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Abstract. We present the problem of constructing roads of minimum total length to interconnect
n highways under the constraint that the roads can intersect each highway only at one point in a
designated interval which is a line segment. We present a set of optimality conditions for the problem
and show how to construct a solution to meet this set of optimality conditions.
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1. Introduction. We present the problem of constructing roads of minimum
total length to interconnect n existing highways H1, H2, . . ., Hn under the constraint
that the roads can intersect Hi only at one point, called an exit of Hi, in a designated
interval Ii. To avoid unnecessary complexity, we assume that all Ii’s are disjoint. In
this paper, we consider the case where Ii is a line segment, including the two extreme
cases where Ii is a point or a line. The case where Ii is a point for all i = 1, 2, . . . , n is
the Steiner minimum tree problem which is NP-hard [5]. Thus, the current problem
is also NP-hard. Some special cases for n = 3 have been studied by Chen [3] and
Weng [15]. More applications and the relation to facility allocation problems can be
found in [3, 8, 18].

We will first establish a set of optimality conditions and then show how to con-
struct a solution to meet this set of conditions by generalizing Melzak’s construction
for Steiner trees. Finally, we will use those results to determine global optimal solu-
tions for n = 2 and n = 3.

2. Optimality conditions. Let us call each intersection of roads, which is not
an exit, a Steiner point. Consider an optimal solution for the problem of intercon-
necting highways. Clearly, this solution must be the Steiner minimum tree for the
n exits at the current positions. Thus, it must have properties for Steiner minimum
trees as stated in the following [6, 8].

Lemma 2.1. An optimal solution for the problem of interconnecting highways
must satisfy the following conditions:

(a) Every Steiner point has degree three (Figure 2.1(a)).

(b) Two roads meeting at a point form an angle of at least 120◦ (Figure 2.1(b)).

Since each exit can move in the designated interval Ii, we have additional opti-
mality conditions at exits.
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Fig. 2.1. Optimality conditions.

Lemma 2.2. Let x be an exit in interval Ii. An optimal solution for the problem
of interconnecting highways must satisfy the following conditions:

(c) If exit x is connected to only one road and x is an interior point of Ii, then
this road is perpendicular to Ii (Figure 2.1(c)).

(d) If exit x is connected to only one road and x is an endpoint of Ii, then this
road together with Ii forms an angle of at least 90◦ (Figure 2.1(d)).

(e) If exit x is connected to exactly two roads and x is an interior point of Ii, then
the angle formed by one road and a part of Ii equals the angle formed by the other
road and the other part of Ii (Figure 2.1(e)).

(f) If exit x is connected to exactly two roads and x is an endpoint of Ii, then
the bisector of the relative angle of the two roads and Ii form an angle of at least 90◦

(Figure 2.1(f)).

Proof. Suppose Ii = [A,B].

(c) Suppose exit x is connected to only one road (x,C). Since x is an interior
point of [A,B], if xC is not perpendicular to [A,B], then either 6 AxC < 90◦ or
6 BxC < 90◦. In the former case, moving x in direction xA would decrease distance
xC (Figure 2.2). In the latter case, moving x in direction xB would decrease xC.
Thus, x is not at an optimal position.

(d) A similar argument to (c) could apply (Figure 2.2).

(e) Suppose that exit x is connected to two roads (x,C) and (x,D). If C and
D lie on different sides of line AB, then C, x, and D must be on the same line.
Otherwise, a little perturbation would make a shorter solution (Figure 2.3). If C and
D are on the same side of line AB, then find the point C ′ which is symmetric to C
with respect to line AB. Then, C ′, x, and D must be on the same line. Otherwise, a
little perturbation would make a shorter solution (Figure 2.3). In both case, we have
6 AxC = 6 BxD.

(f) An argument similar to (e) could apply.

We call a tree satisfying conditions (a)–(f) a legitimate tree. A legitimate tree is
full if every exit is a leaf.

Theorem 2.3. The optimal solution of the highway interconnection problem must
be a legitimate tree.

Since a legitimate tree is a Steiner tree for a current position of exits, we may
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Fig. 2.2. Moving x in direction xA decreases xC.
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Fig. 2.3. A little perturbation would shorten the tree.

extend some concepts about Steiner trees to legitimate trees as follows: A topology
is the graph structure of a legitimate tree. The topology is full if the legitimate tree
is full. A topology can be degenerated by shrinking an edge between a Steiner point
and an exit. A topology is called a degenerate one of another topology if the former
can be obtained from the latter by a sequence of degenerate operations.

Theorem 2.4. Among a full topology and its degenerate topologies, if there exists
one with which the legitimate tree exists, then it is minimum among all trees with the
full topology and its degenerate ones.

