
180 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2, FEBRUARY 1993

It appears that binary morphology has found a new field of
application in the area of cluster analysis. As a natural extension
of this work, the authors intend to publish a follow-up paper that
will discuss the application of multivalued set-theoretic operations to
pattern classification.

Attributed String Matching by Split-and-Merge
for On-Line Chinese Character Recognition

Yih-Tay Tsay and Wen-Hsiang Tsai

ACKNOWLEDGMENT
Abstract-Consecutive strokes of Chinese characters tend to be con-

nected in fast writing, and this causes a problem for most stroke-based
recognition approaches. In this correspondence, we propose a recognition ..

The authors wish to thank o, M,hirit, Professor at the School of
Forestry Of Morocco, for providing the Cedrus data. They are

scheme to recognize cursive Chinese -characters under the constraint of
correct stroke writing orders. The proposed recognition scheme consists
of two phases: candidate character selection and detailed matching.

also grateful to B. Ceurstemont for his programming assistance. In the former phase, an input script with .\- strokes is used to split

REFERENCES

R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.
G. Matheron, Random Sets and Integral Geometry. New York: Wiley,
1985.
J. Serra, Image Analysis and Mathematical Morphology. New York:
Academic, 1982.
R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using
mathematical morphology,” IEEE Trans. Putt. Anal. Machine Intell., vol.
PAMI-9, no 4, pp. 532-550, 1987.
H. Minkowski, “Volumen und Oberflche,” Math. Ann., vol. 57, pp.
447-495, 1903.
J. -G. Postaire and C. P. A. Vasseur, “An approximate solution to
normal mixture identification with application to unsupervised pattern
classification,” IEEE Trans. Putt. Anal. Machine Intell., vol. PAMI-3,
no 2, pp. 163-179, 1981.
A. Touzani and J. -G. Postaire, “Mode detection by relaxation,” IEEE
Trans. Putt. Anal. Machine Intell., vol. 10, no. 6, pp. 970-978, 1988.
T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Trans Inform. Theory, vol. IT-13, pp. 21-27, 1967.
G. H. Ball and D. J. Hall, “Isodata, A novel method of data analysis
and pattern classification,” NTIS Rep. AD699 616, Stanford Res. Inst.,
Stanford, CA, 1965.
J . Macqueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Symp. Math. Stat. Prob., 1967, pp.
281-297.
D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Trans. Part. Anal. Machinelntell., vol. PAMI-1, no 2, pp. 224-227, 1979.
J. T. Tou Dynoc, “A dynamic optimal cluster-seeking technique,” Int.
J . Comput. Inform. Sci., vol. 8, no. 6, pp. 541-547, 1979.
K. C. Gowda and G. Krishna, “Agglomerative clustering using the
concept of mutual nearest neighborhood,” Part. Recogn., vol. 10, pp.
105-112, 1978.
J. -G. Postaire and 0. M’Hirit, “Application of pattern recognition to
volume estimation in forest inventory,” Forest Sci., vol. 31, no. 1, pp.
53-65, 1985.
P. M. Narendra, “A separable median filter for image noise,” Proc. IEEE
Conf: Putt. Recogn. Image Processing, 1978.
P. A. Golder and K. A. Yeomans, “The use of cluster analysis for
stratification,” Appl. Stat., vol. 22, pp. 213-219, 1973.

the strokes of each reference character into .Y corresponding parts. In
the latter phase, the connected input strokes are broken into multiple
strokes under the guidance of candidate characters. In both phases,
dynamic programming is employed for stroke or character matching.
Good experimental results prove the feasibility of the proposed approach
for cursive Chinese character recognition.

Index Terms-Character recognition, on-line Chinese character recog-
nition, string matching.

I . INTRODUCTION
On-line Chinese character recognition has been studied for many

years. Many techniques have been published to solve the problem.
They can basically be classified into two major approaches: namely,
the statistical method [I], [2] and the structural method [3]-[ll].
In the statistical method, a feature vector is usually extracted from
the strokes composing an input character. Character recognition is
performed by selecting the reference character with the minimum
distance from the input character.

