

13 May 1999

PHYSICS LETTERS B

Physics Letters B 454 (1999) 123-128

$B \to \eta' X$, in the standard model

Xiao-Gang He $a,b,1$, Guey-Lin Lin $c,2$

^a Department of Physics, National Taiwan University, Taipei, Taiwan, 10764, Taiwan School of Physics, University of Melbourne, Parkville, Vic. 3052, Australia ^c Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan, 300, Taiwan

Received 11 December 1998: received in revised form 4 March 1999 Editor: H. Georgi

Abstract

We study $B \to \eta' X$, within the framework of the Standard Model. Several mechanisms such as $b \to \eta' sg$ through the QCD anomaly, and $b \to \eta' s$ and $B \to \eta' s \bar{q}$ arising from four-quark operators are treated simultaneously. Using QCD equations of motion, we relate the effective Hamiltonian for the first mechanism to that for the latter two. By incorporating next-to-leading-logarithmic(NLL) contributions, the first mechanism is shown to give a significant branching ratio for $B \to \eta' X_s$, while the other two mechanisms account for about 15% of the experimental value. The Standard Model prediction for $B \to \eta' X$, is consistent with the CLEO data. © 1999 Elsevier Science B.V. All rights reserved.

PACS: 13.25.Hw; 13.40.Hq

The recent observation of $B \to \eta' K$ [1] and $B \to$ $\eta' X$, [2] decays with high momentum η' mesons has stimulated many theoretical activities $[3-10]$. One of the mechanisms proposed to account for this decay is $b \rightarrow sg^* \rightarrow sg \eta'$ [3,4] where the η' meson is produced via the anomalous $\eta' - g - g$ coupling. According to a previous analysis [4], this mechanism within the Standard Model (SM) can only account for $1/3$ of the measured branching ratio: $\mathscr{B}(B \to \eta' X_s) = \left[6.2 \pm 1.6 \text{(stat)} \pm 1.3 \text{(syst)} \right]_{-1.5}^{+0.0}$ \times (bkg) \times 10⁻⁴ [2] with 2.0 < $p_{n'}$ < 2.7 GeV. There are also other calculations of $B \to \eta' X_s$ based on

four-quark operators of the effective weak-Hamiltonian $[5,6]$. These contributions to the branching ratio, typically 10^{-4} , are also too small to account for $B \to \eta' X_s$, although the four-quark-operator contribution is capable of explaining the branching ratio for the exclusive $B \to \eta' K$ decays [8,9]. These results have inspired proposals for an enhanced $b \rightarrow sg$ and other mechanisms arising from physics beyond the Standard Model [4,6,7]. In order to see if new physics should play any role in $B \to \eta' X_s$, one has to have a better understanding on the SM prediction. In this letter, we carry out a careful analysis on $B \to \eta' X$, in the SM using next-to-leading effective Hamiltonian and consider several mechanisms simultaneously.

We have observed that all earlier calculations on $b \rightarrow sgn'$ were either based upon one-loop result [4]

 1 E-mail: hexg@phys.ntu.edu.tw

 2 E-mail: glin@beauty.phys.nctu.edu.tw

^{0370-2693/99/\$ -} see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0370-2693(99)00302-0

which neglects the running of QCD renormalization -scale from M_w to M_h or only taking into account part of the running effect [3]. Since the short-distance QCD effect is generally significant in weak decays, it is therefore crucial to compute $b \rightarrow sgn'$ using the effective Hamiltonian approach. As will be shown later, the process $b \rightarrow s g \eta'$ alone contribute significantly to $B \to \eta' X_s$ while contributions from *b* \to η 's and $B \to \eta' s \overline{q}$ are suppressed.

The effective Hamiltonian ³ for the $B \to \eta' X_s$ decay is given by:

$$
H_{\text{eff}}(\Delta B = 1) = \frac{G_F}{\sqrt{2}} \left[\sum_{f=u,c} V_{fb} V_{fs}^* (C_1(\mu) O_1^f(\mu) + C_2(\mu) O_2^f(\mu)) - V_{ts}^* V_{tb} \left(\sum_{i=3}^6 C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu) \right) \right], \tag{1}
$$

with 4

$$
O_{1}^{f} = (\bar{s}_{i}f_{j})_{V-A} (\bar{f}_{j}b_{i})_{V-A},
$$

\n
$$
O_{2}^{f} = (\bar{s}_{i}f_{i})_{V-A} (\bar{f}_{j}b_{j})_{V-A},
$$

\n
$$
O_{3} = (\bar{s}_{i}b_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V-A},
$$