Proof. Consider the problem of finding the shortest one among all trees under
a full topology (including its degenerate topologies) interconnecting n exits each in
a designated interval. This problem has a convex objective function with respect to
coordinates of Steiner points and exits, which is a sum of Euclidean distances, and
linear constraints on coordinates of exits. Therefore, it is a convex programming. Any
local optimal solution is also a global optimal solution. In the following, we will show
that if a legitimate tree with the full topology or its degenerate one exists, then it is a
local minimum for the convex programming. To do so, we show that at the legitimate
tree, every feasible direction is not descending. That is, the directional derivative of
the objective function is nonnegative.

Let t be the full topology and E(t) the edge set of t. Then, the objective function
of the convex programming is

f(V (t)) =
∑

(u,v)∈E(t)

‖u− v‖,

where V (t) is the vertex set of t and all coordinates of vertices are variables of function
f . A feasible direction ∆V of V (t) consists of moving direction ∆v for every vertex
v ∈ V (t). For a Steiner point, every direction can be feasible. For an exit, only

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



INTERCONNECTING HIGHWAYS 255

direction along the exit’s interval can be feasible. Suppose the feasible direction ∆V
of V (t) has unit length. Then, its directional derivative is

lim
λ→0

f(V (t) + λ∆V )− f(V (t))

λ

=
∑

(u,v)∈E(t)

lim
λ→0

‖(u+ λ∆u)− (v + λ∆v)‖ − ‖u− v‖
λ

.

We will first calculate this derivative and then show that it is nonnegative.
For u 6= v,

lim
λ→0

‖(u+ λ∆u)− (v + λ∆v)‖ − ‖u− v‖
λ

=
(∆u−∆v)T (u− v)

‖u− v‖
=

(∆u)T (u− v) + (∆v)T (v − u)

‖u− v‖ .

For u = v,

lim
λ→0

‖(u+ λ∆u)− (v − λ∆v)‖ − ‖u− v‖
λ

= lim
λ→0
‖∆u−∆v‖

= ‖∆u−∆v‖.
Now, suppose V (t) is the vertex set of a legitimate tree. If u is a Steiner point

and its three edges in the legitimate tree are all of nonzero length, then there are
three terms involving ∆u in the directional derivative,

(∆u)T (u− v1)

‖u− v1‖ +
(∆u)T (u− v2)

‖u− v2‖ +
(∆u)T (u− v3)

‖u− v3‖ = 0,

since any two of three vectors u− v1, u− v2, and u− v3 form an angle of 120◦.
If u is an exit and its only edge in the legitimate tree has nonzero length, then

∆u is involved in only one term of the directional derivative,

(∆u)T (u− v)

‖u− v‖ ≥ 0,

since ∆u and v − u form an angle of at least 90◦, that is, (∆u)T (v − u) ≤ 0.
Note that if degeneration occurs, it must occur around an exit v. If in the legiti-

mate tree v is incident to two edges, this means that the edge (v, u) in t, where u is
a Steiner point, has been shrunk to a point. If in the legitimate tree v is incident to
three edges, then two edges (v, u) and (u,w), where u and w are Steiner points, have
been shrunk to one point in the legitimate tree.

In the former case, i.e., edge (u, v), where u is a Steiner point and v is an exit
in t, having length 0 in the legitimate tree, then the directional derivative has three
terms involving ∆u and ∆v as follows:

‖∆u−∆v‖+
(∆u)T (u− v2)

‖u− v2‖ +
(∆u)T (u− v3)

‖u− v3‖ .
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256 D.-Z. DU, F. K. HWANG, AND G. XUE

Denote

w =
v2 − u
‖u− v2‖ +

v3 − u
‖u− v3‖ .

Since v2 − u and v3 − u form an angle of at least 120◦, we have

‖w‖ ≤ 1.

In addition, since w and ∆v form an angle of at least 90◦, we have

(∆v)Tw ≤ 0.

Therefore,

‖∆u−∆v‖ − (∆u)Tw

≥ ‖∆u−∆v‖+ (∆v −∆u)Tw

≥ 0.

Finally, we consider the case where, in the legitimate tree, v is incident to three
edges, i.e., two edges (v, u) and (u,w) in t, where u and w are Steiner points, have
been shrunk to one point in the legitimate tree. In this case, the directional derivative
has five terms involving ∆u, ∆v, and ∆w as follows:

‖∆v −∆u‖+ ‖∆u−∆w‖+
(∆u)T (u− v1)

‖u− v1‖ +
(∆w)T (w − v2)

‖w − v2‖ +
(∆w)T (w − v3)

‖w − v3‖ .

