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It appears that binary morphology has found a new field of 
application in the area of cluster analysis. As a natural extension 
of this work, the authors intend to publish a follow-up paper that 
will discuss the application of multivalued set-theoretic operations to 
pattern classification. 
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the strokes of each reference character into .Y corresponding parts. In 
the latter phase, the connected input strokes are broken into multiple 
strokes under the guidance of candidate characters. In both phases, 
dynamic programming is employed for stroke or character matching. 
Good experimental results prove the feasibility of the proposed approach 
for cursive Chinese character recognition. 

Index Terms-Character recognition, on-line Chinese character recog- 
nition, string matching. 

I .  INTRODUCTION 
On-line Chinese character recognition has been studied for many 

years. Many techniques have been published to solve the problem. 
They can basically be classified into two major approaches: namely, 
the statistical method [I], [2] and the structural method [3]-[ll]. 
In the statistical method, a feature vector is usually extracted from 
the strokes composing an input character. Character recognition is 
performed by selecting the reference character with the minimum 
distance from the input character. 

In the structural method, a set of basic strokes are usually selected 
as the primitives [5]-[9], and stroke recognition is based on the use 
of certain geometrical features like line segment directions, stroke 
lengths, corner numbers, etc. Stroke numbers, stroke orders, stroke 
relations, etc., are also found to be useful for character recognition. 
The recognition schemes are based on the use of decision tree [3] ,  
string matching [7] ,  syntax and/or semantics analysis [5] ,  radical 
decomposition [4], etc. Most of the recognition schemes depend 
heavily on the recognition of strokes. Stroke-based recognition, 
however, is effective under the constraint of careful writing, which 
places a burden on the users. Furthermore, in many applications, there 
is a need for fast writing for data entry. When writing fast, a user 
tends to connect consecutive strokes. The stroke shape in a character 
also varies from time to time, even when it is written by the same 
user. This makes stroke-based recognition a very difficult problem 
that does not have very high recognition rates. Recently, several 
attempts have been made to remove unnatural writing constraints, and 
some algorithms [SI-[ 11) have been proposed to compensate for the 
variations of stroke connections, stroke orders, and stroke distortion. 

In this correspondence, attributed string matching with split-and- 
merge based on dynamic programming (DP) techniques is proposed 
to recognize cursive Chinese characters under the constraint of correct 
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stroke orders. In order to reduce the computing time, the proposed 
recognition scheme is decomposed into two phases: candidate char- 
acter selection and detailed matching. The detailed descriptions of 
the two phases are given in the following sections. 

11. ATTRIBUTED STRING REPRESENTATION 
An input character obtained from a digitization tablet can be 

represented as an attributed string by concatenating all the strokes 
according to the stroke writing order. Two kinds of primitives, 
namely, real primitive and pseudo primitive, are used in the attributed 
string. Each real primitive is a line segment that approximates part of 
a stroke, and each pseudo primitive is an implicit line segment that 
connects two consecutive strokes. Attributed string representations 
of on-line handwritten Chinese characters are easily obtained from 
the results of appropriate preprocessing and angle filtering processes 

Define stroke string -4, = SI  S, . . . Ss to represent character -4 
with S strokes, where each substring S,  = s L r , + l  r,+2 . . . r,+,,, ( j  = 
1 , 2 , .  . . ,lV) represents the j t h  stroke of -4, where 1 1 ,  is the number 
of line segments contained in S,. The ith primitive s, of -4 is also 
the leading pseudo primitive of S,, and the primitive r,+k is the 
kth real primitive of S,. To describe the geometric properties of 
the primitives, an attribute vector ( q t  . I ,  ) is associated with each 
real primitive r z ,  where qt and I ,  are the direction and the length 
attributes of T , ,  respectively. Let P,l and Pzp be the starting and 
the end feature points of primitive r , .  The direction attribute q l  
of r ,  is defined as the slope of the line segment P,,P,z, which is 
quantized into one of 64 directions. The length attribute I ,  of r ,  is 
defined as the Euclidean distance between P,l and F‘2. In addition, 
an attribute vector (U,. I , .  sJ1. yJ1..rJz. y , ~ )  is associated with each 
pseudo primitive p ] ,  where q, and I ,  are the direction and length 
attributes of s J ,  respectively, and the coordinates ( .r, 1 , y, I ) and 
( T ~ Z , Y , ~ )  specify the positions of the starting and the end feature 
points of s ) ,  respectively. Fig. l(a) shows the stroke string of a 
character with seven strokes, whose pseudo primitives are drawn by 
dashed line segments. 

