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SUMMARY

The complexity of communication networks and the amount of information transferred in these networks
have made the management of such networks increasingly di$cult. Since faults are inevitable, quick
detection, identi"cation, and recovery are crucial to make the systems more robust and their operation more
reliable. This paper proposes a novel event correlation scheme for fault identi"cation in communication
networks. This scheme is based on the algebraic operations of sets. The causality graph model is used to
describe the cause-and-e!ect relationships between network events. For each disorder, and each manifesta-
tion, a unique prime number is assigned. The use of the greatest common devisor (GCD) makes the
correlation process simple and fast. A simulation model is developed to verify the e!ectiveness and e$ciency
of the proposed scheme. From simulation results, we notice that this scheme not only identi"es multiple
disorders at one time but also is insensitive to noise. The time complexity of the correlation process is close
to a function of n, where n is the number of observed manifestations, with order O(n2); therefore, the on-line
fault identi"cation is easy to achieve. Copyright ( 1999 John Wiley & Sons, Ltd.

KEY WORDS: event correlation; fault identi"cation; algebraic operation of set; causality graph model; greatest common
devisor (GCD)

1. Introduction

Faults are unavoidable in large and complex communication networks, but quick detection and
identi"cation can signi"cantly improve network reliability. Network faults are often the result of
underlying problems such as hardware or software failures, performance bottleneck, con"gura-
tion inconsistency. Since a single fault in one resource often causes alarms in other related
resources, operational sta!must be able to correlate the observed alarms to identify and localize
underlying problems. However, this manual process does not scale to the growing speed,
complexity, and size of today's communication networks. Computer automation of this manual
process becomes increasingly desirable.

Although the OSI management standard provides a framework for managing faults in
heterogeneous open systems, it does not address the methodology used to detect and diagnose
faults. To "ll this gap, various theoretical approaches have been suggested. Rule-based expert
systems so far have been the major approach for solving the alarm correlation problem.1,2 This
approach suits well-de"ned problems where the environment is not very dynamic. Diagnostic
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reasoning provides another basis for developing expert systems with which it can "nd the
solutions to multiple simultaneous problems.3 In Reference 3, the set covering model is proposed
and the concepts of &disorder' and &manifestation' are described. Case-based reasoning o!ers
potential solutions to the problems of adaptation and knowledge acquisition.4 Using "nite state
machines (FSMs) to detect fault is another approach.5~7 This method is able to cope with
incomplete information and unforeseen faults. However, all approaches mentioned above are
very sensitive to the &noise' (e.g. lost, delayed, etc.) in the alarm stream; therefore their use for the
real-world network is limited. The application of probabilistic reasoning is another well-known
approach.8~12 Using Bayesian network to identify faults in the linear lightwave networks has
been presented in Reference 8. Wang and Schwartz12 use a priori knowledge and probabilistic
estimates of link failures to pick out links that are likely to be faulty. For newly installed systems,
however, such information is not available. Recent study of fault identi"cation has been focused
on event correlation with coding approach.13 The complete set of events caused by a problem (or
disorder) is represented by a &code' that identi"es the problem. Correlation is simply the process of
&decoding' the set of observed symptoms (or manifestations) by determining which problem
matches its code. The causality graph model is used to describe the causal relations between
events in the coding method. Nonetheless, code length needs to be extended when new events are
created; consequently, computing complexity increases drastically due to redundant codes.

In this paper, we propose a novel event correlation scheme that has its origin of the algebra of
sets.14 This scheme not only identi"es multiple disorders at one time but also is insensitive to
noise. In the following section, the causality graph model is described. In Section 3, the proposed
scheme is detailed. Simulation results and analyses are given in Section 4. Section 5 describes the
limitations of the proposed scheme and future works. Finally, Section 6 concludes this paper.

2. Causality graph model13

Network operations management consists mainly of monitoring, interpreting, and handling
events, where an event is de"ned as an exceptional condition in the operation of the network.
A disorder is an event that can be handled directly. Some disorders are directly observable, while
others can be observed only indirectly by observing their manifestations. Manifestations are
de"ned as events that are observable; for example, degraded application performance is
a manifestation of the faulty interface problem. Manifestations cannot be handled instantly; to
make a manifestation go away, it needs to handle its root cause disorder. Relationships are
essential components of correlation, because disorders and manifestations propagate from one
object to another along relationships.