In the structural method, a set of basic strokes are usually selected
as the primitives [5]-[9], and stroke recognition is based on the use
of certain geometrical features like line segment directions, stroke
lengths, corner numbers, etc. Stroke numbers, stroke orders, stroke
relations, etc., are also found to be useful for character recognition.
The recognition schemes are based on the use of decision tree [3] ,
string matching [7] , syntax and/or semantics analysis [5] , radical
decomposition [4], etc. Most of the recognition schemes depend
heavily on the recognition of strokes. Stroke-based recognition,
however, is effective under the constraint of careful writing, which
places a burden on the users. Furthermore, in many applications, there
is a need for fast writing for data entry. When writing fast, a user
tends to connect consecutive strokes. The stroke shape in a character
also varies from time to time, even when it is written by the same
user. This makes stroke-based recognition a very difficult problem
that does not have very high recognition rates. Recently, several
attempts have been made to remove unnatural writing constraints, and
some algorithms [SI-[11) have been proposed to compensate for the
variations of stroke connections, stroke orders, and stroke distortion.

In this correspondence, attributed string matching with split-and-
merge based on dynamic programming (DP) techniques is proposed
to recognize cursive Chinese characters under the constraint of correct

Manuscript received Aug. 29, 1989; revised January 7, 1992. This work
was supported by National Science Council, Republic of China under Grant
NSC 81-0404-E-009-017, Recommended for acceptance by Editor-in-Chief
A. K. Jain.

Y. -T. Tsay is with the Department of Computer and Engineering Science,
Yuan-Ze Institute of Technology, Taoyuan, Taiwan, R.O.C.

W.-H. Tsai is with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

IEEE Log Number 9203754.

0162-8828/93$03,00 0 1993 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15. NO. 2, FEBRUARY 1993 181

stroke orders. In order to reduce the computing time, the proposed
recognition scheme is decomposed into two phases: candidate char-
acter selection and detailed matching. The detailed descriptions of
the two phases are given in the following sections.

11. ATTRIBUTED STRING REPRESENTATION
An input character obtained from a digitization tablet can be

represented as an attributed string by concatenating all the strokes
according to the stroke writing order. Two kinds of primitives,
namely, real primitive and pseudo primitive, are used in the attributed
string. Each real primitive is a line segment that approximates part of
a stroke, and each pseudo primitive is an implicit line segment that
connects two consecutive strokes. Attributed string representations
of on-line handwritten Chinese characters are easily obtained from
the results of appropriate preprocessing and angle filtering processes

Define stroke string -4, = SI S, . . . Ss to represent character -4
with S strokes, where each substring S, = s L r , + l r,+2 . . . r,+,,, (j =
1 , 2 , . . . ,lV) represents the j t h stroke of -4, where 1 1 , is the number
of line segments contained in S,. The ith primitive s, of -4 is also
the leading pseudo primitive of S,, and the primitive r,+k is the
kth real primitive of S,. To describe the geometric properties of
the primitives, an attribute vector (q t . I ,) is associated with each
real primitive r z , where qt and I , are the direction and the length
attributes of T , , respectively. Let P,l and Pzp be the starting and
the end feature points of primitive r , . The direction attribute q l
of r , is defined as the slope of the line segment P,,P,z, which is
quantized into one of 64 directions. The length attribute I , of r , is
defined as the Euclidean distance between P,l and F‘2. In addition,
an attribute vector (U,. I , . sJ1. yJ1..rJz. y , ~) is associated with each
pseudo primitive p] , where q, and I , are the direction and length
attributes of s J , respectively, and the coordinates (.r, 1 , y, I) and
(T ~ Z , Y , ~) specify the positions of the starting and the end feature
points of s) , respectively. Fig. l(a) shows the stroke string of a
character with seven strokes, whose pseudo primitives are drawn by
dashed line segments.

Define another attributed string representation of a character (called
the pseudo string) as the concatenation of all the pseudo primitives
of the character in order. Let attributed string Ap = p l p 2 . . . y . ~
represent the pseudo string of character -4 with strokes where
p , represents the ith pseudo primitive. Instead of using the attribute
vector defined for a pseudo primitive in the stroke string, another
attribute vector (q ~ ~ . q , ~ . q ~ ~ . s l ~ . y l ~ . x , ~ . y , ~) is used to specify the
attributes of each pseudo primitive p L in the pseudo string, where
q 2 2 is the direction of p,, and qt l and q z 3 are the directions of
the preceding and the following real primitives in the stroke string,
respectively. In addition, (x , ~ . y t l) and (~ ~ 2 . y r 2) are the coordinates
of the starting and the end feature points of p , , respectively. The
pseudo string shown in Fig. l(b) of an input script is p l p ~ . . . p i ,
where p1 = ~ 1 . ~ 2 = 5’6 .p3 = ~ 8 . ~ 1 = ~ 1 2 , and 115 = SI^.