Define another attributed string representation of a character (called 
the pseudo string) as the concatenation of all the pseudo primitives 
of the character in order. Let attributed string Ap = p l p 2 . .  . y . ~  
represent the pseudo string of character -4 with strokes where 
p ,  represents the ith pseudo primitive. Instead of using the attribute 
vector defined for a pseudo primitive in the stroke string, another 
attribute vector ( q ~ ~ . q , ~ . q ~ ~ . s l ~ . y l ~ . x , ~ . y , ~ )  is used to specify the 
attributes of each pseudo primitive p L  in the pseudo string, where 
q 2 2  is the direction of p,, and qt l  and q z 3  are the directions of 
the preceding and the following real primitives in the stroke string, 
respectively. In addition, ( x , ~ .  y t l )  and ( ~ ~ 2 .  y r 2 )  are the coordinates 
of the starting and the end feature points of p , ,  respectively. The 
pseudo string shown in Fig. l(b) of an input script is p l p ~  . . . p i ,  
where p1 = ~ 1 . ~ 2  = 5’6 .p3  = ~ 8 . ~ 1  = ~ 1 2 ,  and 115 =  SI^. 

~ 5 1 .  

111. CANDIDATE CHARACTER SELECTION 
In this section, the candidate characters for an input script are 

determined by matching the pseudo string of the input (called the 
input pseudo string henceforth) with those of the reference characters. 
The matching scheme may be regarded as a process of splitting 
the stroke sequence of each reference character by the pseudo 
primitives of the input script. The validity of this “reference character 
splitting” for candidate character selection is based on the following 
observation. When a user writes an input script in a cursive way, it 
rarely happens that a stroke in the input script is broken into two 
or more strokes. On the contrary, two consecutive strokes in the 

( b) 
Fig. 1. String representations of a reference character and an input script: 
(a) Reference character and its stroke string representation; (b) input script 
and its stroke string representation. 

reference character are often connected together to form a single 
stroke, i.e., the pseudo primitive between the two consecutive strokes 
in the reference character often disappears in the input pseudo string. 
Therefore, under the assumption that the input script is written in a 
correct stroke order, a pseudo primitive in the input script always 
corresponds to a pseudo primitive in the reference character, and the 
stroke number of the input script is usually no greater than that of the 
reference character. In other words, the input pseudo string can be 
considered to be a partial string of that of the reference character. 
Define the pseudo string distance between two characters as the 
minimum of the sums of the distances of the corresponding pseudo 
primitives in the two characters. Then, the reference characters with 
smaller pseudo string distance values can be selected as the candidates 
for detailed matching. 

More specifically, the phase of candidate character selection can 
be divided into three stages. The first stage is to determine an initial 
set R of reference characters from which candidate characters can 
be selected. Under the assumption that each stroke in the reference 
character is seldom broken into two or more strokes, the number 
-1- of strokes in the input script can be utilized as the lower limit 
of the number of strokes for each reference character in R. On the 
other hand, because each stroke in the input script may correspond to 
one or more strokes in each reference character, the numbers of line 
segments in the strokes of the input script can be used to estimate the 
upper limit of the possible number I- of strokes for each reference 
character in R. This can be done by the use of a heuristic function 
Fh in the following way: 

where 

F h ( n t )  = n , .  if n L  5 2: 

= 1 1 ,  - 1. if 3 5 n z  5 4: 

= l i t  - 2. if n L  2 5 

and n z  is the number of line segments that approximate the cth stroke 
of the input script. The heuristic function defined above is based 
on the fact that if the line segments in the input stroke is longer, 
the strokes in the reference will be longer. Finally, the reference 
characters, each having its stroke numiers between A- and C ,  are 
selected to compose the set R. This completes the first stage of 
candidate character selection. 

