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Effects of Erlang Call Holding Times on
PCS Call Completion

Yi-Bing Lin, Senior Member, IEEE,and Imrich Chlamtac,Fellow, IEEE

Abstract—This paper studies personal communications services
(PCS’s) channel allocation assuming the Erlang call holding time
distribution (a generalization of the exponential distribution) to
investigate the effect of the variance of the call holding times on
the call completion probability. Our analysis indicates that the
call completion probability decreases as the variance of the call
holding times decreases. This effect becomes more pronounced as
the variance of the cell residence times decreases.

Index Terms—Channel allocation, Erlang distribution, han-
dover, personal communication services.

I. INTRODUCTION

A PERSONAL communications services(PCS’s) network
[1], [2] allows users to communicate with the network

while on the move. During a communication session, a radio
link is established between the portable (themobile phoneor
mobile computer) and abase stationof the PCS network, if
the portable is in thecell or the coverage area of the base
station. If, during the conversation, the portable moves from
one cell to another, the radio link between the old base station
and portable is removed, and in order to continue the call the
portable must obtain a new radio link in the new cell. If no
radio link is available, the call isforced terminated[3].

Performance modeling of a PCS system can be conducted
at two levels. The first-level modeling uses the number of
radio channels in cells as an input parameter to determine
the new call blocking probability and the forced termination
probability. Second-level modeling uses the given new call
blocking and the given forced termination probabilities to
study the call completion probability (or the probability that a
call is successfully completed).

This paper focuses on the second-level modeling which de-
rives call completion probability with the given new/handover
call blocking probability. Since existing cellular systems are
typically engineered at 1%–2% new call blocking and forced
termination, these default values may be used as the reference
input parameters for the second-level modeling. However, the
call completion probability cannot be derived directly from
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these two probabilities. Both the cell residence times and the
call holding times of portables are required to investigate the
call completion probability. To provide an accurate analysis,
the cell residence time and the call holding time distributions
must be carefully chosen to reflect the real system. In our
model, a general cell residence time distribution is considered,
which can be used to accommodate any real PCS system. The
selection of the call holding time distribution is subtle. In the
early wireline telephone network modeling, the call holding
times were typically assumed to be exponentially distributed.
A previous study [4] indicated that the exponential assumption
may not be valid for modern telephone services. In recent
telephone network engineering [4], lognormal distributions [5]
have been used to approximate the wireline call holding times.

In this paper, we consider the Erlang call holding time
distribution. The Erlang distribution is a special case of
the gamma distribution. Statistically, both the lognormal and
gamma distributions have the same capability to approx-
imate measured data [6]. An important advantage of the
Erlang/gamma distribution over the lognormal distribution
is that the Erlang/gamma distribution has a simple Laplace
transform format, a desirable property in our modeling. Al-
though the Erlang distribution is a specific case of a gamma
distribution, our results (see the Conclusion) also apply to the
cellular systems with gamma call holding time distribution.

In a followup work, we have generalized the Erlang call
holding time distribution to a general distribution by using
complex inverse Laplace technique [7]. While the result of the
work is more general, it involves nonintuitive mathematics.
Furthermore, the technique only applies to the second-level
modeling. On the other hand, the derivations of this paper
are easy to understand, and following these derivations, the
results can be extended from the second-level modeling to the
first-level modeling [8].

II. A SSUMPTIONS

In this paper, we derive the call completion probability with
the following three assumptions. The first two assumptions fol-
low those given in our previous work [9]. The third assumption
generalizes the results presented in [9].

• The call arrivals form a Poisson process with arrival rate

• Thecell residence times(the intervals that a portable stays
in the cells) have identical, but arbitrarynonlattice distri-
bution with mean The call completion probability

will be derived under the general cell residence time
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Fig. 1. The Erlang/gamma distribution.

distribution. Then gamma cell residence time distribution
is used in the numerical examples. For a gamma cell
residence time distribution with the shape parameter
and the scale parameter [and the variance of the
distribution is ]; the density function
is expressed as

where (1)

Note that the value is a positive real number. As pointed
out in [9], the gamma distribution is selected because the
distribution is representing a good second approximation
for the data measured from the PCS field trials.