\n
$$
O_{4} = (\bar{s}_{i}b_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V-A},
$$

\n
$$
O_{5} = (\bar{s}_{i}b_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V+A},
$$

\n
$$
O_{6} = (\bar{s}_{i}b_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V+A},
$$

\n
$$
O_{8} = -\frac{g_{s}}{4\pi^{2}} \bar{s}_{i} \sigma^{\mu\nu} (m_{s}P_{L} + m_{b}P_{R}) T_{ij}^{a} b_{j} G_{\mu\nu}^{a},
$$
 (2)

where $V \pm A \equiv 1 \pm \gamma_5$. In the above, we have dropped O_7 since its contribution is negligible. For numerical analyses, we use the scheme-independent Wilson coefficients discussed in Ref. [13,14]. For $m_t = 175$ GeV, $\alpha_s(m_Z^2) = 0.118$ and $\mu = m_b = 5$ GeV, we have $[14]$

$$
C_1 = -0.313
$$
, $C_2 = 1.150$, $C_3 = 0.017$,
\n $C_4 = -0.037$, $C_5 = 0.010$, $C_6 = -0.045$. (3)

At the NLL level, the effective Hamiltonian is modified by one-loop matrix elements which effectively change $C_i(\mu)(i=3,\dots,6)$ into $C_i(\mu)+\overline{C}_i(q^2,\mu)$ with

$$
\overline{C}_4(q^2,\mu) = \overline{C}_6(q^2,\mu) = -3\overline{C}_3(q^2,\mu) \n= -3\overline{C}_5(q^2,\mu) = -P_s(q^2,\mu),
$$
\n(4)

where

$$
P_{s}(q^{2},\mu)=\frac{\alpha_{s}}{8\pi}C_{2}(\mu)\left(\frac{10}{9}+G(m_{c}^{2},q^{2},\mu)\right),\qquad(5)
$$

with

$$
G(m_c^2, q^2, \mu)
$$

= $4 \int x(1-x) \log \left(\frac{m_c^2 - x(1-x)q^2}{\mu^2} \right) dx.$ (6)

The coefficient C_8 is equal to -0.144 at $\mu =$ 5 GeV $\,$ ⁵, and m_c is taken to be 1.4 GeV.

Before we discuss the dominant $b \rightarrow sgn'$ process, let us first work out the four-quark-operator contribution to $B \to \eta' X_s$ using the above effective Hamiltonian. We follow the approach of Ref. $[3,5,15]$ which uses factorization approximation to estimate various hadronic matrix elements. The four-quark operators can induce three types of processes repre-
sented by (1) $\langle \eta' | \bar{q} \Gamma_1 b | B \rangle \langle X_s | \bar{s} \Gamma_1' q | 0 \rangle$, (2)
 $\langle \eta' | \bar{q} \Gamma_2 q | 0 \rangle \langle X_s | \bar{s} \Gamma b | B \rangle$, and (3)
 $\langle \eta' X_s | \bar{s} \Gamma_3 q | 0 \rangle \langle 0 | \bar{q} \Gamma_3' b | B \rangle$. Here $\Gamma_i^{($ propriate gamma matrices. The contribution from (1) gives a ''three-body'' type of decay, *B* $\rightarrow \eta' s\bar{g}$. The contribution from (2) gives a "two-body" type of decay $b \rightarrow s\eta'$. The contribution from (3) is the annihilation type which is relatively suppressed and will be neglected. Note that there are interferences

 3 For an extensive review on the subject of effective Hamiltonian, see Ref. [11], which contains a detailed list of original

literatures. ⁴ The sign of O_8 is consistent with the covariant derivative, $D_{\mu} = \partial_{\mu} - igT^a A_{\mu}^a$, in the QCD Lagrangian. See, [12].

⁵ For an extensive review on the subject of effective Hamiltonian, see Ref. $[11]$, which contains a detailed list of original literatures.

between (1) and (2) , so they must be coherently added together [5].

