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Adaptive self-quantization in wavelet-based fractal image
compression

Bing-Fei Wu ² , Yi-Qiang Hu ² and Hung-Hseng Hsu ²

Finding a model to quantize the scale factors in wavelet-based fractal image com-
pression is a complicated issue. To avoid error, it is helpful to model the distribution
of the scale factors and quantize them before the computation process by iterated
function systems. Traditionally, a ® xed model with uniform distribution was frequently
adopted. This is not sophisticated enough, however, to quantize these scale factors from
errors since, in general, the factors are not uniformly distributed. We propose an
adaptive algorithm with self-quantization to overcome this drawback. Except for the
functions of adaptation and self-quanti® cation, the approach has the optimal property
that the fundamental objective is to reduce the quantization errors.

1. Introduction

In the application of image processing, discrete wavelet
transforms (DWT) are employed to extract the coded
image into several sub-images with di� erent resolutions
(Mallat 1989, Antonini et al. 1992, Strang and Nguyen
1996) . The methods of image compression using DWT
could provide high compression ratios (CR) and high
image ® delity as well (Antonini et al. 1992, Vetterli
and KovacÏ evicÂ 1995, Hsu et al. 1997) . These subimages,
except for the ones with lowest frequencies, which are
similar to the original image in general, are called
detailed images. Rinaldo and Calvagno (1995) further
pointed out the redundancy of the wavelet-based
images across scales from the perspective of fractals.
Hence, it is said that an image performed after DWT
has the intrinsic property of fractals and can be manipu-
lated by fractal compression methods for further com-
pressing this image e� ectively. Moreover, the
application of fractal coders to wavelet-based images
over original images is highly recommended for the
application’s ability to enhance the similarity among
the detailed sub-images, but also to reduce the blocking
e� ect in most other block-based coding techniques since
we extract the similarities in the frequency domain
instead of the spatial domain.

A block coding method by means of the technique of
Interactive Function Systems (IFS), introduced by
Barnsley and Jacquin (1988) and Jacquin (1993) , was
widely used in fractal image compression. It has
proven successful for compressing images at low bit
rates. The main procedure of IFS is to ® nd and manip-
ulate the domain block such that it can be the most
matched one for a ® xed range block in some measure
senses (Jacobs et al. 1992, Fisher 1994). Following that,
we have to determine all the IFS parameters corre-
sponding to the range blocks. The IFS maps can be
iteratively applied to ® nd the ® xed point, which is an
approximation to the image to be coded. To reduce
the decoding time and error, this study presents a new
prediction approach that di� ers slightly from IFS. In the
coding part of the predictor, the domain and range
pools belong to di� erent subbands with the same orien-
tation and block size. The domain pool is constituted by
the subimage with a lower frequency, thereby ensuring
smaller values of scale factors since the image has the
property of power `decayness’ (Antonini et al. 1992).

The IFS parameters include the positions of the
domain blocks, eight isometries of the square achieved
from the compositions of re¯ ections and 90ë rotations,
scale factors and o� set values. There is no doubt that the
positions and isometries belong to integers and need not
be quantized before coding them. However, generally,
the scale factors and o� set values should be ¯ oating
numbers. We need to quantize them for coding. The
main purpose of this paper will focus on the relationship
of the quantization and IFS coding error. We try to ® nd
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a better way to avoid errors accumulating, under the
situation that IFS coding is followed by quantization.
A complete code including DWT, IFS and the entropy
coding is addressed in our other work (Wu et al. 1997).
The o� set values here allow us to adjust the DC com-
ponents of the range blocks (Antonini et al. 1992). More
precisely, the o� set values in IFS coding can be taken as
the DC values corresponding to range blocks (Davis
1995) . Naturally, we assume that the distribution of
the o� set values for all range blocks is similar to that
of the encoded image. For the images performed after
DWT, the distributions of detailed images can be mod-
elled on generalized Gaussian distributions (Daubechies
1988) . Hence, the distribution of the o� set values was
obtained and their quantization was found. Next, we
will face a serious problem when quantizing these scale
factors.

