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Abstract: Du, Hsu, and Hwang conjectured that consecutive-d digraphs are
Hamiltonian for d = 3,4. Recently, we gave an infinite class of consecutive-3
digraphs, which are not Hamiltonian. In this article we prove the conjecture for
d = 4. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 1-6, 1999
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1. INTRODUCTION

Define G(d, n, ¢, r), also known as a consecutive-d digraph, to be a digraph whose
n nodes are labeled by the residues modulo n, and a link ¢ — j from node ¢ to
node j exists if and only if j € {gi + k (mod n): r < k < r 4+ d — 1}, where
1<g<n—-1,1<d<n-—1and0 < r < n —1 are given. Many computer
networks and multiprocessor systems use consecutive-d digraphs for the topology of
their interconnection networks. For example, ¢ = 1 yields the multiloop networks
[13], also known as circulant digraphs [14], with the skip set {r,r + 1,...,7 +
d — 1}. ¢ = d and r = 0 yields the generalized de Bruijn digraphs [8, 12], and
q = r = n — d yields the Imase—Itoh digraphs [9].

In some applications, it is important to know whether a consecutive-d digraph
embeds a Hamiltonian circuit. This issue was first raised by Pradhan [11]. Neces-
sary and sufficient conditions for generalized de Bruijn digraphs and the Imase—Itoh
digraphs to be Hamiltonian were given by Du, Hsu, Hwang, and Zhang [5]. For
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the case of ged(n,q) > 2, Du, Hsu, and Hwang [4] showed that G(d,n, q,r) is
Hamiltonian if and only if d > ged(n,q). So, we may only consider the case
when ged(n,q) = 1. Necessary and sufficient conditions for consecutive-d di-
graphs to be Hamiltonian were given by Hwang [7] for d = 1 and by Du and Hsu
[3] (also see [2]) for d = 2. Furthermore, Du, Hsu, and Hwang [4] proved that
consecutive-d digraphs are Hamiltonian for d > 5, and conjectured they are also
for d = 3,4. Du and Hsu [3] gave partial support to this conjecture by proving its
validity under the condition ¢ < d. Recently, we [1] gave an infinite class of ex-
amples that consecutive-3 digraphs are not necessarily Hamiltonian. In this article,
we prove that consecutive-4 digraphs are Hamiltonian, and thus, completely settle
the conjecture.

2. SOME GENERAL REMARKS

Throughout this article, we assume that gcd(n, ¢) = 1. In this case, G(d, n, q,r)
is a regular digraph of indegree and outdegree both d. In particular, G(1,n,q, ")
is the disjoint union of cycles.

Let G(4,n,q,r) denote the underlying consecutive-4 digraph. Consider the
digraph G(1,n,q,r + 1). Suppose that G(1,n,q,r + 1) consists of ¢ disjoint
cycles C1,Cs,...,C.. If ¢ = 1, then G(4,n,q,r) is Hamiltonian and we are
done. Suppose that ¢ > 1. A link-interchange method was introduced in [4] to
merge two cycles. Since 0 < g < n, there exists a cycle with more than one
node. Furthermore, this cycle remains to contain more than one node throughout
merges. Let ¢ be a node on this cycle such that ¢ + 1 is not. Such an ¢ always exists
unless the cycle is Hamiltonian. Suppose that i’ — i and (i + 1)’ — i + 1 are
in G(1,n,q,r + 1), where ¢’ # i but (i + 1)’ could be i + 1. We replace these
two links by the two links i/ — i + 1 and (i + 1)’ — 4 and call this an {i,7 + 1}
interchange, which merges the two cycles ¢ and ¢ + 1 are on into one. Note that the
link ¢/ — ¢+ 1isin G(1,n,q,r + 2) and the link (i + 1)’ — iisin G(1,n,q,7).

Two interchanges {i,7 + 1} and {j,j + 1} do not interfere with each other, if
{i,i4+1}N{j,j+ 1} = 0. Butif the intersection is not empty, say, j + 1 = 7, then
doing the interchange {7 — 1,1} after {i,7 + 1} means replacing (i + 1)’ — i by
(t+1) —i—1, whichisin G(1,n,q,r — 1), but not in G(4,n, q,r). However,
we can do {7,7 + 1} after {¢ — 1,i}. This is because we are replacing (i — 1)’ — i
and (i+1) —i+1by(i—1) —i+1land (i+1) — i, where (i—1) — i+ 1is
inG(1,n,q,7 + 3) and (i + 1)) — i isin G(1,n,q,r). Therefore, we can do two
consecutive interchanges, if we do it in the right order, namely, do the smaller pair
first. Similarly, if we start with decomposing G (1, n, ¢, r + 2) into cycles, then we
can do two consecutive interchanges, if we do the larger pair first.

