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Abstract: Du, Hsu, and Hwang conjectured that consecutive-d digraphs are
Hamiltonian for d = 3, 4. Recently, we gave an infinite class of consecutive-3
digraphs, which are not Hamiltonian. In this article we prove the conjecture for
d = 4. c© 1999 John Wiley & Sons, Inc. J Graph Theory 31: 1–6, 1999
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1. INTRODUCTION

DefineG(d, n, q, r), also known as a consecutive-d digraph, to be a digraph whose
n nodes are labeled by the residues modulo n, and a link i → j from node i to
node j exists if and only if j ∈ {qi + k (mod n): r ≤ k ≤ r + d − 1}, where
1 ≤ q ≤ n − 1, 1 ≤ d ≤ n − 1 and 0 ≤ r ≤ n − 1 are given. Many computer
networks and multiprocessor systems use consecutive-ddigraphs for the topology of
their interconnection networks. For example, q = 1 yields the multiloop networks
[13], also known as circulant digraphs [14], with the skip set {r, r + 1, . . . , r +
d − 1}. q = d and r = 0 yields the generalized de Bruijn digraphs [8, 12], and
q = r = n− d yields the Imase–Itoh digraphs [9].

In some applications, it is important to know whether a consecutive-d digraph
embeds a Hamiltonian circuit. This issue was first raised by Pradhan [11]. Neces-
sary and sufficient conditions for generalized de Bruijn digraphs and the Imase–Itoh
digraphs to be Hamiltonian were given by Du, Hsu, Hwang, and Zhang [5]. For
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the case of gcd(n, q) ≥ 2, Du, Hsu, and Hwang [4] showed that G(d, n, q, r) is
Hamiltonian if and only if d ≥ gcd(n, q). So, we may only consider the case
when gcd(n, q) = 1. Necessary and sufficient conditions for consecutive-d di-
graphs to be Hamiltonian were given by Hwang [7] for d = 1 and by Du and Hsu
[3] (also see [2]) for d = 2. Furthermore, Du, Hsu, and Hwang [4] proved that
consecutive-d digraphs are Hamiltonian for d ≥ 5, and conjectured they are also
for d = 3, 4. Du and Hsu [3] gave partial support to this conjecture by proving its
validity under the condition q ≤ d. Recently, we [1] gave an infinite class of ex-
amples that consecutive-3 digraphs are not necessarily Hamiltonian. In this article,
we prove that consecutive-4 digraphs are Hamiltonian, and thus, completely settle
the conjecture.

2. SOME GENERAL REMARKS

Throughout this article, we assume that gcd(n, q) = 1. In this case, G(d, n, q, r)
is a regular digraph of indegree and outdegree both d. In particular, G(1, n, q, r′)
is the disjoint union of cycles.

Let G(4, n, q, r) denote the underlying consecutive-4 digraph. Consider the
digraph G(1, n, q, r + 1). Suppose that G(1, n, q, r + 1) consists of c disjoint
cycles C1, C2, . . . , Cc. If c = 1, then G(4, n, q, r) is Hamiltonian and we are
done. Suppose that c > 1. A link-interchange method was introduced in [4] to
merge two cycles. Since 0 < q < n, there exists a cycle with more than one
node. Furthermore, this cycle remains to contain more than one node throughout
merges. Let i be a node on this cycle such that i+ 1 is not. Such an i always exists
unless the cycle is Hamiltonian. Suppose that i′ → i and (i + 1)′ → i + 1 are
in G(1, n, q, r + 1), where i′ 6= i but (i + 1)′ could be i + 1. We replace these
two links by the two links i′ → i + 1 and (i + 1)′ → i and call this an {i, i + 1}
interchange, which merges the two cycles i and i+1 are on into one. Note that the
link i′ → i+ 1 is in G(1, n, q, r + 2) and the link (i+ 1)′ → i is in G(1, n, q, r).

Two interchanges {i, i + 1} and {j, j + 1} do not interfere with each other, if
{i, i+1}∩{j, j+1} = ∅. But if the intersection is not empty, say, j+1 = i, then
doing the interchange {i − 1, i} after {i, i + 1} means replacing (i + 1)′ → i by
(i + 1)′ → i − 1, which is in G(1, n, q, r − 1), but not in G(4, n, q, r). However,
we can do {i, i+ 1} after {i− 1, i}. This is because we are replacing (i− 1)′ → i
and (i+1)′ → i+1 by (i−1)′ → i+1 and (i+1)′ → i, where (i−1)′ → i+1 is
in G(1, n, q, r + 3) and (i + 1)′ → i is in G(1, n, q, r). Therefore, we can do two
consecutive interchanges, if we do it in the right order, namely, do the smaller pair
first. Similarly, if we start with decomposing G(1, n, q, r+ 2) into cycles, then we
can do two consecutive interchanges, if we do the larger pair first.