~ 5 1 .

111. CANDIDATE CHARACTER SELECTION
In this section, the candidate characters for an input script are

determined by matching the pseudo string of the input (called the
input pseudo string henceforth) with those of the reference characters.
The matching scheme may be regarded as a process of splitting
the stroke sequence of each reference character by the pseudo
primitives of the input script. The validity of this “reference character
splitting” for candidate character selection is based on the following
observation. When a user writes an input script in a cursive way, it
rarely happens that a stroke in the input script is broken into two
or more strokes. On the contrary, two consecutive strokes in the

(b)
Fig. 1. String representations of a reference character and an input script:
(a) Reference character and its stroke string representation; (b) input script
and its stroke string representation.

reference character are often connected together to form a single
stroke, i.e., the pseudo primitive between the two consecutive strokes
in the reference character often disappears in the input pseudo string.
Therefore, under the assumption that the input script is written in a
correct stroke order, a pseudo primitive in the input script always
corresponds to a pseudo primitive in the reference character, and the
stroke number of the input script is usually no greater than that of the
reference character. In other words, the input pseudo string can be
considered to be a partial string of that of the reference character.
Define the pseudo string distance between two characters as the
minimum of the sums of the distances of the corresponding pseudo
primitives in the two characters. Then, the reference characters with
smaller pseudo string distance values can be selected as the candidates
for detailed matching.

More specifically, the phase of candidate character selection can
be divided into three stages. The first stage is to determine an initial
set R of reference characters from which candidate characters can
be selected. Under the assumption that each stroke in the reference
character is seldom broken into two or more strokes, the number
-1- of strokes in the input script can be utilized as the lower limit
of the number of strokes for each reference character in R. On the
other hand, because each stroke in the input script may correspond to
one or more strokes in each reference character, the numbers of line
segments in the strokes of the input script can be used to estimate the
upper limit of the possible number I- of strokes for each reference
character in R. This can be done by the use of a heuristic function
Fh in the following way:

where

F h (n t) = n , . if n L 5 2:

= 1 1 , - 1. if 3 5 n z 5 4:

= l i t - 2. if n L 2 5

and n z is the number of line segments that approximate the cth stroke
of the input script. The heuristic function defined above is based
on the fact that if the line segments in the input stroke is longer,
the strokes in the reference will be longer. Finally, the reference
characters, each having its stroke numiers between A- and C , are
selected to compose the set R. This completes the first stage of
candidate character selection.

In the second stage of candidate character selection, the pseudo
string of each reference character in R is matched with that of
the input script. Let attributed string A, = p l p 2 . . . p , v represent
the pseudo string of the input script A with 3’ strokes and B, =
p i p : . . . represent the pseudo string of reference character B

182 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2 , FEBRUARY 1993

in R with .\I strokes. Assume that Jf 2 .\-. In addition, let
(C ~ , I . ~ , ~ . ~ , I (. S , I . . ~ / , I . . I . , Z . Y ~ Z) and (~ ~ 1 . ~ ~ 2 . ~ : . ~ . . ~ ~ 1 . ~ ~ ~ 1 . . (. , . r . . ~ , ~ r)

be the attribute vectors of p L and p: that represent the ith and the ,jth
pseudo primitives of -4 and B , respectively. The primitive distance
d (p z . j i ;) between primitives pz and p i is defined as follows:

I I

4 p l . p ;) = H(q, l .Cl: l)+H(Q12.Q:P)+H(cf , .r . (f : .r i

+ TTr(/.r,I - .2.: , I + lY, l - !/:I 1
+ 1J,2 - x:21 + I!h2 - Y:21)

where H is a function specifying direction difference values, and
1171 is a preselected constant used to normalize the weights of the
difference measures of the direction and position attributes. The
direction difference function H (q , i . q ; k) is defined to be

H (q t n . qiL.1 = iniii (I q z r . - q ; A I. 6-1 - I q , k . . (1 ik .1) .

The pseudo string distance Dp(+4. B) between .-I and 4 is defined
as the minimum of the sums of the distances of the corresponding
pseudo primitives between -4 and B , i.e., D,(-4. B) can be defined
as follows:

\

where the primitive-correspondence function f must satisfy the
following constraints:

i 5 f (i) 5 i + .If - -I-:
f (i - 1) < f (i) . for i = 1 through -Y

The constraint f (i - 1) < f (i) comes from the assumption that the
strokes in the input script are written in a correct order.

