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A mixture of two Gaussian components has been proposed to 
model the glint noise distribution [2, 31: 

f v ( V k )  = c 1  . $(,a; 0 , m )  + c 2  .$(Vk; 0,021 (4) 

where $(vk;  F, 0) denotes the Gaussian density function with mean 
p and variance 0, 0 < c, < 1, c2 = 1-c, << 1, and o2 > 0,. Wu [5] 
has employed the ML method to identify the model parameters c1, 
0, and o2 in eqn. 4 from pure glint noise data v,. However, in 
online applications, those samples are usually not available. In the 
following, we present an algorithm for overcoming this problem. 
Our method identifies the glint model directly from the target 
position measurement y,. 

Consider a first-order differentiation using two successive meas- 
urements 

g k  = Y k  - Y k - l  = ( x k  - x k - l )  + (2)k -?,‘k-l) = Z k  f a k  ( 5 )  

It is clear that x = v,-, T + u,-~ TV2 where T denotes the sampling 
period. When the target is nonmanoeuvring, 551, equals VT where 
V is the target speed. When the target is manoeuvring, x k  
becomes a linear function of the acceleration. If the glint noise is 
white, we can find the distribution of V by convolvingf,(v,) and 
fV(vk-,) From eqns. 4 and 5 we have 

Online glint noise identification for tracking 
manoeuvring targets 

Wen-Rong Wu and Kuo-Guan Wu 

The gliit noise arising from a radar tracking system exhibits non- 
Gaussian statistics. Pure noise data, usually not available in on- 
line applications, are required in conventional g h t  identification 
methods. A new algorithm is presented for online glint 
identification using radar measurement data. Simulations show 
that the identified results of the proposed algorithm using 
measurement data are close to those using pure noise data. 

Introduction: In radar tracking systems, due to target g h t ,  meas- 
urement noise may exhibit a ‘spiky’ behaviour, which manifests 
itself in a non-Gaussian heavy-tailed distribution [I]. This form of 
noise can severely affect the performance of conventional Kalman 
tracking algorithms. Nonlinear algorithms have been developed to 
cope with the problem [2, 31. To use these nonlinear algorithms, a 
glint noise distribution model is required and the model parame- 
ters need to be identified online. 

The empirical work in [4] showed that glint noise can be decom- 
posed into a Gaussian process plus outliers. Considering this 
decomposition, a Gaussian mixture model has been proposed to 
approximate the glint noise distribution [2, 31. Assuming that pure 
glint noise data are available, Wu [5] has employed the maximum 
likelihood (ML) method to identify the mixture model parameters. 
However, in online tracking applications, noise data are not 
directly observable; they are embedded in radar measurements. To 
solve this problem, we propose a new algorithm for glint identifi- 
cation using radar measurements. 

The proposed algorithm consists of two parts: noise extraction 
and ML identification. The noise-extraction process uses a first- 
order differentiator and a trimmed mean fdter to extract a n t  data 
from target measurements. The ML method is then applied to the 
extracted data to identify the model parameters. Simulation results 
show that the proposed algorithm is effective in that the identified 
parameters are close to those obtained with exact knowledge of 
the noise data. 

Algorithm derivation: Here we consider the one-dimensional track- 
ing problem. The state-space representation of the target dynamic 
and measurement can be described by the following equations: 

x k + 1  = @xk + G W k  

Y k  = H X k  + ‘Uk 
where X, is the state vector [x, v, u,y consisting of the position, 
velocity and acceleration of the target at the kth sampling instant, 
w, is the state noise, and vk is the glint measurement noise. If y ,  
corresponds to the target position measurement, eqn. 2 becomes 

(1) 

(2) 

+c: . d ( u k ; O , h f f 2 )  (6) 

Since only y k  is available, we must remove X, from jjk to obtain 
Vk. Using V ,  and f; (V,), the ML identification can then be 
applied. 
As R, is either a constant or a linear function, we can estimate 

it using an order-statistic filter. Taking the non-Gaussian distribu- 
tion of V k and the manoeuvring effect into consideration, we pro- 
pose use of the trimmed mean filter [6]. Let a window of size 
2N+1 centred at jj, cover data J , - ~ ,  ..., Y , + ~  The output of the 
trimmed mean filter is 

N t M t l  

(7) 

where M < N and Y, I Y, ... I YZN+,  is the sorted sequence of 
jjk-.,,, ..., j k + N .  Let V k = y k  - X k .  We can then perform ML iden- 
tification 

where L is the length of the data record. Fig. 1 summarises the 
proposed online identification algorithm. 

parameter 
identification estimate 

Ykk=Vk+Pk 

- 
A 

T - 
‘k 

trimmed 
mean filter 

Fig. 1 Proposed glint identification algorithm 

Table 1: Performance comparison of glint identification using 
noise samples (A) and glint identification using meas- 
urements (B) 

01 = 1 1.0011 0.0028 0.0092 

I 

Glint noise has Gaussian mixture distribution 
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Table 2: Performance comparison of glint identification ushg 
noise samples 