Several decay constants and form factors needed in the calculations are listed below:

$$
\langle 0|\bar{u}\gamma_{\mu}\gamma_{5}u|\eta'\rangle = \langle 0|\bar{d}\gamma_{\mu}\gamma_{5}d|\eta'\rangle = if_{\eta'}^u p_{\mu}^{\eta'},
$$

\n
$$
\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}s|\eta'\rangle = if_{\eta'}^s p_{\mu'}^{\eta'},
$$

\n
$$
\langle 0|\bar{s}\gamma_{5}s|\eta'\rangle = i(f_{\eta'}^u - f_{\eta'}^s)\frac{m_{\eta'}^2}{2m_s},
$$

\n
$$
f_{\eta'}^u = \frac{1}{\sqrt{3}}\left(f_1\cos\theta_1 + \frac{1}{\sqrt{2}}f_8\sin\theta_8\right),
$$

\n
$$
f_{\eta'}^s = \frac{1}{\sqrt{3}}\left(f_1\cos\theta_1 - \sqrt{2}f_8\sin\theta_8\right),
$$

\n
$$
\langle \eta'|\bar{u}\gamma_{\mu}b|B^-\rangle = \langle \eta'|\bar{d}\gamma_{\mu}b|\bar{B}^0\rangle
$$

\n
$$
= F_1^{Bq}\left(p_{\mu}^B + p_{\mu}^{\eta'}\right)
$$

\n
$$
+ \left(F_0^{Bq} - F_1^{Bq}\right)\frac{mB^2 - m_{\eta'}^2}{q^2}q_{\mu},
$$

$$
F_{1,0}^{Bq} = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{2}} \sin \theta F_{1,0}^{B\eta_8} + \cos \theta F_{1,0}^{B\eta_1} \right). \tag{7}
$$

For the $\eta' - \eta$ mixing associated with decay constants above, we have used the two-angle -parametrization. The numerical values of various parameters are obtained from Ref. [16] with $f_1 = 157$ MeV, $f_8 = 168$ MeV, and the mixing angles $\theta_1 = -9.1^\circ$, $\theta_8 = -22.1^{\circ}$. For the mixing angle associated with form factors, we use the one-angle parametrization with $\theta = -15.4^{\circ}$ [16], since these form factors were calculated in that formulation $[5,15]$. In the latter discussion of $b \rightarrow s g \eta'$, we shall use the same parametrization in order to compare our results with those of earlier works $[3,4]$. For form factors, we assume that $F^{B\eta_1} = F^{B\eta_8} = F^{B\pi}$ with dipole and monopole q^2 dependence for F_1 and F_0 , respectively. We used the running mass $m_s \approx 120$ MeV at $\mu = 2.5$ GeV and $F^{B\pi} = 0.33$ following Ref. [9].

The branching ratios of the above processes also depend on two less well-determined KM matrix ele-

ments, V_{ts} and V_{ub} . The dependences on V_{ts} arise from the penguin-diagram contributions while the dependences on V_{ub} and its phase γ occur through the tree-diagram contributions. We will use $\gamma = 64^{\circ}$ obtained from Ref. [17], $|V_{ts}| \approx |V_{cb}| = 0.038$ and $|V_{ub}|/|V_{cb}| = 0.08$ for an illustration. We find that, for $\mu = 5$ GeV, the branching ratio in the signal region $p_{n'} \ge 2.0$ GeV ($m_X \le 2.35$ GeV) is

$$
\mathcal{B}(b \to \eta' X_s) \approx 1.0 \times 10^{-4}.
$$
 (8)

The branching ratio can reach 2×10^{-4} if all parameters take values in favour of $B \to \eta' X_s$. Clearly the mechanism by four-quark operator is not sufficient to explain the observed $B \to \eta' X_s$ branching ratio.

We now turn to the major mechanism for $B \rightarrow$ $\eta' X_s$: $b \to \eta' s g$ through the QCD anomaly. To see how the effective Hamiltonian in Eq. (1) can be applied to calculate this process, we rearrange part of the effective Hamiltonian such that

$$
\sum_{i=3}^{6} C_i O_i = \left(C_3 + \frac{C_4}{N_c} \right) O_3 + \left(C_5 + \frac{C_6}{N_c} \right) O_5
$$

- 2(C_4 - C_6) O_A + 2(C_4 + C_6) O_V, (9)

where

$$
O_A = \bar{s}\gamma_\mu (1 - \gamma_5) T^a b \sum_q \bar{q} \gamma^\mu \gamma_5 T^a q,
$$

$$
O_V = \bar{s}\gamma_\mu (1 - \gamma_5) T^a b \sum_q \bar{q} \gamma^\mu T^a q.
$$
 (10)