In the second stage of candidate character selection, the pseudo 
string of each reference character in R is matched with that of 
the input script. Let attributed string A, = p l p 2  . . . p , v  represent 
the pseudo string of the input script A with 3’ strokes and B, = 
p i p :  . . . represent the pseudo string of reference character B 
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in R with .\I strokes. Assume that Jf 2 .\-. In addition, let 
( C ~ , I . ~ , ~ . ~ , I ( . S , I . . ~ / , I . . I . , Z .  Y ~ Z )  and ( ~ ~ 1 . ~ ~ 2 . ~ : . ~ . . ~ ~ 1 . ~ ~ ~ 1 . . ( . , . r . . ~ , ~ r )  

be the attribute vectors of p L  and p: that represent the ith and the ,jth 
pseudo primitives of -4 and B ,  respectively. The primitive distance 
d ( p z .  j i ; )  between primitives pz and p i  is defined as follows: 

I I  

4 p l . p ; )  = H(q, l .Cl: l )+H(Q12.Q:P)+H(cf , .r . ( f : .r i  

+ TTr(/.r,I - .2.: ,  I + lY, l  - !/:I 1 
+ 1J,2 - x:21 + I!h2 - Y:21) 

where H is a function specifying direction difference values, and 
1171 is a preselected constant used to normalize the weights of the 
difference measures of the direction and position attributes. The 
direction difference function H ( q , i .  q ; k )  is defined to be 

H ( q t n .  qiL.1 = iniii ( I q z r .  - q ; A  I. 6-1 - I q , k . .  (1 ik .1 ) .  

The pseudo string distance Dp(+4. B )  between .-I and 4 is defined 
as the minimum of the sums of the distances of the corresponding 
pseudo primitives between -4 and B ,  i.e., D,(-4. B )  can be defined 
as follows: 

\ 

where the primitive-correspondence function f must satisfy the 
following constraints: 

i 5 f ( i )  5 i + .If - -I-: 
f ( i  - 1) < f ( i ) .  for i = 1 through -Y 

The constraint f ( i  - 1) < f ( i )  comes from the assumption that the 
strokes in the input script are written in a correct order. 

The pseudo string distance D P ( A  B )  defined above can be com- 
puted as the minimum cost of a sequence of primitive edit operations 
that transform B, into A,. The mapping of each primitive p:  of 
B, by the primitive-correspondence function f falls into one of the 
following two cases. 1) There exists one p i  of -4, corresponding 
to p: .  This case can be considered to be a change operation that 
transforms p i  into p 2 ,  and the cost of the change operation is just 
the pseudo primitive distance d ( p L . p i ) ;  2) there does not exist any 
p ,  of A, corresponding to y:. This case can be considered to be a 
delete operation that deletes p i  from B,, and the cost of the delete 
operation can be taken to be zero. Note that exactly J I  - -1- pseudo 
primitives in B, should be deleted. 

Let D be an array such that D ( i . j )  means the minimum edit 
cost of transforming p i p i  . . . p >  into p1p2 . . p L  or, equivalently, the 
minimum pseudo string distance between p 1 p 2  . . p ,  and p i p i  . . ' p i .  
Based on the above concept of pseudo string edition, the array 
element D ( i .  j )  can be obtained by the following DP technique: 

D ( i .  i )  =D(i - l . i  - 1) + d ( p z . p : ) .  

D ( i .  j) = m i n ( D ( i  - 1, j - 1) + d ( p , . p : ) . D ( i .  j - 1)). 

for i = 1.2:...-Y 

for i = 1 .2 . .  . . . r a n d j  = i + 1. i + 2 . .  . . . li. 

The final element D(-Y. M) is simply the minimum edit cost of 
transforming B, into A,, which is also the desired minimum pseudo 
string distance & ( A ,  B )  between A and B.  

To obtain the index j of the corresponding p >  of each p t ,  the 
above procedure can be easily modified by keeping the index flow 
of D ( i . j )  into an array C .  After the final element D(-\-. -11) is 
obtained, the corresponding pseudo primitive pairs can be obtained 
by tracing back through C. By this correspondence information, it 
is easy to find the corresponding strokes in B for each input stroke 

