Synthesis of Calix[4]arenes with Four Different "Lower Rim" **Substituents**

Chun-Mei Shu and Wen-Sheng Chung*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China

Sing-Ho Wu, Zong-Chia Ho, and Lee-Gin Lin*

Institute of Applied Chemistry, Chinese Culture University, Taipei, Taiwan 11114, Republic of China

Received August 13, 1998

Calix[4] arenes with four different "lower rim" substituents were synthesized following six-step sequences. The first alkyl group (R_1) was introduced using R_1X and CH_3ONa , and then reaction with R_2X and K_2CO_3 led to the introduction of a second alkyl group (R_2) at the 3-position. Benzoate was introduced as a protecting group at the 1,3-O-disubstituent stage and was removed under basic conditions after the incorporation of the third alkyl group (R_3) with R_3X and NaH. The final alkyl group (R_4) was introduced with R_4X and NaH to give the chiral title compounds.

Introduction

Calixarenes, which are cyclic oligomers of phenolformaldehyde condensed compounds, are not planar and possess an inner cavity. This unique structure has attracted considerable attention in the research area of enzyme mimics.¹ A good enzyme-mimic model requires not only an appropriate functional group positioned to display the reactivity and selectivity of the real enzyme but also the chirality to effect their high stereoselectivity. To incorporate an appropriate functional group, properly positioned, onto the calixarene framework was a major goal of early calixarenes research, and a wide range of calixarene derivatives were reported.¹ However, the preparation of calixarenes with chirality has been accomplished only recently.²

In the literature, several strategies, including fragment condensation,³ introduction of chiral substituents,⁴ and "lower rim" functionalization,⁵ have been used for the preparation of inherently chiral calix[4]arenes. In our

previous work on the synthesis of trialkoxycalix[4]arenes,⁶ we demonstrated that alkyl ether linkages can be introduced at various synthetic stages. We report here a general synthetic strategy comprised a six-step sequence, in which monoalkoxycalix[4]arenes are treated with different alkyl halides at various alkylation stages, for the synthesis of calix[4]arenes that are chiral by virtue of the four different substituents on their "lower rim".

Results and Discussion

Monoalkoxycalix[4]arenes. According to the literature, monoalkoxycalix[4]arenes have usually been prepared either by a multistep process⁷ or by a one-step procedure employing a careful separation technique.⁸ During the synthesis of a series of calix[4]arene allyl ethers, we were surprised to find that NaOCH₃ in CH₃CN would mediate the conversion of calix[4]arene into monoallyloxycalix[4]arene in good yield.9 Further investigation proved that calix[4]arene would react with most of the simple primary alkyl halides in CH₃CN in the presence of NaOCH₃ to yield the corresponding monoalkoxycalix[4]arenes (2a-f) in roughly 75% yield (Figure 1). This result was quite unexpected, seeming to violate the notion that more severe reaction conditions should lead to multiply-substituted products, given that weaker bases such as Na₂CO₃ or K₂CO₃ produced the 1,3-

^{(1) (}a) Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713 and references therein. (b) Gutsche, C. D. In Calixarenes, Monographs in Supramolecular Chemistry, Stoddart, F. J., Ed.; Royal Society of Chemistry: Cambridge, 1989; Vol. 1 and references therein. (c) Calixarenes, A Versatile Class of Macrocyclic Compounds, Vicens, J., Böhmer, V., Eds.; Kluwer: Dordrecht, 1991, and references therein. (d) Groenen, L. C.; Reinhoudt, D. N. In Supramolecular Chemistry, Balzani, V., de Cola, L., Eds.; Kluwer: Dordrecht, 1991; pp 51-70 and references therein.

^{(2) (}a) Shinkai, S. *Tetrahedron* **1993**, *49*, 8933–8968 and references therein. (b) Ferguson, G.; Gallagher, J. F.; Giunta, L.; Neri, P.; Pappalardo, S.; Paris, M. *J. Org. Chem.* **1994**, *59*, 42 and references therein. (c) Böhmer. V.; Kraft, D.; Tabatabai, M. *J. Inclusion Phenom.* 1994, 19, 17 and references therein.