We will now represent two consecutive interchanges {i − 1, i} and {i, i + 1}
by the set {i− 1, i, i+ 1}. In defining an interchange, the two nodes involved are
assumed to be on different cycles, and these are cycles updated to previous merges.
For example, when the interchange {i, i + 1} is performed after the interchange
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{i − 1, i}, then the three nodes i − 1, i, i + 1 are on different cycles originally (if
i − 1 and i + 1 are on the same cycle, we have no reason to perform the second
interchange). A legitimate interchange set (without three consecutive interchanges)
can be represented by a set S = {S1, S2, . . . , Ss}, where the Si’s are disjoint and
each Si is a subset of two or three consecutive nodes. Note that after one or more
interchanges in Si are performed, then all cycles intersecting Si are connected.

Let X and Y be two sets of subsets of {1, 2, . . . ,m}. Define Bm(X,Y ) to be
the bipartite graph with vertex setX∪Y , and there exists an edge betweenXi ∈ X
and Yj ∈ Y if and only if Xi ∩ Yj 6= ∅. Let Cr+1 (respectively, Cr+2) denote the
set of all disjoint cycles in G(1, n, q, r + 1) (respectively, G(1, n, q, r + 2)). Then
we have the following.

Lemma 1. G(4, n, q, r) is Hamiltonian if gcd(n, q) = 1 and there exists a legiti-
mate interchange set S such that eitherBn(S,Cr+1) orBn(S,Cr+2) is connected.

Proof. Since gcd(n, q) = 1, both G(1, n, q, r + 1) and G(1, n, q, r + 2)
are disjoint unions of cycles. Applying the link-interchange method by using the
legitimate interchange set S, we can merge the cycles into a Hamiltonian cycle of
G(4, n, q, r). Q.E.D.

3. ALGORITHM FOR CONSTRUCTING S

We are unable to find an explicit legitimate interchange setS such thatBn(S,Cr+1)
or Bn(S,Cr+2) is connected for all n and q. However, for each given set (n, q, r),
we give an algorithm to construct suchS. In fact, our construction applies to a more
general setting where C1, C2, . . . , Cc do not have to come from G(1, n, q, r + 1)
or G(1, n, q, r + 2), but merely a disjoint partition of {1, 2, . . . , n}.

Lemma 2. Let P = {P1, P2, . . . , Pp} be a partition of {1, 2, . . . ,m} such
that all |Pj | ≥ 2 except one part can be a singleton. Then there exists S =
{S1, S2, . . . , Ss},where Si’s are disjoint consecutive subsets of {1, 2, . . . ,m}with
all |Si| = 2 or 3 such thatBm(S, P ) is connected and the Si containingm (if any)
has |Si| = 2.

Proof. We shall prove the lemma by induction on m. It is trivially true for
m ≤ 4. Assume m ∈ Pi and m− 1 ∈ Pj .

If |Pi| ≥ 3, then |Pi − {m}| ≥ 2. Let P ′ be obtained from P by deleting m
from Pi. By the induction hypothesis, there exists S such that Bm−1(S, P ′) is
connected. Clearly, Bm(S, P ) is also connected.

Now, suppose that |Pi| ≤ 2. If i 6= j, let P ′ be obtained from P by replacing Pi
and Pj by P ′i = Pi ∪Pj −{m− 1,m}. Note that P ′i is nonempty, since Pi or Pj is
not a singleton. Also, P ′i is a singleton only when Pi or Pj is. Thus, P ′ has at most
one singleton. By the induction hypothesis, there exists S′ such thatBm−2(S′, P ′)
is connected. Then Bm(S′ ∪ {{m− 1,m}}, P ) is connected.

If i = j, i.e., Pi = {m−1,m}, let P ′ = P −{Pi}. By the induction hypothesis,
Bm−2(S′, P ′) is connected for some S′. Set S = S′ ∪{{m− 2,m− 1}}, ifm− 2
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is not in any Sk. Otherwise, assumem−2 ∈ Sk (then |Sk| = 2). Let S be obtained
from S′ by adding m− 1 to Sk. Then Bm(S, P ) is connected. Q.E.D.

Theorem 1. Suppose that gcd(n, q) = 1. Then G(4, n, q, r) is Hamiltonian.
Proof. We first note that a consecutive-1 digraphG(1, n, q, r′) has a loop i→ i

(i.e., i ≡ qi+ r′ (mod n)) if and only if gcd(n, q− 1) divides r′. In the affirmative
case, the number of loops is gcd(n, q − 1), see [7].

If gcd(n, q − 1) > 1, then either G(1, n, q, r + 1) or G(1, n, q, r + 2) has no
loop, as gcd(n, q − 1) cannot divide both r + 1 and r + 2. If gcd(n, q − 1) = 1,
then both G(1, n, q, r + 1) and G(1, n, q, r + 2) have exactly one loop. In either
case, since gcd(n, q) = 1, eitherG(1, n, q, r+1) orG(1, n, q, r+2) partitions the
node-set into a setC of disjoint cycles with at most one singleton-cycle. By Lemma
2, there exists a legitimate interchange set S such that Bn(S,C) is connected. The
theorem then follows from Lemma 1. Q.E.D.