in -4. From these corresponding pairs, the stroke string of B can 
then be split into -Y substrings, where each contains one or more 
strokes. We call this process reference character splitting. Fig. 1 
shows an example in which the pseudo strings of an input script A 
and a reference character Ll are represented by -4, = p 1 p ~  . . p i  = 
. s ~ s ~ . s ~ . s ~ ~ s ~  j, and B,, = p',& ' . . p !  = .s',,s~s~s~s~ls~3s~,, respec- 
tively. Five corresponding pairs (si . .s', ). ( S G .  .sk ). ( sR. sk ). ( s ,  2 .  s{ ,3 ), 
and ( s l i .  s ' , ~ , )  can be obtained from the above procedure. Therefore, 
the stroke string of the reference character is split into five sub- 
strings .s: r~.s:r',r\.  .si;r+. .SLrhrio.s; I r j p .  . s i : 3 r ; 4 r : 3 ,  and s : c ! r i 7 r i x ,  
which correspond, respectively, to the input strokes represented by 
substrings S I  r 2 r , 3 r 4 r j .  s C , r 7 .  . s ~ r 9 r l ~ r ~  I .  s 12 r1~r14 ,  and s l i r l 6 r l i .  

The final stage of the candidate character selection phase is 
to find out from the set R the 15 reference characters with the 
smallest pseudo string distances from the input script as the candidate 
characters for detailed matching described next. 

IV. DETAILED MATCHING 
In the detailed matching phase, each input stroke is matched with 

the corresponding strokes in each candidate character. Each stroke 
in the input or the reference is represented by a substring of pseudo 
and real primitives. The basic idea of matching here is to use the 
pseudo primitive in the substring of a candidate character to split the 
substring of an input stroke if the input stroke is matched with more 
than one stroke in the candidate character. This process is called 
input stroke splitting. 

More specifically, when more than one stroke in the candidate 
character are considered to correspond to one input stroke, each 
pseudo primitive in the strokes of the candidate character may fall into 
one of the following two cases: 1) The pseudo primitive corresponds 
to a real primitive in the input script. For example, the pseudo 
primitive si in Fig. l(a) corresponds to the real primitive r3 in Fig. 
l(b). It is reasonable here to match the two feature points of s i  with 
the corresponding feature points of r.3 and to split the first input 
stroke in Fig. l(b) into ra and r 4 r s .  This match will be denoted as 
r3 -+ si; 2 )  the pseudo primitive disappears in the input script, i.e., 
the pseudo primitive reduces to one feature point. For example, the 
pseudo primitive si, in Fig. l(a) becomes a feature point P that 
connects the real primitives r10 and rI1 in Fig. l(b). In this case, the 
two feature points of si1 should be matched with the feature point 
P ,  and the third input stroke in Fig. l(b) should be split into rgr lo  
and r11. This match will be denoted as XI -+ sil, where A11 is a 
null primitive connecting r10 and r11. The cost function of the above 
split operations will be described later, after the detailed matching 
process is described in the following. 

Let attributed strings St = s l r 2 r 3 " . r n  and Si = 

input script and the corresponding strokes in a candidate character 
B ,  respectively. Note that the leading pseudo primitive s1 is the only 
pseudo primitive in St, and it should be matched with the leading 
pseudo primitive si of S:. In addition, note that Si may contain 
more than one pseudo primitive. Let the direction and the length 
attributes of r and i-1 be denoted as ( q l .  I ,  ) and ( y:. l>  ), respectively. 
In addition, let the attribute vectors of pseudo primitives s, and si 
be denoted as ( q l . l , . s , l . ~ , l . s , 2 . , y , 2 )  and ( q : . l : . ~ i , . y : , . ~ : ~ . y ~ * ) ,  
respectively. Generally speaking, the interstroke distance between St 
and Si can be defined in terms of the minimum-cost edit sequence 
from St to Si. Allowable edit operations and their cost functions R 
dependent on the types of primitives are described as follows: 

1)  Change: To replace the first pseudo primitive s1 of St with st 
of S: or to replace a real primitive r ,  with another T : ,  denoted 

s',,.,; . . ~ . s' L + l  . . r &  represent the substrings of the ith stroke of the 
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as s1 + si or r z  -+ p i ,  respectively, with costs 

R(SI + si)  = H ( ~ I .  (I;) + 1%; . [ I f ,  - [:I + Eil 

' ((x1 11 Y l l  ). Ldl. Y: 1 ) )  

+ E ~ ( ( . ~ I z .  ~ 1 2 ) .  ( . r ; l .  y;2))1. 

R(T, -+ r ; ,  = H(qt.yi)  + 14; ' 11, -!:I. 
Insert: To insert a real primitive rl into St ,  denoted as X -+ r:, 
where X is a null symbol, with cost 

R(X -+ T i )  = I<, + 11; ' 1 ; .  