The pseudo string distance D P (A B) defined above can be com-
puted as the minimum cost of a sequence of primitive edit operations
that transform B, into A,. The mapping of each primitive p: of
B, by the primitive-correspondence function f falls into one of the
following two cases. 1) There exists one p i of -4, corresponding
to p: . This case can be considered to be a change operation that
transforms p i into p 2 , and the cost of the change operation is just
the pseudo primitive distance d (p L . p i) ; 2) there does not exist any
p , of A, corresponding to y:. This case can be considered to be a
delete operation that deletes p i from B,, and the cost of the delete
operation can be taken to be zero. Note that exactly J I - -1- pseudo
primitives in B, should be deleted.

Let D be an array such that D (i . j) means the minimum edit
cost of transforming p i p i . . . p > into p1p2 . . p L or, equivalently, the
minimum pseudo string distance between p 1 p 2 . . p , and p i p i . . ' p i .
Based on the above concept of pseudo string edition, the array
element D (i . j) can be obtained by the following DP technique:

D (i . i) =D(i - l . i - 1) + d (p z . p :) .

D (i . j) = m i n (D (i - 1, j - 1) + d (p , . p :) . D (i . j - 1)).

for i = 1.2:...-Y

for i = 1 .2 r a n d j = i + 1. i + 2 li.

The final element D(-Y. M) is simply the minimum edit cost of
transforming B, into A,, which is also the desired minimum pseudo
string distance & (A , B) between A and B.

To obtain the index j of the corresponding p > of each p t , the
above procedure can be easily modified by keeping the index flow
of D (i . j) into an array C . After the final element D(-\-. -11) is
obtained, the corresponding pseudo primitive pairs can be obtained
by tracing back through C. By this correspondence information, it
is easy to find the corresponding strokes in B for each input stroke

in -4. From these corresponding pairs, the stroke string of B can
then be split into -Y substrings, where each contains one or more
strokes. We call this process reference character splitting. Fig. 1
shows an example in which the pseudo strings of an input script A
and a reference character Ll are represented by -4, = p 1 p ~ . . p i =
. s ~ s ~ . s ~ . s ~ ~ s ~ j, and B,, = p',& ' . . p ! = .s',,s~s~s~s~ls~3s~,, respec-
tively. Five corresponding pairs (si . .s',). (S G . .sk). (sR. sk). (s , 2 . s{ ,3),
and (s l i . s ' , ~ ,) can be obtained from the above procedure. Therefore,
the stroke string of the reference character is split into five sub-
strings .s: r~.s:r',r\. .si;r+. .SLrhrio.s; I r j p . . s i : 3 r ; 4 r : 3 , and s : c ! r i 7 r i x ,
which correspond, respectively, to the input strokes represented by
substrings S I r 2 r , 3 r 4 r j . s C , r 7 . . s ~ r 9 r l ~ r ~ I . s 12 r1~r14 , and s l i r l 6 r l i .

The final stage of the candidate character selection phase is
to find out from the set R the 15 reference characters with the
smallest pseudo string distances from the input script as the candidate
characters for detailed matching described next.

IV. DETAILED MATCHING
In the detailed matching phase, each input stroke is matched with

the corresponding strokes in each candidate character. Each stroke
in the input or the reference is represented by a substring of pseudo
and real primitives. The basic idea of matching here is to use the
pseudo primitive in the substring of a candidate character to split the
substring of an input stroke if the input stroke is matched with more
than one stroke in the candidate character. This process is called
input stroke splitting.

More specifically, when more than one stroke in the candidate
character are considered to correspond to one input stroke, each
pseudo primitive in the strokes of the candidate character may fall into
one of the following two cases: 1) The pseudo primitive corresponds
to a real primitive in the input script. For example, the pseudo
primitive si in Fig. l(a) corresponds to the real primitive r3 in Fig.
l(b). It is reasonable here to match the two feature points of s i with
the corresponding feature points of r.3 and to split the first input
stroke in Fig. l(b) into ra and r 4 r s . This match will be denoted as
r3 -+ si; 2) the pseudo primitive disappears in the input script, i.e.,
the pseudo primitive reduces to one feature point. For example, the
pseudo primitive si, in Fig. l(a) becomes a feature point P that
connects the real primitives r10 and rI1 in Fig. l(b). In this case, the
two feature points of si1 should be matched with the feature point
P , and the third input stroke in Fig. l(b) should be split into rgr lo
and r11. This match will be denoted as XI -+ sil, where A11 is a
null primitive connecting r10 and r11. The cost function of the above
split operations will be described later, after the detailed matching
process is described in the following.