^{(3) (}a) Böhmer, V.; Merkel, L.; Kunz, U. J. Chem. Soc., Chem. Commun. 1987, 896. (b) Böhmer, V.; Marshollek, F.; Zetta, L. J. Org. Chem. 1987, 52, 3200. (c) Zetta, L.; Wolff, A.; Vogt, W.; Platt, K.-L.; Böhmer, V. Tetrahedron 1991, 47, 1911. (d) Casabianca, H.; Royer, A.; Satrallah, A.; Taty-C, A.; Vicens, J. Tetrahedron Lett. 1987, 28, 6595. (e) Shinkai, S.; Arimura, T.; Kawabata, H.; Murakami, H.; Araki, K.; Iwamoto, K.; Matsuda, T. J. Chem. Soc., Chem. Commun. 1990, 1734. (f) Shinkai, S.; Arimura, T.; Kawabata, H.; Murakami, H.; Iwamoto, K. J. Chem. Soc., Perkin Trans. J 1991, 2429. (4) (a) Arimura, T.; Kawabata, H.; Matsuda, T.; Muramata, T.;
(4) (a) Arimura, T.; Kawabata, H.; Matsuda, T.; Muramatsu, T.;

Satoh, H.; Fujio, K.; Manabe, O.; Shinkai, S. *J. Org. Chem.* **1991**, *56*, 699. (b) Ikeda, A.; Nagasaki, T.; Shinkai, S. *J. Phys. Org. Chem.* **1992**, (d) Schneider, H.-J.; Schneider, U. *J. Inclusion Phenom.* **1993**, *46*, 7433. (d) Schneider, H.-J.; Schneider, U. *J. Inclusion Phenom.* **1994**, *19*, 67.

^{(5) (}a) Iwamoto, K.; Shimizu, H.; Araki, K.; Shinkai, S. J. Am. Chem. Soc. 1993, 115, 3997 and references therein. (b) Gonzalez, J. J.; Nieto, P. M.; Prados, P.; Echavarren, A. M.; de Mendoza, J. J. Org. Chem. **1995**, 60, 7419–7423. (c) Caccamese, S.; Pappalardo, S. Chirality **1993**, 5, 159–163. (d) Iwamoto, K.; Yangagi, A.; Arimura, T.; Matsuda, T.; Shinkai, S. *Chem. Lett.* **1990**, 1901–1904.

⁽⁶⁾ Ho, Z.-C.; Ku, M.-C.; Shu, C.-M.; Lin, L.-G. Tetrahedron 1996, 52, 13189-13200.

^{(7) (}a) Gutsche, C. D.; Lin, L.-G. Tetrahedron 1986, 42, 1633-1640. (b) Casnati, A.; Arduini, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Tetrahedron **1991**, 47, 2221–2228.

^{(8) (}a) Groenen, L. C.; Ruel, B. H. M.; Casnati, A.; Verboom, W.; Pochini, A.; Ungaro, R.; Reinhoudt, D. N. *Tetrahedron* **1991**, *47*, 8379– 8384. (b) Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. *Bull. Chem.* Soc. Jp. 1990, 63, 3480–3485. (c) Bottino, F.; Giunta, L.; Pappalardo,
S. J. Org. Chem. 1989, 54, 5407–5409.
(9) Ku, M.-C. M.S. Thesis, Institute of Applied Chemistry, Chinese

Culture University, 1994.

Figure 1. Monoalkoxycalix[4]arenes.

dialkoxy products under the same reaction conditions. Even after extensive studies, we are still not able to propose a reasonable explanation for the strange behavior of NaOCH₃ in this monoalkylation reaction. Other bases such as NaOH or KOH also produced monoalkylated calix[4]arene, but the composition of the products is sensitive to the reaction conditions and erratically reproducible.¹⁰

1,3-Dialkoxycalix[4]arenes. When monobenzyloxycalix[4]arene (**2f**) was refluxed with a second alkyl halide in CH₃CN in the presence of K₂CO₃ by a literature procedure for synthesis of 1,3-dialkoxycalix[4]arenes,¹¹ corresponding 25-alkoxy-27-benzyloxy-calix[4]arenes (**3ae**) were formed in 88–94% yields (Figure 2). Compound **3e**, 25-allyloxy-27-benzyloxy-26,28-dihydroxycalix[4]arene, could also be prepared by refluxing monoallyloxycalix-[4]arene (**2e**) with benzyl bromide in the presence of K₂CO₃. It is suspected that all calix[4]arenes with two different alkoxy substituents at their 1,3-positions can be synthesized stepwise in either order.