Delete: To delete a real primitive r z  from S f ,  denoted as 
r 2  -+ A, with cost 

R ( r ,  -+ A )  = l i d  + 11, . 1,.  

Split: To split St into two parts; denoted as r ,  -+ s: or 
A, -+ si, i.e., for the case r ,  -+ si. St = s1r2 . . .  rr2 is 
split into slr2 . . . r,-1 and r ,+lr ,+l  . . . r,, whereas for the 
case A, -+ s:.St = s l r L " ' r ,  is split into s1r2...rt-1 and 
r , r I+I  . . . r n ,  with costs 

R(r,  -+ s:, = H(ql,Y:) + r/t; 
. [II, - 1:I + Ed(( .r:I .y: l ) .  ( . r L . y l ) )  

+ Erl( (x i2 .  Y ~ z ) .  (S,+I. Y ~ + I  ) ) I .  
R(X, -+ s;) = I<, + 14; 

. [ I :  + Ed ( (.r: . y: 1. ( .rz ,  Y, ) 1 
+ E ~ ( ( J ; L . Y ~ ~ ) .  ( s ~ . Y , ) ) ] .  

Merge: To merge k consecutive real primitives in St into a 
longer real primitive, denoted as r z T r + l  ' .  . T , + k - l  -+ rt* 

R(rzTz+l  " ' T z + k - l  -+ T : )  

, + k - l  

= ( l : / L ) ' - l - r '  ( H ( q : . y J ) ' l l / 1 : ) )  
, = I  

where ( q r ,  I : )  is the attribute vector of the combined real primitive 
T ; ,  Ed( ( z l ,  y1). ( ~ 2 . ~ 2 ) )  is the Euclidean distance between points 
( T I ,  IJI)  and ( 2 2 ,  yz), L,  and S, are the total length and the number 
of all the real primitives in the input script, and I t i ,  Iiz. l i d ,  and ICs 
are preselected constants. Detailed explanations of the cost functions 
and the attribute vector of the combined primitive defined above can 
be found in [13] and [14]. 

The interstroke distance D,(S t ,  Si) from St to Si is defined as 
the minimum of the cost of all the edit sequences taking St to Si, 
and the character distance from the input script A to the candidate 
character B is defined as 

where N is the number of strokes in A .  
Because merge operations are only applied to the real primitives 

of the input stroke, the merge costs and the attributes of all possible 
combined real primitives can be computed independently and stored 
in an array before matching the input with the candidate characters. 
In addition, to reduce the computation time, it is assumed that the 
maximum number of real primitives allowed in a merge operation 
is three. This has been found to be reasonable according to our 
experimental results. 

The interstroke distance D, (St. Si) between the tth stroke 
St = s1r2".rn of A and its corresponding strokes Si = 
sir;  . . . . . . T A  in candidate character B is computed as 

follows. Let D be an array such that D ( i .  j )  means the minimum cost 
for transforming the attributed string s1 r2 . . r z  into the attributed 
string s', rh . . . .ri (where .r: is either a real primitive T: or a pseudo 
primitive si), i.e., let D ( i .  j )  = D , ~ ( s l r z . . . r , . s : r : . . . x : ) .  The 
distance array D can be computed by a DP technique whose essence 
is described below. 

1) If x i  is a real primitive, then it is matched with the input real 
primitives, and D ( i .  j )  is computed as follows: 

7 1 1 1  = D ( i . j  - 1) + R(r ,  + A):  

7712 = D ( i  - 1. j )  + R(X -+ r : ) :  

m3 = ~ ( i  - 1. j - 1) + R(r ,  -+ r : ) :  

7114 = D(i  - 1. j - 2 )  + I ? ( r J - l r ,  -+ r * )  

+ R(r* -+ r ; ) :  

+ R(r* -+ r : ) :  

7715 = D ( i  - 1. j - 3 )  + R(r,-2rJ-1r, + r * )  

D( i .  j )  = min(ml.rn2.n,3.r11~.rn. j ) .  