A natural candidate for representing disorder domain is the causality graph model. Causality is
a partial order relation between events. The notation dPm is used to illustrate the causality of
event m by event d. The relationPcan be described by a causality graph whose nodes represent
events and whose directed edges represent causality. For example, Figure 1(a) depicts the
causality graph of a network consisting of 11 nodes. As shown in Figure 1(b), nodes of a causality
graph may be labeled as either a disorder (d) or a manifestation (m).

Causality graph may include information that does not contribute to correlation analysis.
Certain manifestations are not directly caused by any disorder but only by other manifestations;
for instance, manifestation 7 in Figure 1(b). These indirect manifestations may be eliminated
without loss of information. Events may form cyclic relation; e.g. d
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Figure 1. (a) A causality graph; (b) its labelling

Figure 2. A correlation graph

causal equivalence; consequently, all involved events can be aggregated into a single event.13 In
this paper, we assume that all causality graphs are properly pruned and there are no cyclic,
many-to-one, and inference relations. On the basis of these assumptions, the causality graph
shown in Figure 1(a) can be reduced to the correlation graph illustrated in Figure 2.

3. Proposed event correlation scheme

3.1. Notation

In order to use the algebraic operations of sets for correlation, the information contained in the
correlation graph is grouped into di!erent sets. The following set notation are de"ned the same as
those de"ned by Reggia et al.3 Two discrete "nite sets, D and M, are de"ned where D represents
all possible disorders d

i
that can occur, and M represents all possible manifestations m

j
that

may occur when one or more disorders are presented. We will assume that DWM"/.
To capture the intuitive notion of causation, we assume knowledge of a correlation C-D]M,
where Sd

i
, m

j
T3C, represents &d

i
can cause m

j
'. Given D, M and C, the following two sets

are de"ned:

man(d
i
)"Mm

j
DSd
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T3CN, ∀d
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3D
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causes(m

j
)"Md
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DSd

i
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j
3M

These sets represent all possible manifestations caused by d
i
, and all possible disorders that cause

m
j
, respectively.
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The transformation from the correlation graph to algebraic sets can be best illustrated by
examples. Consider the correlation graph shown in Figure 2, where the set of disorders, D, is
equal to Md

1
, d

2
, d

5
, d

9
N and the set of manifestations, M, is equal to Mm

3
, m

4
, m

6
, m

8
, m

10
, m

11
N.

According to the above set notation, the set of manifestations of each disorder in D can be derived
as follows:

man(d
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6
N
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The set of disorders of each manifestation in M can be derived as follows:

causes(m
3
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, d
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N
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3.2. Event correlation

Since the correlation scheme is based on the operations in the algebra of sets, the event
correlation procedure is then to "nd a set of disorders whose man(d

i
) is optimally included in the

set of observed manifestations.
The event correlation procedure is done by the selection process, followed by the identi"cation

process. Figure 3 illustrates this procedure. The selection process is simply a series of intersection
and union operations on causes(m

j
) of observed manifestations. The identi"cation process uses

the inclusion relation to identify real disorders.
The purpose of the selection process is to reduce the number of inferred disorders. In the

selection process, an elimination rule is used to remove those unlikely disorders which are
included in causes(m

j
) of observed manifestations. In essence, this rule eliminates all of the

Figure 3. The event correlation procedure
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disorders which have only one active manifestation. For any inferred disorder, at least one active
manifestation should be observed. Therefore, disorders with only one active manifestation could
be good candidates to be eliminated so as to reduce the search space. However, there is a potential
problem associated with the elimination rule. It will remove those disorders which truly have only
one manifestation. This problem can be "xed as follows: for every one-manifestation disorder in
the knowledge base, a unique &dummy'manifestation is assigned. In the real world, both real and
dummy manifestation will be triggered once the one-manifestation disorder occurs. For a set of
k observed manifestations, the elimination rule can be expressed as follows:

(causes(m
1
)W causes(m

2
))X (causes(m

1
) W causes(m

3
)) X2X

(causes(m
k~2

) W causes(m
k
)) X (causes(m

k~1
)W causes(m

k
)) (1)

In the identi"cation process, the primary goal is to identify those disorders that have been
selected in the selection process, whose man(d

i
) is a subset of the set of observed manifestations.