1,2,3-Trialkoxycalix[4]arenes. Treatment of 1,3dialkoxy compounds 3c-e with benzoyl chloride in pyridine at room temperature gave the corresponding monobenzoates 4a-c quantitatively. In compounds 4a-c, the three substituents on the "lower rim" are all larger than an ethoxy group. Therefore, the "through-the-annulus" free rotation (i.e., calix[4]arene ring inversion) is restricted.¹² The restriction of the calix[4]arene ring inversion yields a pair of enantiomers during the benzoylation of compounds 3c-e; in other word, a chiral element¹³ is created in this benzoylation reaction and compounds **4a**–**c** were produced as racemic mixtures. Due to the lack of any symmetry in compounds **4a**–**c**, all of the methylene hydrogens (four calix[4]arene methylenes, benzyloxy methylene, and alkoxy methylene) reside in different magnetic environments, and consequently, a total of six sets of AB quartets were observed in the range of δ 3.50–5.00 in the proton NMR spectra. By comparing the spectra of **4a**–**c** and monobenzoated diallyloxycalix[4]arene,⁶ the benzoyloxy moiety of **4a**–**c** was assigned as *anti* to the two alkoxy groups.

Compounds $4\mathbf{a} - \mathbf{c}$ were further alkylated by treatment with NaH and large primary alkyl halides in CH₃CN to give 25,26,27-trialkoxy-28-monobenzoyloxycalix[4]arenes ($5\mathbf{a}-\mathbf{d}$). The ¹H NMR spectra of $5\mathbf{a}-\mathbf{d}$ displayed pairs of multiplets corresponding to the newly introduced alkoxy methylene hydrogens, which indicated that these alkoxy methylene hydrogens are also located in a distinct magnetic environment. This phenomena is believed to be caused by these alkoxy moieties being *syn* to the two existing alkoxy moieties, whereas an *anti* orientation would result in a set of triplets for the same methylene hydrogens. The *syn* orientation of three alkoxy groups in compounds $5\mathbf{a}-\mathbf{d}$ is consistent with our earlier observation in trialkoxycalix[4]arenes cases,⁶ and compounds $5\mathbf{a}-\mathbf{d}$ are assigned an "up-up-up-down" conformation.

The protecting benzoate moieties were readily removed under basic hydrolysis to liberate the fourth hydroxy group for the final alkylation. Basic hydrolysis of compounds **5a**-**d** following a literature procedure^{6,7a} produced the corresponding hydrolyzed products **6a**-**d**, 25,26,27-trialkoxy-28-hydroxycalix[4]arenes, in 81–87% yields.

1,2,3,4-Tetraalkoxycalix[4]arenes. The last alkyl group was introduced by heating compounds 6a-d, NaH, and a fourth primary alkyl iodide in refluxing CH₃CN to yield the final product 25,26,27,28-tetraalkoxycalix[4]arenes (7a-c), with four different "lower rim" substituents. The last alkoxy group can in principle be introduced into compounds **6a**-**d** either in *syn* or in *anti* orientation to the other three alkoxy groups, thus producing products 7a-c in either the "cone" or "partial cone" conformations. However, the ¹H NMR spectra of 7a-c, which were similar to those of the syn-1,3-dialkoxycalix[4]arenes, revealed that the four different "lower rim" substituents were all oriented in the same direction and the products existed only in "cone" conformation. It is noteworthy that compound 7b, 25-allyloxy-26-benzyloxy-27-butoxy-28propoxycalix[4]arene, was prepared either by allylation of compound **6b** or by introduction of a propoxy group onto compound 6c. In other words, the allyloxy (the third alkoxy) and *n*-propoxy (the fourth alkoxy) groups can be introduced into products 3d in either order, which is similar to the previous observation with 1,3-dialkoxycalix-[4]arenes (**3a**-**e**).

The products 5a-d, 6a-d, and 7a-c all inherit the chirality of compounds 4a-d, and all exist in a racemic mixture. The optical resolution and X-ray structure

⁽¹⁰⁾ Unpublished results, Chinese Culture University.