Note that the inductive proof of Lemma 2 implies a linear-time algorithm to
construct S.

4. EXPLICIT CONSTRUCTION OF S

When gcd(n, q) = 1 and 3 divides n, we can give an explicit construction of S
that works for all n and q. Throughout this section, S = {{3i − 2, 3i − 1, 3i} :
i = 1, 2, . . . , n/3}.
Theorem 2. If gcd(n, q) = 1 and 3 divides n, then either Bn(S,Cr+1) or
Bn(S,Cr+2) is connected.

Proof. It is now easier to consider S as a set E of links (a subset of size 3
corresponds to two consecutive links). To show Bn(S,Cr+1) or Bn(S,Cr+2) is
connected, it suffices to show that E ∪ G(1, n, q, r + 1) or E ∪ G(1, n, r + 2) is
connected. We first consider E ∪G(1, n, q, r + 1). Note that for i→ i+ 1 in E,
both i→ qi+ r+ 1 and i+ 1→ q(i+ 1) + r+ 1 are in G(1, n, q, r+ 1). Hence,
qi+ r+ 1 and qi+ r+ 1 + q are connected in E ∪G(1, n, q, r+ 1). Let E ∪Q be
obtained from E ∪G(1, n, q, r+ 1) by replacing the two links i→ qi+ r+ 1 and
i+ 1→ q(i+ 1) + r+ 1 with the q-link qi + r + 1→ qi + r + 1 + q for every i
such that i → i+ 1 is in E. Then E ∪G(1, n, q, r + 1) is connected if E ∪Q is.
We now explore the connectivity of E ∪Q.

Partition the nodes into n/3 groups, where group i consists of nodes 3i−2, 3i−
1, 3i. We will refer to them as the first, second, and third node of the group. We
show that the groups are interconnected through the q-links. A q-link (i, j) will be
called an (x, y) q-link if i is the xth node of a group and j the yth node of a group.
Since gcd(n, q) = 1 and 3 divides n, we have that 3 does not divide q. Therefore,
each group has two q-links going out and two q-links going in. The 2n/3 q-links
contain two patterns of size n/3 each: one pattern corresponds to the (x, y) pattern
of the q-link generated by the link (1, 2), the other by the link (2, 3). As 3 does not
divide q, we have x 6≡ y (mod 3). So there are six permissible combinations for



CONSECUTIVE-4 DIGRAPHS ARE HAMILTONIAN 5

these two patterns: (i) (1, 2), (2, 3); (ii) (1, 3), (3, 2); (iii) (2, 3), (3, 1); (iv) (2, 1),
(1, 3); (v) (3, 1), (1, 2); (vi) (3, 2), (2, 1). The two q-links (i, j) and (i′, j′) going
out from a group have different patterns (x, y) and (x′, y′). Note that i−j = i′−j′.
Since i and i′ are in the same group, j and j′ are either in the same group or in
consecutive groups. Furthermore, it is easily seen that j and j′ are in the same
group if and only if (x− y)(x′− y′) > 0. Thus, for the middle four combinations,
the two q-links from a group go to two consecutive groups. This implies that every
pair of consecutive groups is connected; hence E ∪Q is.

For the first and last pattern, the two q-links from a group go to the same group. So
E∪Q is not connected. However, letE∪Q′ be obtained fromE∪G(1, n, q, r+2)
by replacing the two links i→ qi+ r + 2 and i+ 1→ q(i+ 1) + r + 2 with the
q-link qi+ r+2→ qi+ r+2+ q for every i such that i→ i+1 is inE. Then the
combination of the two patterns of q-links is (2, 3), (3, 1) for case (i), and (1, 3),
(3, 2) for case (vi). In either case, the two q-links from a group go to two different
groups. So, E ∪Q′, consequently, E ∪G(1, n, q, r + 2) is connected. Q.E.D.

Unfortunately, E = {(3i− 2→ 3i− 1)∪ (3i− 1→ 3i) : i = 1, 2, . . . , bn/3c}
does not work when 3 does not divide n. A counterexample G(4, 25, 13, 7) was
given by Xuding Zhu (group 1 and group 5 are not connected inG(1, 25, 13, 8) and
group 4 and group 8 not connected in G(1, 25, 13, 9)).

5. CONCLUSIONS

It is known that consecutive-d digraph is Hamiltonian for d ≥ 5, but not necessarily
so for d ≤ 3. In this article, we prove the conjecture that consecutive-4 digraphs
are Hamiltonian, and thus completely settle the issue. Of course, our result for
d = 4 implies that for d ≥ 5. Our result also implies that there exist at least bd/4c
disjoint Hamiltonian circuits for a consecutive-d digraph.
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