2) If x i  is a pseudo primitive, then the input stroke St is split into 

1111 = D ( i  - 1. j - 1) + R(r,  + si):  

two parts, and D ( i .  j )  is computed as follows: 

m 2  = D ( i  - l . j )  + R(X,+l -+ si):  

D(i .  j )  = rnin(n11. m 2 )  

The final element D ( n .  m )  is just the interstroke distance D,(St,  Si), 
which is then added iteratively to the character distance D,(A.  B ) .  

The final stage in detailed matching is simply to select, as the 
recognition result of the input script, the candidate character with the 
smallest character distance from the input script. 

V. EXPERIMENTAL RESULTS 
In our experiments, the handwriting area of each character is 15 

by 15 mm on a digitization tablet whose spatial resolution is 20 
lines/". After the preprocessing and angle filtering processes are 
performed to each stroke of a character, a size and position normal- 
ization operation is applied to reduce the character data into a size of 
200 by 200 pixels, from which the attributed string representation is 
obtained. The attribute weighting factors l4-1 described in Section 111 
and W2 described in Section IV were both set to be 0.25, which 
equalizes the weights of the difference measures of the direction 
and length attributes. The constants li, and I i d  for insertions and 
deletions described in Section IV were both chosen to be 16, which is 
one half of the maximum value of the direction difference function. 
In addition, the constant li, for the split cost was chosen to be 
8. The choice of the above preselected constants was based on 
our experimental results. In addition, the recognition rates changed 
only slightly when the preselected values were perturbed by small 
amounts. 

A database composed of 3100 Chinese characters was constructed 
as the references. The stroke numbers of the characters range from 1 
to 24. To create the input data, in totah, 200 characters chosen from 
famous Chinese poems were written by ten persons. Each scripter 
was instructed to write characters in identical character style and with 
handwriting speed identical to writing daily notes. The scripter was 
also informed of the correct stroke writing order of each character. 
Table I shows the experimental results. Out of the 2000 input scripts, 
only 76 were misrecognized. The recognition rate, thus, was 96.2%. 
The fourth through the 11th columns of Table I show the statistics 
of the numbers of input scripts based on the number of connected 
strokes in the scripts. Out of the 2000 input scripts, only 1061 have 
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Fig. 2. Partial recognition results of 200 input scripts chosen from ten scripters. Each error is marked by the notation .-I - B, which means that the 
script actually is .-I but was recognized to be B .  

T A B L E  I 
RECOGNITION RESULTS OF 200 INPUT 
SCRIPTS WRITTEN BY TEN SCRIPTERS 

I scripter I error  I recognition1 distribution of input wripls based on I 

I total I 7 6  I 96.2% 110611 5041 2 4 5 1  1 0 9 1  421  2 3 1  1 1 1  5 1  

correct input stroke counts (i.e., k = O) ,  and therefore, each of the 
remaining 939 input scripts has at least one stroke connected to 
another (i.e., k 5 1). The maximum number of connected strokes 
among the input scripts is up to ten (i.e., k = lo), and all characters 
with IC = 10 were correctly recognized. This shows that the proposed 
approach is quite powerful for recognizing highly cursive scripts. Due 
to different writing habits, each scripter shows a different degree of 
stroke connection. The recognition rate tends to decrease slightly 
when the input strokes are heavily connected. The recognition results 
of some input scripts are shown in Fig. 2. 

It has been found that three factors lead to the above 76 misrecog- 
nitions of the input scripts. The first is that the candidate selection 
phase fails to select correct references. Five errors come from this 
factor. The second factor is that similar character structures exist in 
Chinese characters. In total, 66 errors were caused by this factor. The 
third factor is the distortion existing in the input scripts. Five input 
scripts were misclassified due to this factor. Define the cumulative 
recognition rate in the Lth order as the rate at which the correct 

character for an input script appears in the list of the first L candidates 
selected according to the character distance values. Table I1 shows 
the results of the cumulative recognition rates. Only the first three 
candidates need to be selected for the rate to reach 99%. 

A prototype recognition system has been constructed on an IBM 
PCIAT. The C language was used for programming. The average 
time to recognize an input script is about 2.5 s. Due to the large 
number of Chinese character categories, most of the processing time 
was spent in the candidate selection phase. The number of references 
selected in the candidate character selection phase tends to be large 
when the strokes of the input script are heavily connected, causing 
the processing time to increase. 