⁽¹¹⁾ van Loon, J.-D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. *J. Org. Chem.* **1990**, *55*, 5639–5646.

^{(12) (}a) Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. *Chem. Lett.* **1989**, 1747. (b) Iwamoto, K.; Araki, K.; Shinkai, S. *J. Org. Chem.* **1991**, *56*, 4956. The through-the-annulus free rotation can be inhibited by R groups larger than the ethyl substituent at room temperature.

⁽¹³⁾ Compounds 4–7 are asymmetric molecules and belong to the C_1 point group. The chiral element of compounds 4–7 can be visualized either as a chiral axis that goes through the center of the calix[4]arene's cavity or as a chiral plane that contains the cavity main axis. Even though the calixarenes can be classified as *meta*-cyclophanes, the chirality of the calix[4]arenes is different from cyclophane systems. For an excellent review on the specification of molecular chirality, see: Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem., Int. Ed. Engl. **1966**, *5*, 385.

Figure 2. Synthesis of calix[4]arenes with four different "lower rim" substituents.

determination of these compounds (4a-d, 5a-d, 6a-d, and 7a-c) is under investigation at present.¹⁴

Experimental Section¹⁵

General Procedure for 25-Alkoxycalix[4]arenes 2a– f. A sample of 2.12 g (5.00 mmol) of calix[4]arene (1) and 0.32 g (5.9 mmol) of NaOCH₃ was refluxed in 150 mL of CH₃CN for 30 min to monodeprotonate the calix[4]arene completely. An excess amount of alkyl halides was added, and the reaction mixture was further refluxed for 8 h (24 h for less reactive alkyl halides). The reaction mixture was neutralized with a few drops of acetic acid, and solvent was removed to leave an off-white residue. The residue was recrystallized from CHCl₃ with a slow addition of CH₃OH to yield the corresponding monoalkylated calix[4]arene 2a-f.

25-Methoxy-26,27,28-trihydroxycalix[4]arene (2a). The reaction mixture was refluxed with 0.80 mL (1.82 g, 12.8 mmol) of methyl iodide for 8 h to afford 1.60 g (73%) of colorless crystals: mp 273–274 °C; ¹H NMR (CDCl₃) δ 9.69 (s, 1 H), 9.34 (s, 2 H), 6.67–7.10 (m, 12 H), 4.35 (d, 2 H, J = 13.0 Hz), 4.26 (d, 2 H, J = 13.0 Hz), 4.13 (s, 3 H), 3.46 (2d, 4 H, J = 13.0 Hz); ¹³C NMR (CDCl₃) δ 152.54 (C_q), 150.65 (C_q), 149.22 (C_q), 134.04 (C_q), 129.38 (CH), 128.82 (CH), 128.72 (CH), 128.25 (CH), 128.43 (CH₂), 31.30 (CH₂); FAB-MS m/z 437 (M⁺ – 1). Anal. Calcd for C₂₉H₂₆O₄: C, 79.43; H, 5.98. Found: C, 79.38; H, 6.03.

25-Ethoxy-26,27,28-trihydroxycalix[**4**]**arene (2b).** The reaction mixture was refluxed with 1.00 mL (1.95 g, 12.5 mmol) of ethyl iodide for 8 h to afford 1.74 g (77%) of colorless crystals: mp 292–293 °C; ¹H NMR (CDCl₃) δ 9.86 (s, 1 H), 9.52 (s, 2 H), 6.68–7.14 (m, 12 H), 4.22–4.42 (m, 6 H), 3.50 (2d, 4 H, J = 13.4 Hz), 1.77 (t, 3 H, J = 7.1 Hz); ¹³C NMR (CDCl₃) δ 151.28 (C_q), 150.62 (C_q), 149.33 (C_q), 134.39 (C_q), 129.56 (CH), 128.41 (CH), 128.76 (CH), 128.69 (CH), 128.56 (CH), 128.50 (CH), 128.41 (CH), 126.10 (CH), 121.85 (CH), 120.98 (CH), 72.60 (CH₂), 31.88 (CH₂), 31.46 (CH₂), 15.17 (CH₃); FAB-MS *m*/*z* 451 (M⁺ – 1). Anal. Calcd for C₃₀H₂₈O₄: C, 79.62; H, 6.24. Found: C, 79.60; H, 6.23.