If we quantize the ¯ oating scale factors after IFS, the
s̀econd error’ will be introduced. That is the quantiza-
tion error and the error induced by IFS would be com-
pounded. A better way is to quantize these ¯ oating
numbers before processing in IFS, provided that we
know and model the histogram of these scale factors
precisely. In fact, we have no idea how to model the
histogram, other than the fact that the distribution of
these scale factors was concentrated around zero and
was decayed on both sides, and was observed from the
experimental results. Therefore the simplest way is to
approximate it with a uniform distribution (Jacquin
1993) . This would result in a less optimal case for
searching for IFS parameters. In this case we propose
an Adaptive Self-Quantizer (ASQ) to overcome the
above disadvantage in quantizing these scale factors.
As we know, adaptivity will be a trend for lossless
data compression in the future. It will do well in the
case that the statistics of the input source are either
unknown a priori or varying over time. Some recent
work of adaptive quantization (Steinberg and Gutman
1993, Chan and Vetterli 1995) was designed with
existing codebooks, which require background informa-
tion. The objective of altering the support region of a
uniform scalar quantization is also demonstrated in
Jayant (1973) , Crisafulli and Bitmead (1993) ; however,
the modelling source is not adjustable. ASQ is initiated
as a uniform model intuitively and is permitted to
update the model adaptively according to the input
values. Based on the adaptive model and inputs, the
quantized outputs can also be self-adjusted. This
means that no more bits are necessary to specify the
codebook. After that, we acquire an e� ective model
and reduce the error in quantization of the scale factors.
The concept of optimality is included in this algorithm
to reduce quantization error. There are two approaches
to reconstruct the coding data, the forward and back-
ward methods, which depend on the necessary encoded

bits and the quality of the reconstructed image.
Moreover, we apply the concept of the source modelling
from Ortega and Vetterli (1997) , which estimates the
probability density function (p.d.f.) at the mid-point of
the intervals by taking a matrix inversion through
Gaussian substitution methods. However, we have esti-
mated the p.d.f. at the values of decision levels by a kind
of curve ® tting technology, Least Squared Error (LSE)
method. Next, we also depict the distribution by linear
interpolation. In addition, the approach can be consid-
ered as one kind of adaptive ® lters (Widrow and Stearns
1985) . We can ® nd the geometric ratio of the algorithm
from the viewpoint of adaptive signal processing and
consider the in¯ uence of the ratio to the adaptation
capability and reconstruction ® delity.

The organization of this paper is as follows: the prob-
lem of quantizing scale factors in fractal image com-
pression is formulated in the next section. In section 3,
we will introduce the algorithm of the adaptive self-
quantizer, which is designed by three key points. The
reconstruction procedures are also illustrated. After
that, we will address some intrinsic properties about
the algorithm. The experimental results, as listed in sec-
tion 4, reveal that the adaptive self-quantizer is superior
to the uniform model that was usually adopted before.
As a result, a brief conclusion is made in the ® nal sec-
tion.

2. Problem formulations and notations

We will put more emphasis on the quantization of the
scale factors, for it plays an important role in fractal
block coding. In order to quantize the scale factors e� ec-
tively, more precisely, and to reduce the composite
errorsÐ which are produced by fractal coding errors
and quantization errorsÐ we shall introduce ASQ
before applying the IFS coding.

2.1. Problem formulations
Let us formulate the quantization problem ® rst.

Consider a d-bit scalar quantizer, then there are 2d

output levels corresponding to 2d input intervals. The
I/O relationship of a 2-bit scalar quantizer is shown in
® gure 1.

542 Bing-Fei Wu et al.

Figure 1. A 2-bit scalar quantizer.
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2.2. Notation
For convenience in depicting the ASQ algorithm, we

should de® ne the notations of the d-bit scalar quantizer.
d: bits of the quantizer;

nf : the number of scale factors;
S(n) : the nth scaling factor, for n 2 N 7

f 1, 2, . . . , nf g ;
~
S(n) : the estimated input;
d
(n)
j : decision levels at stage n of the quantizer,

j 2 Q  f 2d g , where Q 7 f 1, . . . , 2d g ;

y(n)
i

[d (n)
i 1, d

(n)
i ], for i 2 Q  f 1, 2d g ,

( 1 , d (n)
1 ], for i = 1,

[d (n)
2d  1, 1 ) , for i = 2d ,

which are called the ith interval of the quanti-
zer;

X(n)
i : the number of elements in y(n)

i , i 2 Q. It is also
called the ith counter. Moreover, X(n)

i /n can be
considered as the probability in y(n)

i ;

m(n)
i : reconstructed levels at stage n of the quantizer,

i 2 Q.

