,4] that one could
make such a connection between two distinct form factors.

according to Ref. [6]. However, this prescrip-
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ference effects are found. We attribute this to the
enhancement of AF, in our calculation.

Before closing we would like to comment on the
branching ratio for B — nX,. It isinteresting to note
that the width of b — nsg is suppressed by tan%
compared to that of b — 7'sg. Taking 6 = —15.4°,
we obtain Z(B — nX,) =4 X 10~°. The contribu-
tion from the four-quark operator can be larger.
Depending on the choice of parameters, we find that
B(B — nX,) isin the range of (6 ~ 10) X 10~ °.

In conclusion, we have calculated the branching
ratio of b — sgn’ by including the NLL correction to
the b—sg* vertex. By assuming a low-energy
n' — g — g vertex, and cutting the recoil-mass m, at
2.35 GeV, we obtained (b — sgn') =(5—9) X
10~* depending on the choice of the QCD renormal-
ization-scale. Although the form-factor suppression
in the o' —g—g vertex is anticipated, it remains
possible that the anomaly-induced process b — sgn’
could account for the CLEO measurement on (B
— n'X,). For the four-quark operator contribution,
we obtain (B — n'X,) = 1 X 10~*. This accounts
for roughly 15% of the experimenta central-value
and can reach 30% if favourable parameters are
used. Finally, combining contributions from the
anomaly-mechanism and the four-quark operators,
the entire range of B — 7' X, spectrum can be well
reproduced.
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