25-Propoxy-26,27,28-trihydroxycalix[4]arene (2c). The reaction mixture was refluxed with 1.20 mL (2.09 g, 12.3 mmol) of *n*-propyl iodide for 10 h to afford 1.63 g (70%) of colorless crystals: mp 262–263 °C; ¹H NMR (CDCl₃) δ 9.62 (s, 1 H), 9.31 (s, 2 H), 6.52–6.97 (m, 12 H), 4.24 (d, 2 H, *J* = 13.3 Hz), 4.16 (d, 2 H, *J* = 13.3 Hz), 3.99 (t, 2 H, *J* = 6.9 Hz), 3.42 (2d, 4 H, *J* = 13.3 Hz), 2.03–2.11 (m, 2 H), 1.15 (t, 3 H, *J* = 7.4 Hz); ¹³C NMR (CDCl₃) δ 151.40 (C_q), 150.77 (C_q), 149.17 (C_q), 134.19 (C_q), 129.28 (CH), 128.79 (CH), 128.76 (CH), 128.70 (CH), 128.84 (CH), 128.38 (CH), 126.02 (CH), 121.91 (CH), 120.87 (CH), 78.96 (CH₂), 31.87 (CH₂), 31.41 (CH₂), 23.22 (CH₂), 10.56 (CH₃); FAB-MS *m*/*z* 465 (M⁺ – 1). Anal. Calcd for C₃₁H₃₀O₄: C, 79.80; H, 6.48. Anal. Calcd for C₃₁H₃₀O₄: H₂O: C, 76.84; H, 6.66. Found: C, 76.91; H, 6.31.

(15) All reagents were obtained from Merck Chemical Co. and used without further purification. Melting points were taken in capillary tubes on a Mel-Temp apparatus (Laboratory Devices Cambridge, MA) and are uncorrected. ¹H NMR spectra were recorded on either a Varian Gemini 200 or Unity-300 spectrometer. Chemical shifts are reported as δ values in ppm relative to TMS ($\delta=0.0$) as an internal standard. DEPT program of the 13 C NMR was used to determine the C $_q$, CH, CH $_2$, and CH $_3$ of each carbon. FAB-MS spectra were taken on a JEOL JMS-HX 110 spectrometer, and elemental analyses were taken on a Perkin-Elmer 240C analyzer. MMCALC program in ChemWindow 3 computer software package was used to calculate the theoretical EA values. Chromatographic separations were performed with Merck silica gel (230–400 mesh ASTM) on columns of 25 mm diameter filled to a height of 150 mm. TLC analyses were carried out on Merck aluminum sheets silica gel 60 F_{254} plates (absorbant thickness 0.2 mm).

25-Butoxy-26,27,28-trihydroxycalix[4]arene (2d). The reaction mixture was refluxed with 1.40 mL (2.26 g, 12.3 mmol) of *n*-butyl iodide for 24 h to afford 1.73 g (72%) of colorless crystals: mp 240–241 °C; ¹H NMR (CDCl₃) δ 9.73 (s, 1 H), 9.41 (s, 2 H), 6.64–7.08 (m, 12 H), 4.36 (d, 2 H, *J*= 13.2 Hz), 4.28 (d, 2 H, *J*= 13.2 Hz), 4.14 (t, 2H, *J*= 3.5 Hz), 3.46 (2d, 4 H, *J*= 13.2 Hz), 2.13–2.20 (m, 2 H), 1.68–1.76 (m, 2 H), 1.12 (t, 3 H, *J*= 7.2 Hz); ¹³C NMR (CDCl₃) δ 151.50 (C_q), 150.80 (C_q), 149.22 (C_q), 134.23 (C_q), 129.31 (CH), 128.84 (CH), 128.80 (CH), 128.75 (CH), 128.41 (CH), 126.05 (CH), 121.95 (CH), 120.90 (CH), 77.32 (CH₂), 77.22 (CH₂), 31.96 (CH₂), 31.91 (CH₂), 31.45 (CH₂), 19.26 (CH₂), 14.01 (CH₃); FAB-MS *m*/*z*479 (M⁺ – 1). Anal. Calcd for C₃₂H₃₂O₄: C, 79.97; H, 6.71. Anal. Calcd for C₃₂H₃₂O₄·¹/₄H₂O: C, 79.23; H, 6.75. Found: C, 78.97; H, 6.70.