3. Adaptive Self-Quantizers

In fractal block coding, the uniform models were
usually adopted to quantize the scale factors since
we cannot obtain their distribution in advance.
Unfortunately, in general, the scale factors would not
be uniformly distributed. Hence, we have the idea of
designing an adaptive quantizer that can self-adjust the
model to an appropriate one. The key points of ASQ are
in the following statements.

(1) The distribution of these scale factors without quan-
tization concentrates around zero and decays on
both sides in general. That is, the distribution is a
model with smoothly decaying tails (Ortega and
Vetterli 1997). When applying fractal coding to a
detailed subimage, the concentrating histogram
phenomenon can be seen in ® gure 2.

(2) The ASQ satis® es the optimal solution in a scalar
quantizer (Max 1960, Hang and Woods 1995, Wu
and Hsu 1996) . That is,

1. the reconstruction level is the centroid of the
interval, and

2. the decision level is the average of neighbouring
reconstruction levels.

(3) The more concentrated the histogram, the smaller
the interval.

Before illustrating the ASQ algorithm, we need to make
an initialization.

d
(0)
j : the values to decide, such that we can uni-

formly split into 2d intervals for some rea-
sonable range R, j 2 Q  f 2d};

d
(0)
0 , d (0)

2d : the values used to de® ne the dynamic range
R of ASQ;

m(0)
i : the centroids are initially chosen to be the

mid-point of the ith interval;
X(0)

i : the counters are all set to unity;
where j 2 Q  2d and i 2 Q..

After initializing the algorithm, a uniform model fol-
lows. In other words, we suppose that ASQ starts run-
ning from a uniform model.

3.1. The ASQ Algorithm
We depict the ASQ algorithm as follows (see equa-

tions (1) ± (9) at top of next page).
The ASQ algorithm will stop when the input sequence

S(n) is terminated (n = nf ). The coding data include the
integer terms:

^
S(n) = i, for n = 1, 2, . . . , nf , and, if

necessary, the ¯ oating terms: m
(nf )
j , for j 2 Q.

Remarks: The choice of a and b (a < b) in the ASQ
algorithm depends on the ® rst key point shown before
such that the estimated input ~S(n) can be located at the
position closer to the origin. For example, we set a = 1
and b = 2. It is observed that the choice of a and b will
a� ect the quantization error. Detailed discussion for
di� erent values of a/b will be illustrated in the next
section. We will estimate the shape of the source distri-
bution linearly by the parameters a and b.

3.2. Reconstruction of ASQ algorithms
There are two approaches to reconstruct the coding

data, which depend on the necessary encoded bits and

Adaptive self-quantization 543

Figure 2. The histogram of scale factors without quantization

in Dh2 : the horizontal oriented subimage with resolution 1
4 per-

formed after DWT.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
31

 2
8 

A
pr

il 
20

14
 



the quality of the reconstructed image. One approach is
called the forward method. The meaning of f̀orward’ is
that the reconstructed procedure follows an ASQ algor-
ithm directly. That is, we repeat the ASQ algorithm
from n = 1 to nf by means of

^
S(n) , for n = 1, 2, . . . , nf

and the default initialized model (R is known). Another
approach is called the backward method. `Backward’
represents that the fact we can rebuild the quantized
values from n = nf to 1 by the use of the coding data
^

S(n) and m(nf )
j , for n = 1, 2, . . . , nf and j 2 Q.

The di� erences between these two methods are as
follows.

� The forward method only needs to store the integer
term

^
S(n) of the coding data. No more bits are

required to quantize the scale factors. However, the
initial model must be ® xed and considered as a default
model in advance.

� The backward method must save all coding data
including integer and ¯ oating terms. We can reduce
the quantization error at the cost of having to assign
more bits to code these ¯ oating terms. However, it is
unnecessary to be concerned with the initial model.
But we can try to look for better solutions for di� er-
ent initial models, or di� erent values of R.