• The call holding times have an Erlang distribution with
the shape parameter and the scale parameter
where is the expected call holding time, and the
variance is The density function for
the call holding time is expressed as

where (2)

Note that an Erlang distribution is a special case of the
gamma distribution where the shape parameteris a
positive integer. When , the call holding time
has an exponential distribution. Similar to the gamma
distribution, the Erlang distribution can be used to ap-
proximate the measured data for some special cases. It
can also be used to illustrate the effects of the variance
and the skewness of the call holding time distribution on
the call completion probability. Fig. 1 plots the Erlang
density functions with mean 1 and and (or
the gamma density function with mean 1 and
and ).

III. T HE DERIVATION FOR THE

CALL COMPLETION PROBABILITY

This section derives the call completion probability

We note that the derivation of (4) is exactly the sameas
that in [9]. The results of [9] based on the exponential call
holding time distribution have been generalized in this paper
by using Erlang call holding time distribution. We note that
this distinction is nontrivial. First, the derivation of based on
the Erlang call holding time distribution is much more difficult
than that based on the exponential distribution. Second, with
the Erlang distribution, we are able to observe the effects of
the variance of the call holding time distribution on the call
completion probability.

Consider the timing diagram in Fig. 2 where the events
occur at times At time the portable
enters the first cell. At time a new call arrives (i.e., a
call connection request for the portable occurs). The call is
complete at time if it is not forced terminated. In other
words, the call holding time is [which has the
density function as defined in (2)]. The portable moves
from cell to cell at time If the call is forced
terminated when the portable enters cellthen the effective
call holding time for this incomplete call is . In
Fig. 2, is the time that the portable resides at cell
1, and (where ) is the cell residence time at
cell We assume that the cell residence times
are independent and identically distributed random variables1

with an arbitrary nonlattice density function and the mean
Let be the Laplace transform of the cell residence

time distribution. Then

Suppose that a call for the portable occurs when the portable
is in cell 1. In Fig. 2, is the interval between when the
call arrives and when the portable moves out of cell 1. As
illustrated in Fig. 2, Thus, the density
function for is expressed as the convolution of the
density functions for

Let be the Laplace Transform of the distribution.
From [8], we have

(3)

Let be the probability that a new call attempt is blocked
(i.e., the call is never connected), be the probability that a
handover call is forced terminated, and be the probability
that a call is completed (i.e., the call is connected and
completed). By using and we derive
as follows. From the definitions of and the probability of
an incomplete call (i.e., the call is connected but is eventually

1As pointed out by an anonymous reviewer of this paper, this assumption
may fit to certain conditions. For example, consider a hexagon-cell structure.
If we draw an arbitrary line across the six hexagon cells, it can be found that
on average, four out of six segments crossing the cells are of the same length.
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Fig. 2. The timing diagram for a forced terminated call.

forced terminated) is and is expressed as

(4)

In (4), the term in is the probability that a call is forced
terminated at the th handover [note that the call is connected
with the probability , then makes successful
handovers with the probability , and is forced
terminated at the th handover with the probability ].
The call incompletion probability is the summation of the
probabilities for From (2), we have

and (4) is rewritten as

(5)

(6)

where (6) is derived from (5) by using the fact [10, Rule
P.3.1.1] that

Let be the value when the Erlang call holding time
distribution has the shape parameter From (6), we have

(7)

where

(8)

Appendix A derives for and . These results
will be used in the next section.