We will now represent two consecutive interchanges {i — 1,7} and {i,7 + 1}
by the set {i — 1,4,7 + 1}. In defining an interchange, the two nodes involved are
assumed to be on different cycles, and these are cycles updated to previous merges.
For example, when the interchange {i,7 + 1} is performed after the interchange
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{i — 1,1}, then the three nodes ¢ — 1,4,7 + 1 are on different cycles originally (if
i — 1 and ¢ + 1 are on the same cycle, we have no reason to perform the second
interchange). A legitimate interchange set (without three consecutive interchanges)
can be represented by a set S = {57, 52, ..., S5}, where the S;’s are disjoint and
each \S; is a subset of two or three consecutive nodes. Note that after one or more
interchanges in S; are performed, then all cycles intersecting \S; are connected.

Let X and Y be two sets of subsets of {1,2,...,m}. Define B,,(X,Y) to be
the bipartite graph with vertex set X UY’, and there exists an edge between X; € X
and Y; € Y if and only if X; N'Y; # (. Let C™*! (respectively, C"2) denote the
set of all disjoint cycles in G(1,n, q,r + 1) (respectively, G(1,n, g, + 2)). Then
we have the following.

Lemma 1. G(4,n,q,r) is Hamiltonian if gcd(n, q) = 1 and there exists a legiti-
mate interchange set S such that either B, (S, C™™1) or B,,(S, C™2) is connected.

Proof.  Since ged(n,q) = 1, both G(1,n,q,r + 1) and G(1,n,q,7 + 2)
are disjoint unions of cycles. Applying the link-interchange method by using the
legitimate interchange set .S, we can merge the cycles into a Hamiltonian cycle of
G(4,n,q,7). Q.E.D.

3. ALGORITHM FOR CONSTRUCTING S

We are unable to find an explicit legitimate interchange set S such that B,, (S, C"+1)
or B, (S, C"™*?) is connected for all n and . However, for each given set (n, g, 7),
we give an algorithm to construct such S. In fact, our construction applies to a more
general setting where C, Cy, . .., C. do not have to come from G(1,n,q,r + 1)
or G(1,n,q,r + 2), but merely a disjoint partition of {1,2,...,n}.

Lemma2. Let P = {P,,...,P,} be a partition of {1,2,...,m} such
that all |P;| > 2 except one part can be a singleton. Then there exists S =
{51, 52, ...,Ss}, where S;’s are disjoint consecutive subsets of {1,2, ..., m} with
all |S;| = 2 or 3 such that B, (S, P) is connected and the S; containing m (if any)
has |S;| = 2.

Proof.  We shall prove the lemma by induction on m. It is trivially true for
m < 4. Assume m € Pyandm —1 € P;.

If |P;| > 3, then |P; — {m}| > 2. Let P’ be obtained from P by deleting m
from P;. By the induction hypothesis, there exists S such that By, _1(S, P’) is
connected. Clearly, By, (.S, P) is also connected.

Now, suppose that | P;| < 2. If i # j, let P’ be obtained from P by replacing P;
and P; by P/ = P;UP; —{m — 1, m}. Note that P/ is nonempty, since P; or P; is
not a singleton. Also, P/ is a singleton only when P; or P; is. Thus, P’ has at most
one singleton. By the induction hypothesis, there exists S’ such that B,,,_2(S’, P’)
is connected. Then B, (S" U {{m — 1,m}}, P) is connected.

Ifi = j,ie., P, = {m—1,m}, let P = P—{P;}. By the induction hypothesis,
Bp,—2(S’, P) is connected for some S’. Set S = S"U{{m—2,m—1}},ifm—2
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is notin any Si. Otherwise, assume m —2 € Sy, (then |Si| = 2). Let S be obtained
from S’ by adding m — 1 to Si. Then B, (.S, P) is connected. Q.E.D.

Theorem 1.  Suppose that gcd(n, q) = 1. Then G(4,n, q,r) is Hamiltonian.

Proof.  We first note that a consecutive-1 digraph G(1,n, ¢,r") hasaloopi — i
(i.e., i = qi +r' (mod n)) if and only if gcd(n, ¢ — 1) divides r’. In the affirmative
case, the number of loops is ged(n, ¢ — 1), see [7].

If ged(n,q — 1) > 1, then either G(1,n,q,r + 1) or G(1,n,q,r + 2) has no
loop, as ged(n, ¢ — 1) cannot divide both r + 1 and r + 2. If ged(n,qg — 1) = 1,
then both G(1,n,q,r + 1) and G(1,n, q,r + 2) have exactly one loop. In either
case, since ged(n, q) = 1, either G(1,n,q,r+ 1) or G(1,n, q,r + 2) partitions the
node-set into a set C of disjoint cycles with at most one singleton-cycle. By Lemma
2, there exists a legitimate interchange set S such that B,, (.S, C') is connected. The
theorem then follows from Lemma 1. Q.E.D.