Since information loss is unavoidable in communication networks, the set of observed
manifestations usually does not contain all of the manifestations included in causes(m

j
) of those

selected disorders. Thus it is necessary to set a level of tolerance for evaluating the possibility of
each selected disorder. The tolerance level speci"es the maximal number of manifestation loss
allowed. The tolerance level, t, satis"es the following inequality:

EA!A@E)t (2)

where A represents the set man(d
i
) of the selected disorder, A@ represents the intersection between

A and the set of observed manifestations, EA!A@E represents the number of elements in set
(A!A@).

If t is equal to 0, then A and A@ are identical; i.e. manifestation loss is not allowed. If t is equal to
1, then A@ may have one less element than A; i.e. only one missing manifestation is allowed.

Correlation Scheme. The correlation scheme can be stated as follows:

Step 1 : Select candidate disorders by using the elimination rule given in equation (1).

Step 2 : Set the tolerance level according to equation (2), and then use the inclusion relation to
identify real disorders.

Example. Suppose that two disorders d
1

and d
2

in the correlation graph of Figure 2 have
occurred. Two cases are considered. In the "rst case, there is no manifestation loss. In the second
case, there are missing manifestations.

Case 1 : For the correlation graph shown in Figure 2, the set of observed manifestations, M@, is
equal to Mm

3
, m

4
, m

6
, m

8
N. In the selection process, the elimination rule can be expressed as

follows:
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3
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4
))X (causes(m

3
) W causes(m

6
))X2X
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4
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8
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After applying the elimination rule of equation (3), we get the set of candidate disorders, D@,
which is equal to Md

1
, d

2
, d

5
N. In the identi"cation process, the set man(d

i
) of each candidate
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disorder in D@ is checked whether it is contained in M@ ; two disorders d
1

and d
2

are identi"ed as
real disorders. Since we assume that two disorders d

1
and d

2
have occurred; therefore, the

proposed scheme did "nd the exact solution.

Case 2 : Assume that manifestation m
6

in Case 1 has been lost; therefore, the set of observed
manifestations, M@, is equal to Mm

3
, m

4
, m

8
N. After applying the elimination rule of equation (1),

we get the set of candidate disorders, D@, which is equal to Md
1
, d

5
N. In the identi"cation process,

we set the tolerance level to be equal to 1. First, we examine d
1
. By applying equation (2), we get

the following:

A@"man(d
1
)WM@"Mm

3
, m

4
N and Eman(d

1
)!A@E"1

Thus we conclude that disorder d
1

is a real disorder. Second, we examine d
5

and "nd that it is
not a real disorder. Note that the proposed scheme found disorder d

1
, but failed to identify

disorder d
2
.

3.3. Implementation issues

For the purpose of computer simulation, we need to assign a numeric value to each disorder,
and each manifestation, respectively. Also, in order to convert the symbolic set operations into
numeric operations, we need to revise the correlation scheme.

Event representation. The following notation is de"ned:

dID
i
: disorder identi"er; it is a unique prime number assigned to disorder d

i
,

mID
j
: manifestation identi"er; it is a unique prime number assigned to manifestation m

j
,

MdID
i
: the product of the identi"ers of all manifestations caused by disorder d

i
,

DmID
j
: the product of the identi"ers of all disorders that cause the same manifestation m

j
,

OM: the product of the identi"ers of all observed manifestations.

According to the above notation, each disorder d
i
can be represented by an order pair (dID

i
,

MdID
i
), and each manifestation m

j
can be represented by an order pair (mID

j
, DmID

j
).