Since the light-quark bilinear in O_V carries the quantum number of a gluon, one expects [3] O_V give contribution to the $b \rightarrow sg^*$ form factors. In fact, by applying the QCD equation of motion: $D_{\nu} G_{a}^{\mu\nu} =$ $g_s \Sigma \bar{q} \gamma^\mu T^a q$, we have $O_V = (1/g_s) \bar{s} \gamma_a (1 - \gamma_5)$ - $T^a b D_\nu G_a^{\mu\nu}$ ⁶. In this form, O_V is easily seen to give

⁶ By applying the QCD equation of motion or performing a direct calculation, it was shown that the operator basis of $O_3 - O_6$ are suitable to describe nonleptonic weak decays although effective vertices such as $s \rightarrow d +$ gluons are encountered. Here the operator basis on the r.h.s of Eq. (9) is more suitable for our purpose. For detail, see Ref. [18].

rise to $b \rightarrow s g^*$ vertex. Let us write the effective $b \rightarrow s g^*$ vertex as

$$
\Gamma_{\mu}^{bsg} = -\frac{G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{g_s}{4\pi^2}
$$

$$
\times \left(\Delta F_1 \bar{s} \left(q^2 \gamma_\mu - q / q_\mu \right) L T^a b - i F_2 m_b \bar{s} \sigma_{\mu\nu} q^\nu R T^a b \right). \tag{11}
$$

In the above, we define the form factors ΔF_1 and F_2 according to the convention in Ref. [4]. Inferring from Eq. (9) , we arrive at

$$
\Delta F_1 = \frac{4\pi}{\alpha_s} (C_4(\mu) + C_6(\mu)), \quad F_2 = -2C_8(\mu).
$$
\n(12)

We note that our relative sign between ΔF_1 and F_2 agree with those in Ref. $[4,6]$, and shall result in a destructive interference for the rate of $b \rightarrow sg\eta'$. We stress that this relative sign is fixed by treating the sign of O_8 and the convention of QCD covariant derivative consistently. $\frac{7}{10}$ To ensure the sign, we also check against the result by Simma and Wyler [19] on $b \rightarrow sg^*$ form factors. An agreement on sign is found. Finally, we remark that, at the NLL level, ΔF_1 should be corrected by one-loop matrix elements. The dominant contribution arises from the operator O_2 where its charm-quark-pair meets to form a gluon. In fact, this contribution, denoted as $\Delta \overline{F}_1$ for convenience, has been shown in Eqs. (4)-(6), namely $\Delta \overline{F}_1 = \frac{4\pi}{\alpha} (\overline{C}_4(q^2,\mu) + \overline{C}_6(q^2,\mu))$.

To proceed further, we recall the distribution of the $b(p) \rightarrow s(p') + g(k) + \eta'(k')$ branching ratio $[4]$:

$$
\frac{d^2 \mathcal{B}(b \to s g \eta')}{d x d y} \approx 0.2 \cos^2 \theta \left(\frac{g_s(\mu)}{4 \pi^2} \right)^2 \frac{a_g^2(\mu) m_b^2}{4}
$$

$$
\times \left[|\Delta F_1|^2 c_0 + \text{Re}(\Delta F_1 F_2^*) \frac{c_1}{y} + |\Delta F_2|^2 \frac{c_2}{y^2} \right], \tag{13}
$$

where $a_{\varrho}(\mu) \equiv \sqrt{N_F} \alpha_s(\mu) / \pi f_{n'}$ is the strength of $\eta' - g - g$ vertex: $a_g \cos \theta \epsilon_{\mu\nu\alpha\beta} q^{\alpha} k^{\beta}$ with *q* and *k* the momenta of two gluons; $x = (p' + k)^2 / m_h^2$ and

 $y \equiv (k + k')^2 / m_b^2$; c_0 , c_1 and c_2 are functions of *x* and *y* as given by:

$$
c_0 = \left[-2x^2y + (1-y)(y-x')(2x+y-x') \right] / 2,
$$

\n
$$
c_1 = (1-y)(y-x')^2,
$$

\n
$$
c_2 = \left[2x^2y^2 - (1-y)(y-x')(2xy-y+x') \right] / 2,
$$

\n(14)

with $x' \equiv m_{\eta'}^2 / m_b^2$; and the $\eta' - \eta$ mixing angle θ is taken to be -15.4° as noted earlier. Finally, in obtaining the normalization factor: 0.2, we have taken into account the one-loop OCD correction $[20]$ to the semi-leptonic $b \rightarrow c$ decay for consistency.