Note that the inductive proof of Lemma 2 implies a linear-time algorithm to
construct S.

4. EXPLICIT CONSTRUCTION OF S

When ged(n, q) = 1 and 3 divides n, we can give an explicit construction of S
that works for all n and ¢q. Throughout this section, S = {{3i — 2,3i — 1, 3i} :
i=1,2,...,n/3}.

Theorem 2.  If gcd(n,q) = 1 and 3 divides n, then either B, (S,C" 1) or
B, (S, C™2) is connected.

Proof. 1t is now easier to consider S as a set £ of links (a subset of size 3
corresponds to two consecutive links). To show B, (S, C™1) or B, (S,C"*?) is
connected, it suffices to show that £ U G(1,n,q,r + 1) or EU G(1,n,r + 2) is
connected. We first consider £ U G(1,n,q,r + 1). Note that fori — i + 1 in E,
bothi — qi+r+1landi+1— q(i+1)+r+ 1larein G(1,n,q,r + 1). Hence,
qi+r+1andqi+r+ 1+ qare connected in EUG(1,n,q,r+1). Let EUQ be
obtained from F U G(1,n,q,r + 1) by replacing the two links ¢ — ¢i 4+ r + 1 and
i+1—q(i+1)+r+1withthe ¢-link gi + r+1 — gi + r + 1 + g for every 7
such thati — i + 1 isin E. Then E U G(1,n,q,r + 1) is connected if £ U Q@ is.
We now explore the connectivity of £ U Q).

Partition the nodes into n/3 groups, where group 7 consists of nodes 3i — 2, 3i —
1, 37. We will refer to them as the first, second, and third node of the group. We
show that the groups are interconnected through the g-links. A g-link (7, j) will be
called an (z,y) g-link if 7 is the 2" node of a group and j the 3" node of a group.
Since ged(n, ¢) = 1 and 3 divides n, we have that 3 does not divide ¢. Therefore,
each group has two ¢-links going out and two ¢-links going in. The 2n/3 g-links
contain two patterns of size n/3 each: one pattern corresponds to the (z, y) pattern
of the g-link generated by the link (1, 2), the other by the link (2, 3). As 3 does not
divide ¢, we have x #Z y (mod 3). So there are six permissible combinations for
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these two patterns: (¢) (1, 2), (2, 3); (23) (1, 3), (3, 2); (i13) (2, 3), (3, 1); (iv) (2, 1),
(1, 3); (v) (3, 1), (1, 2); (vi) (3,2), (2, 1). The two g-links (4, j) and (7', j') going
out from a group have different patterns (z, y) and (2, 3’). Note thati —j = ¢’ —j'.
Since ¢ and ¢’ are in the same group, j and j’ are either in the same group or in
consecutive groups. Furthermore, it is easily seen that j and j' are in the same
group if and only if (z — y)(2’ — ") > 0. Thus, for the middle four combinations,
the two ¢-links from a group go to two consecutive groups. This implies that every
pair of consecutive groups is connected; hence £ U Q) is.

For the first and last pattern, the two g-links from a group go to the same group. So
EUQ is not connected. However, let EU Q' be obtained from EUG(1,n,q,r+2)
by replacing the two links ¢ — ¢qi + r+ 2and i + 1 — ¢(i + 1) + r + 2 with the
g-link gi +r+2 — qi +1r+ 2+ g forevery ¢ such that i — ¢4 1 isin E. Then the
combination of the two patterns of g-links is (2, 3), (3, 1) for case (i), and (1, 3),
(3, 2) for case (vi). In either case, the two g-links from a group go to two different
groups. So, E U (@’, consequently, E U G(1,n, q,r 4+ 2) is connected. Q.E.D.

Unfortunately, £ = {(3i —2 —3i—1)U(3i—1—3i):i=1,2,...,|n/3]}
does not work when 3 does not divide n. A counterexample G(4,25,13,7) was
given by Xuding Zhu (group 1 and group 5 are not connected in G(1, 25, 13, 8) and
group 4 and group 8 not connected in G(1, 25,13, 9)).

5. CONCLUSIONS

It is known that consecutive-d digraph is Hamiltonian for d > 5, but not necessarily
so for d < 3. In this article, we prove the conjecture that consecutive-4 digraphs
are Hamiltonian, and thus completely settle the issue. Of course, our result for
d = 4 implies that for d > 5. Our result also implies that there exist at least |d/4]
disjoint Hamiltonian circuits for a consecutive-d digraph.
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