544 Bing-Fei Wu et al.

for S(n) 2 y(n 1)
i ,

~
S(n) =

ad
(n 1)
i 1 + bd

(n 1)
i

a + b =
am(n 1)

i 1 + (a + b)m(n 1)
i + bm(n 1)

i+1

2(a + b) , i 2 Q1 7 f 1, . . . , 2d 1 g

bd
(n 1)
i 1 + ad

(n 1)
i

a + b =
bm(n 1)

i 1 + (a + b)m(n 1)
i + a(n 1)

i+1

2(a + b) , i 2 Q2 7 f 2d 1 + 1, . . . , 2d g , (1)

X(n)
j =

X(n 1)
i + 1, for j = i,

X(n 1)
j , for j 6= i,

(2)

m(n)
i =

m(n 1)
i X(n 1)

i + ~S(n)
X(n)

i

, (3)

Case I. i 2 Q1

m(n)
j = m(n 1)

j , for j > i, (4)

m(n)
j = m(n 1)

j + m(n)
i  m(n 1)

i , for j < i, (5)

d
(n)
i =

m(n)
i + m(n)

i+1

2
d
(n)
j = d

(n 1)
j , for j > i,

d
(n)
j = d

(n 1)
j + m(n)

i  m(n 1)
i =

m(n)
j +m (n)

j+1

2 , for j < i,

d
(n)
k =

m(n)
k + m(n)

k+1

2
, for k 2 Q1. (6)

Case II. i 2 Q2

m(n)
j = m(n 1)

j , for j < i, (7)

m(n)
j = m(n 1)

j + m(n)
i  m(n 1)

i , for j > i, (8)

d
(n)
i =

m(n)
i + m(n)

i+1

2
d
(n)
j = d

(n 1)
j , for j < i  1,

d
(n)
j = d

(n 1)
j + m(n)

i  m(n 1)
i =

m(n)
j + m(n)

j+1

2
, j, . . . > i  1,

d
(n)
k =

m(n)
k + m(n)

k+1

2
, for k 2 Q2. (9)

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
31

 2
8 

A
pr

il 
20

14
 



3.2.1. The forward method. According to the default
initial model and

^
S(n) , the ASQ algorithm repeats it-

self. For each stage n, we pick out the reconstruction
level m(n)

i , where i =
^

S(n) . During this time we can ob-
tain the reconstructed values of scale factors for
n = 1, 2, . . . , nf .

3.2.2. The backward method. In order to run the back-
ward method, we need to have the coding data which
include the integer terms:

^
S(n) = i, for n = 1, 2, . . . , nf ,

and the ¯ oating terms: m(nf )
j , for j 2 Q. The course of

the backward method is listed as follows:

(1) constitute X
(nf )
i , i 2 Q, by means of

^
S(n) , for

n = 1, 2, . . . , nf ;
(2) rebuild X(n 1)

i :

X(n 1)
i =

X(n)
i  1, i =

^
S(n) ,

X(n)
i , otherwise;

(3) reconstruct m(n 1)
i :

(i) i 2 Q1:

m(n 1)
j = m(n)

j , for j > i,

m(n 1)
i =

[2(a + b)X(n)
i + a]m(n)

i  am(n)
i 1  bm(n)

i+1

2(a + b)X(n 1)
i + 2a + b

,

m(n 1)
j = m(n)

j  [m(n)
i  m(n 1)

i ], for j < i;

(ii) i 2 Q2:

m(n 1)
j = m(n)

j , for j < i,

m(n 1)
i =

[2(a + b)X(n)
i + a]m(n)

i  bm(n)
i 1  am(n)

i+1

2(a + b)X(n 1)
i + 2a + b

,

m(n 1)
j = m(n)

j  [m(n)
i  m(n 1)

i ], for j > i.

For each stage n, we choose the reconstruction level
m(n)

i , where i =
^

S(n) . Therefore we can obtain the recon-
structed values of scale factors for n = 1, 2, . . . , nf .

3.3. Another version of ASQ algorithms

In the previous subsection, we estimated the decaying
property of the distribution from the choices a and b.
That is, we must decide the values of a and b before
running the ASQ algorithm. Therefore, the perform-
ances of ASQ algorithms depend heavily on the selection
of a and b. But there seems to be a lack of robustness. In
order to increase the robustness, the idea of estimating
the decaying distribution by ® xed values of a and b has
to be replaced by another di� erent concept: that is, to
estimate the p.d.f., which is taken as the values at deci-
sion levels by the LSE method. The concept of Ortega
and Vetterli (1997) estimates the p.d.f. at the mid-points
of intervals and therefore obtains the solution by taking
a matrix inversion through the Gaussian substitution
methods. After determining the estimated p.d.f.,
^
f ( d (n)

j ) , j 2 Q  f 2d g , we can rebuild the source distri-
bution more successfully by interpolating the estimated
p.d.f. linearly. So, the value of ~S(n) in (1) is substituted
by the centroid of the ith interval in stage n for more
robustness.