25-Allyloxy-26,27,28-trihydroxycalix[4]arene (2e). The reaction mixture was refluxed with 1.00 mL (1.40 g, 11.6 mmol) of allyl bromide for 8 h to afford 1.74 g (75%) of colorless needlelike crystals: mp 201–202 °C; ¹H NMR (CDCl₃) δ 9.71 (s, 1 H), 9.31 (s, 2 H), 6.66–7.12 (m, 12 H), 6.42–6.47 (m, 1 H), 5.53–5.65 (m, 2 H), 4.65–4.68 (m, 2 H), 4.37 (d, 2 H, *J* = 13.2 Hz), 4.27 (d, 2 H, *J* = 13.2 Hz), 3.46 (2d, 4 H, *J* = 13.2 Hz); ¹³C NMR (CDCl₃) δ 151.24 (C_q), 150.78 (C_q), 149.30 (C_q), 134.35 (C_q), 132.28 (CH), 129.40 (CH), 128.87 (CH), 128.79 (CH), 128.50 (CH), 128.46 (CH), 128.43 (CH), 126.28 (CH), 121.96 (CH), 120.99 (CH), 120.34 (CH₂), 77.75 (CH₂), 31.63 (CH₂); FAB-MS *m*/*z* 463 (M⁺ – 1). Anal. Calcd for C₃₁H₂₈O₄: C, 80.15; H, 6.08. Anal. Calcd for C₃₁H₂₈O₄: ¹/₆CHCl₃: C, 77.27; H, 5.86. Found: C, 77.22; H, 5.91%.

25-Benzyloxy-26,27,28-trihydroxycalix[4]arene (2f). The reaction mixture was refluxed with 1.50 mL (2.16 g, 12.6 mmol) of benzyl bromide for 9 h to afford 2.06 g (80%) of colorless crystals: mp 234–235 °C; ¹H NMR (CDCl₃) δ 9.56 (s, 1 H), 9.21 (s, 2 H), 6.66–7.71 (m, 17 H), 5.19 (s, 2 H), 4.34 (d, 2 H, J = 13.4 Hz), 4.22 (d, 2 H, J = 13.4 Hz), 3.43 (2d, 4 H, J = 13.4 Hz); ¹³C NMR (CDCl₃) δ 151.22 (C_q), 150.79 (C_q), 149.10 (C_q), 135.47 (C_q), 134.29 (C_q), 129.49 (CH), 129.02 (CH), 128.30 (CH), 126.26 (CH), 121.90 (CH), 120.84 (CH), 79.26 (CH₂), 31.84(CH₂), 31.59(CH₂); FAB-MS *m*/*z* 513 (M⁺ – 1). Anal. Calcd for C₃₅H₃₀O₄·¹/₄H₂O: C, 80.98; H, 5.92. Found: C, 81.08; H, 5.90.

General Procedure for 25,27-Dialkoxycalix[4]arenes 3a–e. A sample of 2.57 g (5.00 mmol) of 25-benzyloxy-26,27,-28-trihydroxycalix[4]arene (**2f**), 0.82 g (5.9 mmol) of K₂O₃, and an excess amount of alkyl halides was refluxed in 50 mL of CH₃CN. The solvent was removed, and the residue was recrystallized from CHCl₃ with a slow addition of CH₃OH to yield the corresponding dialkylated products **3a–e**.