In previous one-loop calculations without QCD corrections, it was found $\Delta F_1 \approx -5$ and $F_2 \approx 0.2$ [3,4]. In our approach, we obtain $\Delta F_1 = -4.86$ and $F_2 = 0.288$ from Eqs. (3) and (12). However, ΔF_1 is enhanced significantly by the matrix-element correc tion $\Delta \overline{F}_1(q^2, \mu)$. The latter quantity develops an imaginary part as q^2 passes the charm-pair threshold, and the magnitude of its real part also becomes maximal at this threshold. From Eqs. (3) , (4) and (5) , one finds Re $(\Delta \overline{F}_1(4m_\phi^2,\mu)) = -2.58$ at $\mu = 5$ GeV. Including the contribution by $\Delta F_1(q^2,\mu)$ with $\mu=5$ GeV, and using Eq. (13), we find $\mathcal{B}(b \rightarrow s g \eta') =$ 5.6×10^{-4} with the cut $m_{\text{X}} \equiv \sqrt{(k+p')^2} \le 2.35$ GeV imposed in the CLEO measurement [2]. This branching ratio is consistent with CLEO's measure-
ment on the $B \to \eta' X$, branching ratio [2]. Without the kinematic cut, we obtain $\mathcal{B}(b \rightarrow sgn') = 1.0 \times$ 10^{-3} , which is much larger than 4.3×10^{-4} calculated previously $[4]$. We also obtain the spectrum $d\mathcal{B}(b \rightarrow sgn')/dm_x$ as depicted in Fig. 1. The peak of the spectrum corresponds to $m_x \approx 2.4$ GeV.

It is interesting to note that the CLEO analysis $[2]$ indicates that, without the anomaly-induced contribution, the recoil-mass (m_X) spectrum of $B \to \eta' X_s$ can not be well reproduced even if the four-quark operator contributions are normalized to fit the branching ratio of the process. On the other hand, if $b \rightarrow sg^*$ \rightarrow *sg* η' dominates the contributions to $B \rightarrow \eta' X_s$, as shown here, the m_x spectrum can be fitted better as shown in Fig. 2 of Ref. $[2]$. It is also interesting to remark that although the four-quark operator contributions can not fit the branching ratio nor the spectrum, it does play a role in producing a small peak in the spectrum, which corresponds to the $B \to \eta' K$

⁷ We thank A. Kagan for pointing out this to us, which helps us to detect a sign error in our earlier calculation.

Fig. 1. The distribution of $\mathcal{B}(b \rightarrow s + g + \eta')$ as a function of the recoil mass m_x .

mode. Specifically, the $B \to \eta' K$ mode is accounted for by the $b \rightarrow s\eta'$ type of decays discussed earlier. Based on results obtained so far, one concludes that the Standard Model is not in conflict the experimental data on $B \to \eta' X_s$. It can produce not only the branching ratio for $B \to \eta' X_s$ but also the recoil-mass spectrum when contributions from the anomaly mechanism and the four-quark operators are properly treated.

Up to this point, $a_g(\mu)$ of the $\eta' - g - g$ vertex has been treated as a constant independent of invariant-masses of the gluons, and μ is set to be 5 GeV. In practice, $a_{\rho}(\mu)$ should behave like a form-factor which becomes suppressed as the gluons attached to it go farther off-shell $[3,4,6]$. However, it remains unclear how much the form-factor suppression might be. It is possible that the branching ratio we just obtained gets reduced significantly by the form-factor effect in $\eta' - g - g$ vertex. Should a large formfactor suppression occur, the additional contribution from *b* $\rightarrow \eta' s$ and *B* $\rightarrow \eta' s\bar{q}$ discussed earlier would become crucial. We however like to stress that our estimate of $b \rightarrow sgn'$ with α_s evaluated at $\mu = 5$ GeV is conservative. To illustrate this, let us compare branching ratios for $b \rightarrow s g \eta'$ obtained at μ = 5 GeV and μ = 2.5 GeV respectively. In NDR scheme $\,$ ⁸, branching ratios at the above two scales with the cut $m_x \le 2.35$ GeV are 4.9×10^{-4} and 9.1×10^{-4} respectively. One can clearly see the significant scale-dependence! With the enhancement resulting from lowering the renormalization scale, there seems to be some room for the form-factor suppression in the attempt of explaining $B \to \eta' X_s$ by $b \rightarrow s g \eta^{\prime}$ ⁹.