Let us describe this course in detail. In de® ning the
accumulated probability at the ith interval in stage n as
P(n)

i and

P(n)
i =

X(n)
i

n + k 2 Q X(0)
k

,

=
d i

d i 1

^
f (x)dx,

=
1
2
( d i  d i 1) f

^
f ( d i) +

^
f ( d i 1) g , (10)

we assume that the p.d.f. at boundary points are set to
zeros, i.e.,

^
f ( d (n)

0 ) =
^
f ( d (n)

2d ) = 0. Hence, (10), for i 2 Q,
can be represented as a matrix form (see at bottom of
page).

We abbreviate the matrix equation as F = 2P,
where T 7[u (1) u (2) u (2d)], u ( ) is a (2d  1) 1
column vector, F 7 [ ^

f ( d (n)
1 ) ^

f ( d (n)
2 ) ^

f ( d (n)
2d  1)]

T and
Y 7 [P(n)

1 P(n)
2 P(n)

2d ]T. This is inconsistent, generally,
since there are 2d  1 unknown parameters and 2d equa-

Adaptive self-quantization 545

1
2

d
(n)
1  d

(n)
0 0 0 0 0 0 0

d
(n)
2  d

(n)
1 d

(n)
2  d

(n)
1 0 0 0 0 0

0 d
(n)
3  d

(n)
2 d

(n)
3  d

(n)
2 0 0 0 0

..

. . .
. ..

.

0 0 0 0 0 d
(n)
2d  1  d

(n)
2d  2 d

(n)
2d  1  d

(n)
2d  2

0 0 0 0 0 0 d
(n)
2d  d

(n)
2d  1

^
f ( d (n)

1 )
^
f ( d (n)

2 )
^
f ( d (n)

3 )

..

.

^
f ( d (n)

2d  2)
^
f ( d (n)

2d  1)

=

P(n)
1

P(n)
2

P(n)
3

..

.

P(n)
2d  1

P(n)
2d

.
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tions in this matrix equality. Therefore, we will take the
LSE solution

FLSE = ( T )  1 T(2P) , (11)
where FLSE 7 fLSE( d 1) fLSE( d 2d  1)[ ]T. It is a time-con-
suming task to obtain the oƒ ine solution in (11). The
least squared solution can be acquired by a recursive
form as follows (Goodwin and Sin 1984):

PF(k) = PF(k  1)  PF(k  1) u (k) u T(k)PF(k  1)
1 + u T(k)PF(k  1) u (k)

,

(12)

F(k) = F(k  1) + PF(k) u (k) f Pk  u
T(k)F(k  1) g ,

(13)
where PF(k) is the uncertainty matrix of the parameter
vector F(k) . We initiate the values of F(0) and PF(0) as
a zero vector and an identity matrix with very large
values, say 105I, respectively. The reason for setting
very large values to PF(0) is to reduce the in¯ uence of
F(0) , i.e. it reveals that the uncertainty of F(0) is very
high. After 2d recursive steps, the value of FLSE is
obtained, i.e. FLSE = F(k) j k=2d .

According to the estimated p.d.f., FLSE, we can recon-
struct the distribution by linear interpolation between
two decision levels. Moreover, we consider the estimated
input, ~S, as the ith centroid, which is calculated by the
estimated distribution,

~S =

d i

d i 1

xf (x)dx

d i

d i 1

f (x)dx
,

where

f (x) = ( d i  x) fLSE( d i 1) + (x  d i 1) fLSE( d i)
d i  d i 1,

which is obtained from the linear interpolation.
Therefore,

~S =
( d i + 2d i 1) fLSE( d i 1)(2d i + d i 1) fLSE( d i)

3 fLSE( d i) + fLSE( d i 1)[ ] . (14)

The value of ~S in (1) is replaced by the closed form in
Eq.(14) and the remainder of the algorithm is the same
as that of the previous version.

Remarks: The reconstruction of this version ASQ fol-
lows that of the forward method mentioned above. h

3.4. Discussions
In this subsection, we will make some comments on

the ASQ algorithm. From an insight into these intrinsic
properties, we observe that the ASQ algorithm is well-
designed for applications in fractal codings.