Let attributed strings St = s l r 2 r 3 " . r n and Si =

input script and the corresponding strokes in a candidate character
B , respectively. Note that the leading pseudo primitive s1 is the only
pseudo primitive in St, and it should be matched with the leading
pseudo primitive si of S:. In addition, note that Si may contain
more than one pseudo primitive. Let the direction and the length
attributes of r and i-1 be denoted as (q l . I ,) and (y:. l>), respectively.
In addition, let the attribute vectors of pseudo primitives s, and si
be denoted as (q l . l , . s , l . ~ , l . s , 2 . , y , 2) and (q : . l : . ~ i , . y : , . ~ : ~ . y ~ *) ,
respectively. Generally speaking, the interstroke distance between St
and Si can be defined in terms of the minimum-cost edit sequence
from St to Si. Allowable edit operations and their cost functions R
dependent on the types of primitives are described as follows:

1) Change: To replace the first pseudo primitive s1 of St with st
of S: or to replace a real primitive r , with another T : , denoted

s',,.,; . . ~ . s' L + l . . r & represent the substrings of the ith stroke of the

183 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2, FEBRUARY 1993

as s1 + si or r z -+ p i , respectively, with costs

R(SI + si) = H (~ I . (I;) + 1%; . [I f , - [:I + Eil

' ((x1 11 Y l l). Ldl. Y: 1))

+ E ~ ((. ~ I z . ~ 1 2) . (. r ; l . y;2))1.

R(T, -+ r ; , = H(qt.yi) + 14; ' 11, -!:I.
Insert: To insert a real primitive rl into St , denoted as X -+ r:,
where X is a null symbol, with cost

R(X -+ T i) = I<, + 11; ' 1 ; .

Delete: To delete a real primitive r z from S f , denoted as
r 2 -+ A, with cost

R (r , -+ A) = l i d + 11, . 1,.

Split: To split St into two parts; denoted as r , -+ s: or
A, -+ si, i.e., for the case r , -+ si. St = s1r2 . . . rr2 is
split into slr2 . . . r,-1 and r ,+lr ,+l . . . r,, whereas for the
case A, -+ s:.St = s l r L " ' r , is split into s1r2...rt-1 and
r , r I+I . . . r n , with costs

R(r, -+ s:, = H(ql,Y:) + r/t;
. [II, - 1:I + Ed((.r:I .y: l) . (. r L . y l))

+ Erl((x i2 . Y ~ z) . (S,+I. Y ~ + I)) I .
R(X, -+ s;) = I<, + 14;

. [I : + Ed ((.r: . y: 1. (.rz , Y,) 1
+ E ~ ((J ; L . Y ~ ~) . (s ~ . Y ,))] .

Merge: To merge k consecutive real primitives in St into a
longer real primitive, denoted as r z T r + l ' . . T , + k - l -+ rt*

R(rzTz+l " ' T z + k - l -+ T :)

, + k - l

= (l : / L) ' - l - r ' (H (q : . y J) ' l l / 1 :))
, = I

where (q r , I :) is the attribute vector of the combined real primitive
T ; , Ed((z l , y1). (~ 2 . ~ 2)) is the Euclidean distance between points
(T I , IJI) and (2 2 , yz), L, and S, are the total length and the number
of all the real primitives in the input script, and I t i , Iiz. l i d , and ICs
are preselected constants. Detailed explanations of the cost functions
and the attribute vector of the combined primitive defined above can
be found in [13] and [14].

The interstroke distance D,(S t , Si) from St to Si is defined as
the minimum of the cost of all the edit sequences taking St to Si,
and the character distance from the input script A to the candidate
character B is defined as

where N is the number of strokes in A .
Because merge operations are only applied to the real primitives

of the input stroke, the merge costs and the attributes of all possible
combined real primitives can be computed independently and stored
in an array before matching the input with the candidate characters.
In addition, to reduce the computation time, it is assumed that the
maximum number of real primitives allowed in a merge operation
is three. This has been found to be reasonable according to our
experimental results.