It should be noted that the above scale-dependence is solely due to the coupling constant $\alpha_s(\mu)$ appearing in the $\eta' - g - g$ vertex. In fact, the *b* → sg^* vertex is rather insensitive to the renormalization scale. Indeed, from Eq. (11) , we compute in the NDR scheme the scale-dependence of $g_s(\Delta F_1 +$ NDR scheme the scale-dependence of $g_s(\Delta F_1 + \Delta \overline{F_1}(q^2))$. We find that, as μ decreases from 5 GeV to 2.5 GeV, the peak value of the above quantity increases by only 10%. Therefore, to stabilize the scale-dependence, one should include corrections beyond those which simply renormalize the $b \rightarrow sg^*$ vertex. We shall leave this to a future investigation.

It is instructive to compare our results with those of Refs. [3,4]. With the kinematic cut, our numerical result for $\mathcal{B}(b \to s g \eta')$ is only slightly smaller than the branching ratio, 8.2×10^{-4} , reported in Ref. [3], where the $\alpha_s(\mu)$ coupling of $\eta' - g - g$ vertex is evaluated at $\mu \approx 1$ GeV, and ΔF_1 receives only short-distance contributions from the Wilson coefficients C_4 and C_6 . Although we have a much smaller α_s , which is evaluated at $\mu = 5$ GeV, and the interference of ΔF_1 and F_2 is destructive [4] rather than constructive $[3]$, there exists a compensating enhancement in ΔF_1 due to one-loop matrix elements. The branching ratio in Ref. [4] is $2 - 3$ times smaller than ours since it is given by a ΔF_1 smaller than ours but comparable to that of Ref. [3]. Concerning the relative importance of ΔF_1 and F_2 , we find that ΔF_1 alone gives $\mathcal{B}(b \to s g \eta') = 6.5 \times 10^{-4}$ with the kinematic cut $m_X \leq 2.35$ GeV. Hence the inclusion of $F₂$ lowers down the branching ratio by only 14%. Such a small interference effect is quite distinct from results of Refs. $[3,4]$ where $20\% - 50\%$ of inter-

 8 In NDR scheme, apart from a different set of Wilson coefficients compared to Eq. (3), the constant term: $\frac{10}{9}$ at the r.h.s. of Eq. (5) is replaced by $\frac{2}{3}$. For details, see, for example Ref. [21].

⁹ We do notice that $B(b \to sgn')$ is suppressed by more than one order of magnitude if $a_s(\mu)$ in Eq. (13) is replaced by $a_g(m_{\eta'}) \cdot \frac{m_{\eta'}^2}{(m_{\eta'}^2 - q^2)}$ according to Ref. [6]. However, this prescription for a_{ϱ} stems from the assumption that $g^* \to g\eta'$ form factor behaves in the same way as the QED-anomaly form factor $\gamma^* \rightarrow$ $\gamma \pi^0$. It remains unclear as raised in Refs. [3,4] that one could make such a connection between two distinct form factors.

ference effects are found. We attribute this to the enhancement of ΔF_1 in our calculation.

Before closing we would like to comment on the branching ratio for $B \to \eta X_s$. It is interesting to note that the width of $b \to \eta s g$ is suppressed by $\tan^2\theta$ compared to that of $b \rightarrow \eta' s g$. Taking $\theta = -15.4^\circ$, we obtain $\mathcal{B}(B \to \eta X_s) \approx 4 \times 10^{-5}$. The contribution from the four-quark operator can be larger. Depending on the choice of parameters, we find that $B(B \to \eta X_s)$ is in the range of $(6 \sim 10) \times 10^{-5}$.

In conclusion, we have calculated the branching ratio of $b \rightarrow sgn'$ by including the NLL correction to the $b \rightarrow sg^*$ vertex. By assuming a low-energy $\eta' - g - g$ vertex, and cutting the recoil-mass m_x at 2.35 GeV, we obtained $\mathscr{B}(b \to s g \eta') = (5 - 9) \times$ 10^{-4} depending on the choice of the QCD renormalization-scale. Although the form-factor suppression in the $\eta' - g - g$ vertex is anticipated, it remains possible that the anomaly-induced process $b \rightarrow s g \eta'$ could account for the CLEO measurement on $\mathcal{B}(B \rightarrow \eta'X_s)$. For the four-quark operator contribution, we obtain $\mathcal{B}(B \to \eta'X_s) \approx 1 \times 10^{-4}$. This accounts for roughly 15% of the experimental central-value and can reach 30% if favourable parameters are used. Finally, combining contributions from the anomaly-mechanism and the four-quark operators, the entire range of $B \to \eta' X_s$ spectrum can be well reproduced.