VI. CONCLUDING REMARKS 
A new method for on-line handwritten Chinese character recog- 

nition has been proposed in this paper. Two kinds of attributed 
string representations are proposed to represent handwritten Chinese 
characters. By using the split concept, an input script can be used 
to split the strokes of each of the references to obtain the desired 
stroke correspondence in the candidate selection phase. In addition, 
in the detailed matching phase, the proposed split operation can be 
employed to solve the input stroke connection problem caused by 
fast writing. Good experimental results show the effectiveness of 
the proposed recognition approach in handling the stroke connection 
problem. 
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Most errors in the experimental results were caused by the problem 
that there are too many Chinese characters with similar structures. 
At least two methods can be used to solve this problem. One is to 
perform more detailed recognition using more subtle features after the 
detailed matching phase. The other is to modify the attributed string 
representations of similar reference characters to make the substrings 
of their identical parts (such as their common radical) the same. This 
will enhance the discrimination power of the distances between the 
input script and similar reference characters. 

In addition, the constraint of correct stroke orders, which increases 
burden to the user and limits writing speed, imposed by the proposed 
approach can be relaxed by adding all the possible stroke orders 
of each Chinese character in the database. However, enlarging the 
database will increase the recognition time. It also seems difficult to 
handle all possible stroke orders of different users. Because the stroke 
order of each character seems stable for each particular user, it is 
feasible to use the proposed approach to design a writer-dependent 
system. Future research can be directed toward investigating a more 
intelligent method for handling stroke orders and making the proposed 
recognition scheme more flexible. 
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Breaking Substitution Cyphers Using Stochastic Automata 

B. J. Oommen, Senior Member, IEEE, and J. R. Zgierski 

Abstract-Let I he a finite plaintext alphabet and V be a cypher 
alphabet with the same cardinality as .I. In all one-to-one substitution 
cyphers, there exists the property that each element in V maps onto 
exactly one element in .I and vice versa. This mapping of V onto .I 
is represented by a function T’, which maps any I ’  E V onto some 
X E .I (i.e., T’ ( ) = A). In this correspondence, we consider the problem 
of learning the mapping of T’ (or its inverse (T*) - ’ )  by processing 
a sequence of cypher text. The fastest reported method to achieve this 
is an elegant relaxation scheme due to Peleg et al. [SI, [9] that utilizes 
the statistical information contained in the unigrams and trigrams of the 
plaintext language. In this correspondence, we present a new learning 
automaton solution to the problem called the cypher learning automaton 
(CLA). The proposed scheme is fast, and the advantages of the scheme in 
terms of time and space requirements over the relaxation method have 
been listed. The correspondence contains simulation results comparing 
both cypher-breaking techniques. 

Index Terms- Crytography, learning automata, relaxation methods, 
substitution cyphers. 

I. INTRODUCTION 
The art of cryptography has very probably existed ever since writ- 

ing was invented. The purpose of it was, of course, to hide a message 
by systematically transforming the original message into a form that 
is unintelligible to the reader unless it is first decyphered. In order to 
prevent unauthorized readers (or eavesdroppers) from decyphering the 
original message, the strategy with which the transformed message 
is decyphered is maintained as a well-kept secret between the sender 
and the intended receiver. Hopefully, in this way, the communication 
between the authentic sender and receiver cannot be intercepted by 
others for whom it is not meant. From the point of view of the 
eavesdropper, the heart of the problem is to break the cypher without 
a knowledge of the decyphering process, but this is usually not an 
easy task. 

This correspondence concerns the breaking of substitution cyphers 
using learning automata (LA). 

Throughout this correspondence, we shall use the word plaintext 
to refer to the orginial message and the term cyphertext to refer to 
the transformed message. The verbs cypher, encrypt, and encode will 
be used interchangeably, and decrypt, decypher, and decode will be 
used interchangeably. 

Cyphers that use a direct one-to-one mapping are known as 
monoalphabetic substitution cyphers. By monoalphabetic, we mean 
that only one alphabet is used in encyphering a message, and this is 
referred to as the cypher alphabet. In general, if .I is a finite plaintext 
alphabet and V is a cypher alphabet with the same cardinality as -1, 
a substitution cypher may use any of the 1-11! permutations as its 
key. Clearly, finding the correct key to decypher such an encoded 
message is an extremely tedious task if one merely randomly tries 
all the different mappings. Even with a computer doing the job, this 
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