1. Adaptive properties
The ASQ algorithm is initiated with a uniform
model. When an input S(n) lies in an interval
y(n 1)

i , for i 2 Q1, it belongs to Case I. The ASQ
will attempt to alter (concentrate or dilate) this
interval, to shift all left-hand side intervals of
y(n 1)

i to the right (if concentrated) or left (if
dilated) ; and to ® x the right-hand side intervals.
If S(n) is regarded as Case II, we will change this
interval upon which S(n) locates, to shift all right-
hand side intervals and to ® x the left-hand side
intervals. This is the fundamental essense of the
® rst and third key points described earlier. Hence,
a quantization model with less error will be
obtained.

2. Self-adjustabilities :
By (3), the new value of the reconstruction level
is combined linearly by the old one and the esti-
mated input ~S(n) . It reveals that the reconstruction
levels will be self-adjusted by the inputs of the
quantizer. Therefore, the quantized values would
be more proper according to the probabilitiy of
scale factors.

3. Optimal properties:
The optimal sense is the most important issue in
ASQ. At ® rst, we recall (3):

m(n)
i =

m(n 1)
i X(n 1)

i + ~S(n)
X(n)

i

,

=
m(n 1)

i
X(n 1)

i

n
+ ~

S(n) 1
n

X(n)
i

n

. (15)

In (15), the denominator represents the probability
of the ith interval. m(n 1)

i is referred to the (n  1)th
stage output with a probability of X(n 1)

i /n. ~S(n) is
the new coming input with a probability of 1/n.
That is, (15) is similar to the closed form of the
ith centroid as shown below,

ith centroid 7

X(n)
i

j=1
zjP(zj)

X(n)
i

j=1
P(zj)

,

where P(zj) is the probability corresponding to
every element in the ith interval and can be con-
sidered to be 1/n. As a result, from (15) the cen-
troid of the ith interval, which is one optimal
condition, is calculated. Moreover, the solutions
in (6) and (9), which show that the decision levels
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are considered as the mid-points of the neigh-
bouring reconstruction levels, satisfy another
optimal condition (Hang and Woods 1995, Wu
and Hsu 1996) . As a result, we conclude that the
ASQ algorithm has the potential of optimality.

4. Alterations:
There are two alterations in the ASQ algorithm.
One is to vary the ratio of a/b to change the
decaying property in the modelling source. We
set the ratio to be smaller if the distribution of
scale factors without quantization is sharper.
Otherwise, we should enlarge the ratio of a/b.
Another alteration is to alter the geometric ratio
g (Widrow and Stearns 1985) , which decides the
adaptation speed of this algorithm.

m(n)
i =

m(n 1)
i X(n 1)

i + ~S(n)
X(n)

i

,

= g m(n 1)
i + (1  g ) ~

S(n) , (16)
where g 7X(n 1)

i /X(n)
i , 0 < g < 1.

The di� erence between the denominator and
numerator is equal to the increment of X(n)

i in (2)
and is set to 1. For example, the values of g will be
1
2 , 2

3 , 3
4 , . . . etc. Naturally, the value of g will

increase. As a result, the weighting factor in esti-
mated input ~S(n) is reduced. It reveals that the
adaptation speed will slow down. In order to main-
tain constant, or increase, the adaptation perform-
ance, we have to make sure that the values of g are
either constant or decreasing. Due to the preserva-
tion of adaptation capability, this method will be
less satisfying than the previous one for a source
with static distributions.

4. Experimental Results

An example of a 2-D image, Lena, is presented to illus-
trate the function of the ASQ algorithm mentioned
before. The testbed images are of 512 512 pixels with
8-bit grey levels. Daubechies’ (1988, 1992) ® lter with
length 20 is adopted in the DWT decomposition since
it is orthogonal and compactly supported. A1 represents
the lowest frequency subimage of the ® rst layer (resolu-
tion 1

2) DWT decomposition. Dh1, Dv1 and Dd1 are the
horizontal, vertical and diagonal oriented subimages
with resolution 1

2, respectively. As a result, the 3-layer
DWT decomposition is derived and shown in ® gure 3,
which reveals that the characteristic of self-similarity in
the fractal would appear between scales with di� erent
resolutions. Therefore, Dh1 is regarded as the `domain
pool’ and Dh2 is considered to be the r̀ange pool’ .