Acknowledgements

We thank W.-S. Hou, A. Kagan and A. Soni for discussions. The work of XGH is supported by Australian Research Council and National Science Council of R.O.C. under the grant numbers NSC 87-2811-M-002-046 and NSC 88-2112-M-002-041. The work of GLL is supported by National Science Council of R.O.C. under the grant numbers NSC 87-2112-M-009-038, NSC 88-2112-M-009-002, and

National Center for Theoretical Sciences of R.O.C. under the topical program: PQCD, B and CP.

References

- [1] CLEO Collaboration, B.H. Behrens et al., Phys. Rev. Lett. 80 (1998) 3710.
- [2] CLEO Collaboration, T.E. Browder et al., Phys. Rev. Lett. 81 (1998) 1786.
- [3] D. Atwood, A. Soni, Phys. Lett. B 405 (1997) 150.
- [4] W.S. Hou, B. Tseng, Phys. Rev. Lett. 80 (1998) 434.
- [5] A. Datta, X.-G. He, S. Pakvasa, Phys. Lett. B 419 (1998) 369.
- [6] A.L. Kagan, A. Petrov, hep-ph/9707354; hep-ph/9806266.
- [7] H. Fritzsch, Phys. Lett. B 415 (1997) 83; X.-G. He, W.-S. Hou, C.S. Huang, Phys. Lett. B 429 (1998) 99.
- [8] H.-Y. Cheng, B. Tseng, hep-ph/9803457; A. Ali, J. Chay, C. Greub, P. Ko, Phys. Lett. B 424 (1998) 161; N. Deshpande, B. Dutta, S. Oh, Phys. Rev. D 57 (1998) 5723.
- [9] A. Ali, G. Kramer, C.-D. Lu, hep-ph/9804363.
- [10] I. Halperin, A. Zhitnitsky, Phys. Rev. Lett. 80 (1998) 438; F. Araki, M. Musakonov, H. Toki, hep-ph/9803356; D.S. Du, Y.-D. Yang, G.-H. Zhu, hep-ph/9805451; M. Ahmady, E. Kou, A. Sugamoto, Phys. Rev. D 58 (1998) 014015; D.S. Du, C.S. Kim, Y.-D. Yang, Phys. Lett. B 426 (1998) 133; F. Yuan, K.-T. Chao, Phys. Rev. D 56 (1997) 2495; A. Dighe, M. Gronau, J. Rosner, Phys. Rev. Lett. 79 (1997) 4333.
- [11] G. Buchalla, A.J. Buras, M.E. Lautenbacher, Review of Modern Physics 68 (1996) 1125.
- [12] A. Lenz, U. Nierste and Ostermaier, Phys. Rev. D 56 (1997) 7228.
- [13] A. Buras, M. Jamin, M. Lautenbacher, P. Weisz, Nucl. Phys. B 370 (1992) 69.
- [14] N.G. Deshpande, X.-G. He, Phys. Lett. B 336 (1994) 471.
- [15] T.E. Browder, A. Datta, X.-G. He, S. Pakvasa, Phys. Rev. D 57 (1998) 6829.
- [16] T. Feldmann, P. Kroll, B. Stech, e-print hep-ph $/9802409$.
- [17] F. Parodi, P. Roudeau, A. Stocchi, e-print hep-ph/9802289.
- [18] A.I. Vainshtein et al., JETP Lett. 22 (1975) 55; M.A. Shifman et al., Nucl. Phys. B 120 (1977) 316; M.B. Wise, E. Witten, Phys. Rev. D 20 (1979) 1216.
- [19] H. Simma, D. Wyler, Nucl. Phys. B 344 (1990) 283.
- [20] G. Corbo, Nucl. Phys. B 212 (1983) 99; N. Cabibbo, G. Corbo, L. Maiani, ibid. B 155 (1979) 93.
- [21] Ali and Greub, Phys. Rev. D 57 (1998) 2996.