The interstroke distance D, (St. Si) between the tth stroke
St = s1r2".rn of A and its corresponding strokes Si =
sir; T A in candidate character B is computed as

follows. Let D be an array such that D (i . j) means the minimum cost
for transforming the attributed string s1 r2 . . r z into the attributed
string s', rhri (where .r: is either a real primitive T: or a pseudo
primitive si), i.e., let D (i . j) = D , ~ (s l r z . . . r , . s : r : . . . x :) . The
distance array D can be computed by a DP technique whose essence
is described below.

1) If x i is a real primitive, then it is matched with the input real
primitives, and D (i . j) is computed as follows:

7 1 1 1 = D (i . j - 1) + R(r , + A):

7712 = D (i - 1. j) + R(X -+ r :) :

m3 = ~ (i - 1. j - 1) + R(r , -+ r :) :

7114 = D(i - 1. j - 2) + I ? (r J - l r , -+ r *)

+ R(r* -+ r ;) :

+ R(r* -+ r :) :

7715 = D (i - 1. j - 3) + R(r,-2rJ-1r, + r *)

D(i . j) = min(ml.rn2.n,3.r11~.rn. j) .

2) If x i is a pseudo primitive, then the input stroke St is split into

1111 = D (i - 1. j - 1) + R(r, + si):

two parts, and D (i . j) is computed as follows:

m 2 = D (i - l . j) + R(X,+l -+ si):

D(i . j) = rnin(n11. m 2)

The final element D (n . m) is just the interstroke distance D,(St, Si),
which is then added iteratively to the character distance D,(A. B) .

The final stage in detailed matching is simply to select, as the
recognition result of the input script, the candidate character with the
smallest character distance from the input script.

V. EXPERIMENTAL RESULTS
In our experiments, the handwriting area of each character is 15

by 15 mm on a digitization tablet whose spatial resolution is 20
lines/". After the preprocessing and angle filtering processes are
performed to each stroke of a character, a size and position normal-
ization operation is applied to reduce the character data into a size of
200 by 200 pixels, from which the attributed string representation is
obtained. The attribute weighting factors l4-1 described in Section 111
and W2 described in Section IV were both set to be 0.25, which
equalizes the weights of the difference measures of the direction
and length attributes. The constants li, and I i d for insertions and
deletions described in Section IV were both chosen to be 16, which is
one half of the maximum value of the direction difference function.
In addition, the constant li, for the split cost was chosen to be
8. The choice of the above preselected constants was based on
our experimental results. In addition, the recognition rates changed
only slightly when the preselected values were perturbed by small
amounts.

A database composed of 3100 Chinese characters was constructed
as the references. The stroke numbers of the characters range from 1
to 24. To create the input data, in totah, 200 characters chosen from
famous Chinese poems were written by ten persons. Each scripter
was instructed to write characters in identical character style and with
handwriting speed identical to writing daily notes. The scripter was
also informed of the correct stroke writing order of each character.
Table I shows the experimental results. Out of the 2000 input scripts,
only 76 were misrecognized. The recognition rate, thus, was 96.2%.
The fourth through the 11th columns of Table I show the statistics
of the numbers of input scripts based on the number of connected
strokes in the scripts. Out of the 2000 input scripts, only 1061 have

184

cumulative
recognition 9 6 . 2 % 9 8 6% 99.35% 99.55%

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL

99.75%

15, NO. 2, FEBRUARY 1993

Fig. 2. Partial recognition results of 200 input scripts chosen from ten scripters. Each error is marked by the notation .-I - B, which means that the
script actually is .-I but was recognized to be B .

T A B L E I
RECOGNITION RESULTS OF 200 INPUT
SCRIPTS WRITTEN BY TEN SCRIPTERS

I scripter I error I recognition1 distribution of input wripls based on I

I total I 7 6 I 96.2% 110611 5041 2 4 5 1 1 0 9 1 421 2 3 1 1 1 1 5 1

correct input stroke counts (i.e., k = O) , and therefore, each of the
remaining 939 input scripts has at least one stroke connected to
another (i.e., k 5 1). The maximum number of connected strokes
among the input scripts is up to ten (i.e., k = lo), and all characters
with IC = 10 were correctly recognized. This shows that the proposed
approach is quite powerful for recognizing highly cursive scripts. Due
to different writing habits, each scripter shows a different degree of
stroke connection. The recognition rate tends to decrease slightly
when the input strokes are heavily connected. The recognition results
of some input scripts are shown in Fig. 2.