Take Figure 2 as an example. First, by assigning prime number to each disorder and each
manifestation, we have the following:
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Then, we can derive the representation of each disorder and each manifestation as follows:
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m
4
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6
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8
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10
"(11, 35); m

11
"(13, 7)

Revised scheme. Three numeric functions, f, g, and h are de"ned. The f function factorizes
a number into the set of its prime factors; e.g. f (30) is equal to M2, 3, 5N. The g function extracts the
greatest common divisor of two numbers; e.g. g(6, 9) is equal to 3. The h function makes sure that
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there is only one instance of a prime number existing in a prime number set; e.g. h(M2, 2, 3, 3, 5N) is
equal to M2, 3, 5N.

The correlation scheme given in Section 3.2 can be rewritten as follows:

Step 1 : Select candidate disorders by using the following elimination rule:

h ( f (g(DmID
1
, DmID

2
), f (g(DmID

1
, DmID

3
)),2, f (g(DmID

k~1
, DmID

k
))) (4)

where k is the number of observed manifestations.

Step 2 : Set the tolerance level t, and then identify those disorders d
i
, selected in step 1, that

satisfy

E f (MdID
i
/g(MdID

i
,OM))E)t (5)

Note that EAE denotes the number of elements in set A and

E f (1)E"E0E"0

Example. Suppose that disorders d
1

in the correlation graph of Figure 2 have occurred and
there is no manifestation loss. It is assumed that manifestation m

3
, m

4
, and m

6
are observed. It is

necessary to identify which disorders have occurred. In step 1, the elimination rule of equation (4)
can be expressed as follows:

h ( f (g(DmID
3
, DmID

4
)), f (g(DmID

3
, DmID

6
)), f (g(DmID

4
, DmID

6
))) (6)

By reducing equation (6), we have the following:

h( f (10), f (2), f (2))"M2, 5N"MdID
1
, dID

5
N

Therefore, d
1

and d
5

are candidate disorders.
In step 2, suppose that the tolerance level t is set to 0. Thus, it can be shown that
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1
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1
, OM))E"E f (MdID

1
/30)E"E f (1)E"0)t (7)
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5
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5
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where
OM"mID

3
]mID

4
]mID

6
"2]3]5"30,

g (MdID
1
, OM)"g(30, 30)"30

g(MdID
5
, OM)"g(330, 30)"30

From equations (7) and (8), we conclude that only disorder d
1

has occurred. Since we assume
that disorders d

1
have occurred; therefore, the proposed scheme did "nd the exact solution.

4. Simulation results and analyses

Simulation experiments have been conducted to evaluate the e!ectiveness and e$ciency of the
proposed event correlation scheme. Test cases include some 6000 manifestations and 9500
disorders. The proposed scheme is coded in C and is run on an Intel Pentium 133 processor.
Events are randomly generated. The benchmark model makes two conservative assumptions. It
assumes an underinstrumented system where the number of observed manifestations is much
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Figure 4. Correlation error ratio of the proposed scheme: er*correlation error ratio; t*tolerance level

smaller than the number of disorders; typical systems are overinstrumented. It also assumes
a sparse propagation model where only a small number of manifestations are caused by a typical
disorder; in real-world systems with complex dependencies, disorders tend to propagate very
widely.

4.1. Ewectiveness

Two factors, the correlation ratio (CR) and the hit ratio (HR), are used to measure the
e!ectiveness of the proposed scheme. The correlation ratio shows the robustness of the proposed
scheme. The hit ratio demonstrates the accuracy of the solution; i.e., real disorders, obtained from
the proposed scheme. The e!ectiveness, E, is de"ned as follows:

E"CR]HR"(1!er)]
ce

te
(9)

where er represents the percentage of exact disorderss not identi"ed by the proposed scheme; ce
represents the number of exact disorders identi"ed by the proposed scheme; te represents the
number of real disorders identi"ed by the proposed scheme.

For di!erent manifestation loss rates, Figure 4 presents the correlation error ratio for the
proposed scheme. For the purpose of comparison, we have also simulated the coding scheme
given by Yemini et al.13 Figure 5 depicts the simulation results of the coding scheme.