IV. DISCUSSION

In this paper, we assume a PCS system such as AMPS or
global system for mobile communications (GSM), where the
channel assignments for handover calls and the new calls are
identical. That is, Based on (7), we plot as the
function of and Note that the variance
of the Erlang call holding times is and a large
implies a small variance. Similarly, the variance of the gamma
cell residence times is , and a large implies a small
variance. In a PCS system, a typical value for is between
1–3 min. In Figs. 3–8(a), we plot as functions of various
input parameters. Figs. 3–8(b) plot the proportional changes
of between and In other words, we plot

and

as functions of various input parameters. We observe the
following results.

1) General Effect of on Figs. 3–8(a) indicate that
decreases as increases. In other words, when the cell is
engineered at a fixed blocking probability , as the variance
of call holding time decreases, the call completion performance
degrades. Figs. 3–8(b) indicate that the effect ofon can
be ignored for , and the effect becomes significant
when

2) General Effect of the Interaction Between and
Figs. 3 and 6(b) indicate that when the variance of the cell
residence time is small (i.e., is large), the effect of changing

becomes significant. On the other hand, Figs. 5 and 8(b)
indicate that when the variance of the cell residence time is
large (i.e., is small), the effect of changing can be ignored.
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(a) (b)

Fig. 3. The effect of� (
 = 10):

3) Interaction Between and Suppose that a cell is en-
gineered at 2% blocking probability (i.e., %).
Fig. 3 indicates intuitive results that decreases as mobility

increases. The effect of on becomes more significant
as increases. Similar results are observed in Figs. 4 and 5.
Furthermore, Figs. 4 and 5(b) indicate that if the variance of
the cell residence time is large (i.e., ), the effect of
on becomes more significant asincreases. On the other
hand, if the variance of the cell residence time is small [i.e.,

; see Fig. 3(b)], the effect of on becomes less
significant as increases.

4) Interaction Between and As shown in
Figs. 6–8, it is intuitive that decreases as increases.
These figures also indicate that the effect ofon becomes
more significant as increases. Figs. 6–8(b) indicate that
if the variance of the cell residence time is large (i.e.,is
small), the effect of on is significantly affected by the
change of On the other hand, if the variance of the cell
residence time is small (i.e., is large), the effect of on

is not affected by the change of
The above discussion leads to an important observation: the

call completion probability decreases as the variance of the call
holding times decreases. This effect becomes more significant
as the variance of the cell residence times decreases.

V. CONCLUSIONS

This paper introduced a model for studying emerging PCS
cellular systems where a general distribution for modeling

the call holding times is necessary. By characterizing the call
holding times via the Erlang distribution (a generalization of
the exponential distribution) we were able to investigate the
effect of the variance of the call holding times on the call
completion probability. Using this model it was possible to
make the significant observation that in these systems the call
completion probability decreases as the variance of the call
holding times decreases. This effect becomes more significant
as the variance of the cell residence times decreases. In other
words, when the variances of the call holding times and the
cell residence times are small, a cell should be engineered at
a smaller blocking probability (i.e., should be small) to
achieve the same call completion performance as that for a
cell where the variances of the call holding times and the cell
residence times are large.

APPENDIX I
THE DERIVATIONS FOR

Denote as the value when the Erlang call holding
time distribution has the shape parameterFor ,
can be derived as follows. From (3), we have [9]

(9)
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(a) (b)

Fig. 4. The effect of� (
 = 1):

From (7) and (9), we have

(10)

For in order to derive , we need to compute the

derivatives of and Let

and

Then from (3)

(11)

(12)

where

(13)

Consider From (8) and (12), we have
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(a) (b)

Fig. 5. The effect of� (
 = 0:1):

(a) (b)

Fig. 6. The effect ofpo (= pf ) (
 = 10):
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(a) (b)

Fig. 7. The effect ofpo (= pf ) (
 = 1):

(a) (b)

Fig. 8. The effect ofpo (= pf) (
 = 0:1):
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Consider From (11), we have

(14)

where

(15)

From (8) and (14), we have
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