It has been found that three factors lead to the above 76 misrecog-
nitions of the input scripts. The first is that the candidate selection
phase fails to select correct references. Five errors come from this
factor. The second factor is that similar character structures exist in
Chinese characters. In total, 66 errors were caused by this factor. The
third factor is the distortion existing in the input scripts. Five input
scripts were misclassified due to this factor. Define the cumulative
recognition rate in the Lth order as the rate at which the correct

character for an input script appears in the list of the first L candidates
selected according to the character distance values. Table I1 shows
the results of the cumulative recognition rates. Only the first three
candidates need to be selected for the rate to reach 99%.

A prototype recognition system has been constructed on an IBM
PCIAT. The C language was used for programming. The average
time to recognize an input script is about 2.5 s. Due to the large
number of Chinese character categories, most of the processing time
was spent in the candidate selection phase. The number of references
selected in the candidate character selection phase tends to be large
when the strokes of the input script are heavily connected, causing
the processing time to increase.

VI. CONCLUDING REMARKS
A new method for on-line handwritten Chinese character recog-

nition has been proposed in this paper. Two kinds of attributed
string representations are proposed to represent handwritten Chinese
characters. By using the split concept, an input script can be used
to split the strokes of each of the references to obtain the desired
stroke correspondence in the candidate selection phase. In addition,
in the detailed matching phase, the proposed split operation can be
employed to solve the input stroke connection problem caused by
fast writing. Good experimental results show the effectiveness of
the proposed recognition approach in handling the stroke connection
problem.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Most errors in the experimental results were caused by the problem
that there are too many Chinese characters with similar structures.
At least two methods can be used to solve this problem. One is to
perform more detailed recognition using more subtle features after the
detailed matching phase. The other is to modify the attributed string
representations of similar reference characters to make the substrings
of their identical parts (such as their common radical) the same. This
will enhance the discrimination power of the distances between the
input script and similar reference characters.

In addition, the constraint of correct stroke orders, which increases
burden to the user and limits writing speed, imposed by the proposed
approach can be relaxed by adding all the possible stroke orders
of each Chinese character in the database. However, enlarging the
database will increase the recognition time. It also seems difficult to
handle all possible stroke orders of different users. Because the stroke
order of each character seems stable for each particular user, it is
feasible to use the proposed approach to design a writer-dependent
system. Future research can be directed toward investigating a more
intelligent method for handling stroke orders and making the proposed
recognition scheme more flexible.

REFERENCES

H. Arakawa, “On-line recognition of handwritten characters-Alpha-
numerics, hiragana, katakana, kanji,” Putt. Recogn., vol. 16, no. 1, pp.
9-16, 1983.
K. Odaka et al., “On-line recognition of handwritten characters by
approximating each stroke with several points,” IEEE Trans. Syst. Man
Cybern., vol. SMC-12, pp. 898-903, 1982.
S. Hanaki and T. Yamazaki, “On-line recognition of handprinted Kanji
characters,” Putt. Recogn., vol. 12, pp. 421-429, 1980.
E. F. Yhap and E. C. Greanias, “An on-line Chinese character recog-
nition system,” IBM J. Res. Devel., vol. 25, no. 3, pp. 187-195, May
1981.
C. Hsu et al., “A syntactic-semantic approach to recognize handwritten
Chinese characters by using a digitizing table as the input device,”
CPCOL, vol. 2, no. 4, pp. 198-215, 1986.
M. Nakagawa et al., ‘‘On-line recognition of handwritten Japanese
character in JOLIS-1,” in Proc. 6th ICPR, 1982, pp. 776-779.
S. L. Shiaw er al., “On-line handwritten Chinese character recognition
by string matching,” in Proc. 2988 ICCPCOL, 1988, pp. 76-80.
T. Wakahara and M. Umeda, ‘‘On-line cursive script recognition using
stroke linkage rules,” in Proc. 7th ICPR, 1984, pp. 1065-1068.
K. Ishigaki and T. Morishita, “A top-down online handwritten character
recognition method via the denotation of variation,” in Proc. 1988
ICCPCOL, 1988, pp. 141-145.
T. Morishita et al., “A Kanji recognition method which detects writing
errors,’’ IJPRAI, vol. 2, no. 1, pp. 181-195, Mar. 1988.
K. J. Chen et al., “A system for on-line recognition of Chinese
characters,” IJPRAI, vol. 2, no. 1, pp. 139-148, Mar. 1988.
R. A. Wagner and M. J. Fisher, “The string-to-string correction prob-
lem,” JACM, vol. 21, pp. 168-173, Jan. 1974.
W. H. Tsai and S. S. Yu. “Attributed string matching with merging
for shape recognition,” IEEE Trans. Putt. Anal. Machine Intell., vol.