Denote this summation by s. Note that in the legitimate tree, u and w are identical
and any two of three vectors u− v1, w− v2, and w− v3 form an angle of 120◦. Thus,

(u− v1)

‖u− v1‖ +
(w − v2)

‖w − v2‖ +
(w − v3)

‖w − v3‖ = 0.

It follows that

s = ‖∆v −∆u‖+ ‖∆u−∆w‖+
(∆u−∆w)T (u− v1)

‖u− v1‖ ≥ 0.

By summarizing the above, we know that the directional derivative is nonnegative.
This completes our proof.

3. Generalized Melzak construction. In this section, we study the following
question: If a legitimate tree exists, how do we construct it?

First, we show how to construct a legitimate tree with full topology if it exists.
Let us start by recalling Melzak’s construction [11].

Melzak’s construction works for a Steiner tree with a full topology. In each step,
it first finds a Steiner point adjacent to two exits (they are fixed in a Steiner tree
problem). Then, it constructs an equilateral triangle with the two exits as its two
vertices and replaces them by the third vertex (Figure 3.1), considered a new exit.
After several steps, when only two exits exist, it connects them by a straight line
segment and in reverse ordering, then finds all edges of the full Steiner tree.

Now, we also want to replace two exits (adjacent to the same Steiner point) by a
new exit. However, a new situation is that each exit has a feasible region. (For each
original exit, its feasible region is a line segment.) Thus, we also need to construct
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(AB)

A B

Fig. 3.1. Melzak’s construction.

Fig. 3.2. The feasible region of this new exit is a parallelogram.

a feasible region for the new exit. Initially, a new exit is obtained from two original
exits and the feasible region of this new exit is a parallelogram, as shown in Figure
3.2. In general, what is the feasible region for a new exit if it is obtained from k
original exits through k− 1 steps of Melzak’s construction? An answer is given in the
following.

Let us call a convex central symmetric 2k-polygon a parallel 2k-polygon if its 2k
edges can be divided into k pairs of parallel edges with equal length (Figure 3.3).
Note that every parallel 2k-polygon can be covered in the following way: Choose an
edge. Moving this edge along an adjacent edge will obtain a parallel 4-polygon (or
a parallelogram). Moving the parallel 4-polygon along an adjacent edge will obtain
a parallel 6-polygon. Continuing in this way, finally the parallel 2k-polygon will be
obtained (Figure 3.3) and all points in this parallel 2k-polygon are covered by moving
images.

Theorem 3.1. Let v be a new exit obtained from k original exits through k − 1
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258 D.-Z. DU, F. K. HWANG, AND G. XUE

Fig. 3.3. Parallel 2k-polygon.

steps of Melzak’s construction. The feasible region of v is a parallel 2k-polygon.
Proof. We prove it by induction on k. Suppose v is obtained from two exits u

and w. Suppose u is obtained from i original exits and w is obtained from j original
exits. Clearly, i + j = k and i < k and j < k. By the induction assumption, the
feasible region of u is a parallel 2i-polygon P and the feasible region of w is a parallel
2j-polygon Q.

First, we fix u at a position in P and move w over region Q. It is easy to see that
v will describe a region Q′ isomorphic to Q. Actually, this region Q′ can be obtained
from Q by turning Q around center u in an angle of 60◦.

Next, we move u along an edge e1 of P . As u moves, Q′ will move along a certain
direction and all images will cover a parallel 2(j + 1)-polygon Q′′.

Now, we move edge e1 along an adjacent edge e2 of P . As all images of e1

cover a parallel 4-polygon P ′, all images of Q′′ cover a parallel 2(j + 2)-polygon Q′′′.
Continue in this way. As all points in the parallel 2i-polygon P are covered, a parallel
2(i+ j)-polygon will be covered by images of Q′ (Figure 3.4).

P

Q

u

e1

e2

Q’

e1’

e2’

e1’

e1’

e2’

e2’

e2’

Fig. 3.4. The proof of Theorem 3.1.

For degenerate topology, Melzak’s method for a Steiner tree is to decompose
it into an edge-disjoint union of small full topologies. However, for the problem of
interconnecting highways, such a decomposition does not exist since the position of
an exit v connected to two roads (v, u) and (v, w) has to be determined by considering
both roads. If the feasible region of u (or w) is known, then we may need to consider
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Fig. 4.1. Two highways.

two cases: v is in the interior of the designated interval Ii or v is at one of two
endpoints of Ii. In the former case, we can replace Ii by one of its endpoints and then
decompose the topology at v. In the latter case, we replace (v, u) and (v, w) by (w, u)
and meanwhile replace the feasible region of u by its symmetric image with respect
to Ii if u and w are in the same side of Ii.