A B 
Cl 0.9387 0.9505 

(A): g h t  identification using measurements; (B): synthetic glint 
noise shown in Fig. 2 

Results and discussion: In this Section, we present some simulation 
results to demonstrate the performance of the proposed algorithm. 
The simulation environment is summarised as follows. The posi- 
tion measurement yk was generated according to eqn. 3 with xk+,  = 
x ,  + v,T + ak72/2. The initial target position was x, = 10 OOO m 
and the initial velocity was v, = 150ds.  The sampling period T 
was 0.1 s and the sample size L was 300. The target manoeuvre 
was set to occur from k = 151 to k = 200 with a, = 40m/s2. The 
size of the trimmed mean filter was 25 ( N  = 12) and the M in eqn. 
7 was 1. Two sets of measurement noise v, were generated the 
first was from a true mixture of two Gaussian distributions and 
the other was from the synthetic a n t  model in [l]. 

30 
20 I I 

0 1  

-50 . 

3.2482 3.3436 

50 100 150 200 250 300 
k E%?! 

Fig. 2 Synthetic glint noise record 

We first examined the results when the measurement noise was 
generated from a Gaussian mixture of parameters cI = 0.9, oI = 1 
and o2 = 5. A Monte Carlo simulation of 50 runs was conducted, 
and the initial parameter estimates were set as = 0.75, a1 = 2 
and e2 = 10. The mean values and the mean squared errors 
(MSEs) of the identified parameter are listed in Table 1. As we 
can see, the mean estimates for the proposed algorithm are very 
close to the true parameter values. Compared with the identifica- 
tion using the pure noise data, our method yields somewhat larger 
MSEs. 

Next we examine the results for identifying the synthetic glint 
noise record in Fig. 2. The same initial estimates were used and 
the results are listed in Table 2. From this Table, we see that the 
identified parameters using the measurements are similar to those 
using the pure glint data. Thus, we can conclude that the proposed 
algorithm is effective for online g h t  identification. 
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Transmission of UHF radiowaves through 
buildings in urban microcell environments 

Y.L.C. de Jong, M.H.A.J. Herben, J.-F. Wagen and 
A. Mawira 

Results are presented of high-resolution time delay and angle-of- 
amval measurements behind a large building in an urban 
microcell. It is demonstrated that in this particular case the 
electromagnetic field is dominated by contributions resulting from 
transmission through the building. The associated loss over free- 
space loss is < 30dB. This makes clear the importance of 
modelling propagation through buildings surrounding the base 
station in the planning stage of urban microcells. 

Introduction: The current growth of the personal wireless commu- 
nications market is pushing operators of mobile radio networks to 
explore capacity-increasing techniques such as the use of micro- 
cells. Whereas the base station (BS) antennas used in conventional 
macrocells are usually situated at high elevations, the idea of 
microcells is to place the BS antenna below the average height of 
the surrounding buildings to confine the radiated power within a 
small coverage area, such that the same frequency channels can be 
re-used at short distances without introducing an unacceptable 
degree of inter-user interference. 

The efficient planning of microcells requires an accurate predic- 
tion of the electromagnetic field strength distribution. Various 
groups have been active in the development of so-called determin- 
istic propagation models based on an accurate description of the 
buildings around the BS, and ray-tracing algorithms incorporating 
multiple reflection and diffraction [l - 31. Although considerably 
better than their statistical counterparts, these models have been 
found to provide an unsatisfactory prediction accuracy in some 
situations [3]. In particular, it was shown in [3] that deterministic 
models treating the buildings as being opaque at UHF frequencies 
can seriously underestimate the field strength behind the first 
buildings surrounding the BS. Since the shielding of the BS 
antenna from its nearby environment is essential in the microcellu- 
lar concept, it is of special interest to obtain a better understand- 
ing of the propagation phenomena responsible for this 
discrepancy. 

In the framework of a collaboration between EUT, KPN 
Research and Swisscom, an extensive measurement campaign was 
carried out in several urban microcell environments in Switzer- 
land. In this Letter, we present the results of a high-resolution 
angle-of-arrival (AOA) measurement conducted behind a large 
building obstructing the line-of-sight to the BS antenna. 

Experimental arrangement: The measurements reported in this Let- 
ter were conducted using a wideband radio channel sounding sys- 
tem previously described in [4]. In summary, a 50Mchiph 
pseudonoise (PN) sequence is used as the sounding signal which 
modulates a 2000MHz carrier, and estimation of the complex 
impulse response (CIR) of the radio channel is performed at the 
mobile receiver through correlation of the demodulated received 
signal with a replica PN sequence. The resulting time delay resolu- 
tion is equal to the chip period T, of the applied PN sequence, 
which is 2011s. 

Transmission was from a 3dBi BS antenna (5m above ground 
level, which was well below the average roof top level of the 
surrounding buildings) to a mobile station (MS) equipped with a 
rotatable 2dBi omnidirectional antenna (2.2m above ground 
level). Impulse responses were measured along a horizontal circle 
with radius r = 30cm, thus effecting a synthetic uniform circular 
array (UCA) consisting of M = 106 elements. 
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