Y. T. Tsay, “Model-guided attributed string matching by split-and-merge
for shape recognition and on-line Chinese character recognition,” Ph.D.
thesis, National Chiao Tung Univ., Taiwan, R.O.C., 1988.
C. C. Tappert et al., “The state of the art in on-line handwritten
recognition,” IEEE Trans. Putt. Anal. Machine Intell., vol. PAMI- 12,

PAMI-7, pp. 453-462, .July 1985.

pp. 787-808, Aug. 1990.

VOL. 15, NO. 2, FEBRUARY 1993 185

Breaking Substitution Cyphers Using Stochastic Automata

B. J. Oommen, Senior Member, IEEE, and J. R. Zgierski

Abstract-Let I he a finite plaintext alphabet and V be a cypher
alphabet with the same cardinality as .I. In all one-to-one substitution
cyphers, there exists the property that each element in V maps onto
exactly one element in .I and vice versa. This mapping of V onto .I
is represented by a function T’, which maps any I ’ E V onto some
X E .I (i.e., T’ () = A). In this correspondence, we consider the problem
of learning the mapping of T’ (or its inverse (T*) - ’) by processing
a sequence of cypher text. The fastest reported method to achieve this
is an elegant relaxation scheme due to Peleg et al. [SI, [9] that utilizes
the statistical information contained in the unigrams and trigrams of the
plaintext language. In this correspondence, we present a new learning
automaton solution to the problem called the cypher learning automaton
(CLA). The proposed scheme is fast, and the advantages of the scheme in
terms of time and space requirements over the relaxation method have
been listed. The correspondence contains simulation results comparing
both cypher-breaking techniques.

Index Terms- Crytography, learning automata, relaxation methods,
substitution cyphers.

I. INTRODUCTION
The art of cryptography has very probably existed ever since writ-

ing was invented. The purpose of it was, of course, to hide a message
by systematically transforming the original message into a form that
is unintelligible to the reader unless it is first decyphered. In order to
prevent unauthorized readers (or eavesdroppers) from decyphering the
original message, the strategy with which the transformed message
is decyphered is maintained as a well-kept secret between the sender
and the intended receiver. Hopefully, in this way, the communication
between the authentic sender and receiver cannot be intercepted by
others for whom it is not meant. From the point of view of the
eavesdropper, the heart of the problem is to break the cypher without
a knowledge of the decyphering process, but this is usually not an
easy task.

This correspondence concerns the breaking of substitution cyphers
using learning automata (LA).

Throughout this correspondence, we shall use the word plaintext
to refer to the orginial message and the term cyphertext to refer to
the transformed message. The verbs cypher, encrypt, and encode will
be used interchangeably, and decrypt, decypher, and decode will be
used interchangeably.

Cyphers that use a direct one-to-one mapping are known as
monoalphabetic substitution cyphers. By monoalphabetic, we mean
that only one alphabet is used in encyphering a message, and this is
referred to as the cypher alphabet. In general, if .I is a finite plaintext
alphabet and V is a cypher alphabet with the same cardinality as -1,
a substitution cypher may use any of the 1-11! permutations as its
key. Clearly, finding the correct key to decypher such an encoded
message is an extremely tedious task if one merely randomly tries
all the different mappings. Even with a computer doing the job, this

Manuscript received November 7, 1990; revised January 21, 1992. This
work was supported by the Natural Sciences and Engineering Research
Council of Canada. A preliminary version of some of this work appears in the
Proceedings of the Fourth IEAIAIE Internatidnul Conference on Industrial and
Lngineering Applicarions of Artificral Intelligence and Expert Systems, Hawaii,
June, 1991. Recommended for acceptance by Associate Editor S. Tanimoto.

The authors are with the School of Computer Science, Carleton University,
Ottawa, Canada KlS5B6.

IEEE Log Number 9204243.

0162-8828/93$03.00 0 1993 IEEE