From the above analysis, one may see that constructing the legitimate tree with
a degenerate topology is much more complicated than the Steiner tree in a similar
situation. It is indeed not a construction which can be finished in polynomial time
with respect to the number of exits. However, Xue, Du, and Hwang [18] showed that
there exists a fast way to construct a tree with length almost as short as the legitimate
tree. This work draws from many previous contributions on shortest network under
a given topology [7, 9, 13, 14, 16, 17].

4. Two or three highways. If our interest is only on highway interconnection,
then n = 2 and n = 3 are the most practical cases. In these two cases, there is a unique
full topology. Thus, a tree being legitimate is necessary and sufficient for optimality.
In this section, we will apply the results from previous sections to determine the
legitimate tree in these two cases.

For n = 2, suppose AB and CD are two line segments. Assume that BD and DA
do not intersect, that is, ABCD form a quadrilateral. Since 6 A+ 6 B + 6 C + 6 D =
360◦, either 6 A+ 6 D ≥ 180◦ or 6 B+ 6 C ≥ 180◦. Without loss of generality, assume
the former occurs and 6 A ≥ 6 D. Then 6 A ≥ 90◦. Now, we have three cases.

Case 1. 6 D ≥ 90◦. In this case, the line segment AD is the legitimate tree
interconnecting AB and CD (Figure 4.1(a)).

Case 2. 6 D < 90◦ and 6 ACD < 90◦. In this case, draw line segment AE
perpendicular to CD at E. Then AE is the legitimate tree (Figure 4.1(b)).

Case 3. 6 D < 90◦ and 6 ACD ≥ 90◦. In this case, AC is the legitimate tree
(Figure 4.1(c)).

For n = 3, there are four possible topologies for the legitimate tree. We first
construct the one with full topology (Figure 4.2). If successful, then the work is done.
If unsuccessful, then we construct the other three topologies in turn until a legitimate
tree is found (Figure 4.3).

To construct the one with full topology, first replace two line segments I1 and I2 by
a parallelogram with Melzak’s construction. Then, find the shortest distance between
the parallelogram and the third line segment I3. Suppose this happens between point
A in the parallelogram and point B in I3. Note that A corresponds to two points C
and D in I1 and I2, respectively. Draw the full Steiner tree for B,C,D. If it exists,
the legitimate tree with the full topology is found; if not, then it means that the
legitimate tree with the full topology does not exist.
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260 D.-Z. DU, F. K. HWANG, AND G. XUE

Fig. 4.2. Three highways (1).

I

3

I

I

I’

1

2

3

Fig. 4.3. Three highways (2).

To explain how to construct a legitimate tree with a degenerate topology, we
may assume the topology consists of two edges between I1 and I2 and I2 and I3,
respectively. Suppose I ′3 is the mirror image of I3 with respect to I2. Find the
shortest distance between I1 and I3 and the shortest distance between I1 and I ′3.
If a segment realizing either one of the two shortest distances intersects segment
I2, then the legitimate tree is found. If no such segment exists, then consider two
endpoints of I2. For each endpoint, find the shortest segments to connect it to I1
and I3, respectively. Check whether the two shortest segments form a legitimate
tree. If no legitimate tree is found in this way, then it means that the legitimate
tree with this degenerate topology does not exists and we should consider another
degenerate topology. By Theorem 2.3, we would find a legitimate tree before all
possible topologies are examined.

5. Discussion. A variation of the problem considered in this paper is to use a
spanning tree instead of a Steiner tree, interconnecting points with each on a spec-
ified line segment, and to find the shortest one. So far, we do not know if such a
spanning tree problem has a polynomial time solution. Therefore, approximation
for the highway interconnection problem is also an open problem. No polynomial
time approximation with constant performance ratio for this problem has been found,
although many polynomial time approximations with good performance for Steiner
minimum trees have been known [1, 2, 10].

When a new Steiner tree problem appears, one usually also considers the corre-
sponding Steiner ratio problem. Note that a Steiner minimum tree interconnecting n
line segments is also the Steiner minimum tree connecting the n exits. Let us fix these
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INTERCONNECTING HIGHWAYS 261

n exits. Then, a minimum spanning tree for n line segments is not longer that the
minimum spanning tree for the fixed n exits. Therefore, the ratio of lengths between
the Steiner minimum tree and the minimum spanning tree for n line segments is at
least

√
3/2. It follows that the Steiner ratio for the highway interconnection problem

is the same as that for the Euclidean Steiner tree problem [4, 12].
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