By examining Figures 4 and 5, we give a detailed comparison between the e!ectiveness of the
proposed scheme and that of the coding scheme in Table I. For the manifestation loss rates 5 and
10, the proposed scheme performs better than the coding scheme. It is worth mentioning that the
proposed scheme did not have correlation error while the coding scheme did, when the tolerance
level was relaxed to 2; which is equivalent to the radius of 1 speci"ed in the coding scheme. For the
manifestation loss rates 15 and 20, the proposed scheme performs better than the coding scheme
when t is 3; which is equivalent to the radius of 1)5 speci"ed in the coding scheme. The above

sExact disorders are those disorders which are de"ned in the knowledge base and whose occurrence cause the observed
manifestations.
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Figure 5. Correlation error ratio of the coding scheme: er*correlation error ratio; r*codebook radius

observations demonstrate that the proposed scheme can converge to a better solution than the
coding scheme by properly setting the tolerance level.

4.2. Ezciency

Time complexity is used to evaluate the e$ciency of the proposed scheme. The solution of the
proposed scheme can be obtained in

A
n

2B#m

steps, where n represents the number of observed manifestations, m represents the number of
candidate disorders.

Since it can be shown that

A
n

2B#m"

n(n!1)

2!
#m"O(n2) (10)

thus, the time complexity of the correlation scheme is close to a function of n with order O(n2).
For the coding scheme, which consists of the codebook selection phase and the decoding phase,

its time complexity can be shown to be equal to

A
n

kB]M"O(M ) nk ) (11)

where n represents the number of observed manifestations, M represents the number of disorders
in a managed domain and M is much greater than n, k is equal to the minimum of the following
set: Mnumber of manifestations caused by disorder d

i
Di"1, 2,2, MN.

By comparing equation (10) with equation (11), we observe that the time complexity of the
proposed scheme is much better than that of the coding scheme.
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Table I. Comparison between the e!ectiveness of the proposed scheme and that of the coding scheme

scheme The proposed scheme The coding scheme

t"1 t"2 t"3 r"0)5 r"1)0 r"1)5
symptoms
loss rate (%) CR HR E CR HR E CR HR E CR HR E CR HR E CR HR E

5 0)97 1 0)97 1 1 1 1 1 1 0)95 1 0)95 1 1 1 1 0)99 0)99
10 0)93 1 0)93 1 1 1 1 1 1 0)92 1 0)92 0)99 1 0)99 1 0)99 0)99
15 0)73 1 0)73 0)93 1 0)93 0)99 1 0)99 0)89 1 0)89 0)95 1 0)95 0)99 1 0)99
20 0)57 1 0)57 0)87 1 0)87 0)98 1 0)98 0)79 1 0)79 0)94 1 0)94 0)97 1 0)97

Note: CR*the correlation ratio; HR*the hit ratio; E*e!ectiveness; t*tolerance level; r*codebook radius.
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5. Limitations and future works

5.1. Limitations

The proposed scheme is based on the causality graph model, which is deterministic in nature.
In order to identify real disorders, enough manifestations have to be collected over a period of
time. Thus, this scheme is not suited for real-time diagnosis. The second limitation associated with
the proposed scheme is the one-manifestation disorder problem as described in Section 3.2. The
&dummy' manifestation used to remedy this problem causes overheads in both creating the
knowledge base and triggering alarms.

5.2. Future works

The proposed scheme does not take into account the uncertainty relationship between disorder
and manifestation. Therefore, further investigation into this problem is required. Probabilistic
reasoning8~12 and arti"cial intelligent1~3 techniques could be incorporated into both the
selection and identi"cation processes.

6. Conclusions

In this paper, an event correlation scheme for fault identi"cation in communication networks is
proposed. It is composed of two processes, the selection process and the identi"cation process.
The selection process selects candidate disorders. The identi"cation process identi"es real
disorders. This scheme is based on the algebraic operations of sets. The causality graph model is
used to describe the cause-and-e!ect relationships between network events. Prime numbers are
used to represent disorders and manifestations. A simulated model was built to evaluate the
proposed scheme. The e$ciency and e!ectiveness of the proposed scheme can be easily veri"ed by
simulation results. This scheme has the following merits: it can identify multiple disorders at one
time, it is robust to noise, and its time complexity is close to a function of n, where n is the number
of observed manifestations, with order O(n2).
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