The improvement of mean squared error (MSE) on
using the ® xed uniform model is listed in table 1. It
reveals that the scalar quantizer: (i) must be placed in

front of the IFS algorithm to reduce the composite
error, and more time is spent since every possible scale
factor, while searching in IFS coding, should be quan-
tized in advance; (ii) the ASQ with forward reconstruc-
tion can perform well with no more bits being necessary
to record, and the additional time used to execute the
ASQ algorithm is acceptable; (iii) the backward recon-
struction method can acheive the best MSE at the cost
of increasing encoded bits and computing power. In
practice, this reconstruction method is hard to use
since some ASQ algorithms combining the IFS coding
need to be checked to obtain the MSE better. This is a
time-consuming task, especially in the IFS coding pro-
cedures.

Next, we will show that the ASQ is superior to the
uniform quantizer from the histogram point of view.
The histogram of quantized data with a uniform
model, as shown in ® gure 4(a), is uniformly spread on
the dynamic range R. On the other hand, the histogram
of quantization output with the ASQ algorithm in ® gure
4(b) is similar to that of scale factors without quantiza-
tion in ® gure 2.

We also consider another version of the ASQ algor-
ithm, which is more robust than the previous one since
this method estimates the distribution by means of the
Least Squared Error method instead of the prede® ned
values of a and b. For the cases of R = 4 in table 2, the
modi® ed ASQ algorithms perform well in robustness.
Moreover, it also appears that the reconstruction MSE
is highly related to the ratio of a/b. That is, the results
would perform less successfully if the source is modi® ed
inappropriately.

Adaptive self-quantization 547

Figure 3. The image of Lena performed after the 3-layer DWT.
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Table 2. The comparison of mean squared error in R = ± 4 on ASQ and another version of ASQ with di� erent values of a/b.In each

subimage, the minimum MSE is marked w .

ASQ
Dh2 ASQ
a
b

1
2

1
3

1
4

1
5

1
6

1
7

1
8 (LSE)

MSE 11.1815 11.1993 11.3702 11.7887 12.2652 12.6266 13.0398 10.9594 w

ASQ
Dh2 ASQ
a
b

1
2

1
3

1
4

1
5

1
6

1
7

1
8 (LSE)

MSE 5.2800 w 5.3526 5.4554 5.6068 5.7122 5.7918 5.8808 5.3677

ASQ
Dh2 ASQ
a
b

1
2

1
3

1
4

1
5

1
6

1
7

1
8 (LSE)

MSE 2.4712 w 2.4780 2.4838 2.5120 2.5468 2.5884 2.6150 2.5201

Figure 4. The histograms of the quantized output: (a) uniform mnodel and (b) ASQ algorithm with a = 1, b = 5 and R = 8.

Table 1. The comparison of mean squared error and execution time on uniform model `before’ and `after’ IFS coding, and the ASQ

algorithm with di� erent reconstruction modes: forward and backward. a = 1, b = 5, default dynamic range R = ±8.

ASQ

Horizontal oriented Uniform model SQ forward backward

MSE SQ before IFS 12.1749/0.092 11.1665/0.108 11.1665/0.105 (R = 8)
/Time SQ after IFS 40.4110/0.101 12.9345/0.096 12.4675/0.107 (R = 7)

encoded bits 3072 3072 3328

ASQ

Vertical oriented Uniform model SQ forward backward

MSE SQ before IFS 5.6952/0.097 5.3465/0.110 5.2891/0.111 (R = 7)
/Time SQ after IFS 20.0851/0.092 6.1019/0.113 5.9658/0.106 (R = 7)

encoded bits 3072 3072 3328

ASQ

Diagonal oriented Uniform model SQ forward backward

MSE SQ before IFS 2.7074/0.084 2.4900/0.106 2.4780/0.105 (R = 6)
/Time SQ after IFS 9.0462/0.098 2.8718/0.110 2.7939/0.097 (R = 6)

encoded bits 3072 3072 3328
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5. Conclusion

We have proposed the adaptive self-quantizer to solve
the quantization problem of scale factors in wavelet-
based fractal image compression. In source modelling,
we introduced the Least Squared Error method to esti-
mate recursively the probability density function at the
values of decision levels. Therefore, the distribution can
be obtained by interpolating the estimated density func-
tions linearly. The quantizer has the functions of adap-
tivity and self-adjustment. In addition, it introduces the
optimal sense in adapting the reconstruction levels of the
quantizer such that we can reduce the quantization error
generated by a ® xed uniform model.
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