25-Benzyloxy-27-methoxy-26,28-dihydroxycalix[4]arene (3a). The reaction mixture was refluxed with 1.20 mL (2.74 g, 19.3 mmol) of methyl iodide for 4 h to afford 2.32 g (88%) of colorless crystals: mp 245–246 °C; ¹H NMR (CDCl₃) δ 7.75 (s, 2H), 7.59–7.61 (m, 2 H), 7.39–7.41 (m, 3 H), 6.65–7.06 (m, 12 H), 5.07 (s, 2 H), 4.24–4.31 (2d, 4 H, J= 13.1 Hz), 3.93 (s, 3 H), 3.35 (d, 2 H, J = 13.0 Hz), 3.28 (d, 2 H, J = 13.1 Hz); ¹³C NMR (CDCl₃) δ 153.11 (C_q), 151.69 (C_q), 136.41 (C_q), 133.37 (C_q), 133.01 (C_q), 128.95 (CH), 128.91 (CH), 128.53 (CH), 128.44 (CH), 128.14 (CH), 128.27 (CH), 128.05 (CH), 125.33 (CH), 125.27 (CH), 119.02 (CH), 78.04 (CH₂), 63.44 (CH₃), 31.34 (CH₂), 31.16 (CH₂); FAB-MS *m*/*z* 529 (M⁺ + 1). Anal. Calcd for C₃₆H₃₂O₄: C, 81.79; H, 6.10. Found: C, 81.53; H, 6.01.

25-Benzyloxy-27-ethoxy-26,28-dihydroxycalix[4]arene (3b). The reaction mixture was refluxed with 1.50 mL (2.93 g, 18.8 mmol) of ethyl iodide for 4 h to afford 2.41 g (89%) of colorless crystals: mp 258–259 °C; ¹H NMR (CDCl₃) δ 8.19 (s, 2 H), 7.74–7.76 (m, 2 H), 7.43–7.45 (m, 3 H), 6.61–7.05 (m, 12 H), 5.08 (s, 2 H), 4.34 (d, 2 H, J = 12.9 Hz), 4.28 (d, 2 H, J = 12.9 Hz), 4.09 (q, 2 H, J = 7.0 Hz), 3.37 (2d, 4 H, J =12.9 Hz), 1.65 (t, 3 H, J = 7.0 Hz); ¹³C NMR (CDCl₃) δ 153.25 (C_q), 151.79 (C_q), 151.59 (C_q), 136.75 (C_q), 133.54 (C_q), 133.50 (C_q), 129.02 (CH), 128.86 (CH), 128.53 (CH), 128.44 (CH), 128.37 (CH), 128.12 (CH), 128.08 (CH), 127.51 (CH), 125.58

⁽¹⁴⁾ Single-crystal X-ray crystallography of the tetraalkoxy calix-[4]arenes indicated that it is in a "cone" conformation. The author has deposited atomic coordinates for **7c** with the Cambridge Crystallographic Data Center. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, U.K. We are indebted to Mr. J.-H. Lee (NTU) and Prof. S.-M. Peng for the single-crystal X-ray analyses.

(CH), 125.29 (CH), 119.01 (CH), 78.18 (CH₂), 72.11 (CH₂), 31.51 (CH₂), 31.43 (CH₂), 15.29 (CH₃); FAB-MS m/z 541 (M⁺ – 1). Anal. Calcd for C₃₇H₃₄O₄: C, 81.89; H, 6.32. Found: C, 81.75; H, 6.35.

25-Benzyloxy-27-propoxy-26,28-dihydroxycalix[4]arene (3c). The reaction mixture was refluxed with 1.50 mL (2.61 g, 15.4 mmol) of *n*-propyl iodide for 3 h to afford 2.61 g (94%) of colorless needlelike crystals: mp 234–235 °C; ¹H NMR (CDCl₃) δ 8.14 (s, 2 H), 7.74–7.76 (m, 2 H), 7.43–7.45 (m, 3 H), 6.62–7.06 (m, 12 H), 5.07 (s, 2 H), 4.36 (d, 2 H, *J* = 13.0 Hz), 4.29 (d, 2 H, *J* = 13.0 Hz), 3.95 (t, 2 H, *J* = 6.1 Hz), 3.37 (2d, 4 H, *J* = 13.0 Hz), 2.03–2.06 (m, 2 H), 1.24 (t, 3 H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 153.37 (C_q), 151.82 (C_q), 151.65 (C_q), 136.77 (C_q), 133.38 (C_q), 133.33 (C_q), 129.04 (CH), 128.91 (CH), 128.54 (CH), 128.49 (CH), 128.42 (CH), 128.05 (CH), 128.02 (CH), 127.47 (CH), 125.56 (CH), 125.26 (CH), 118.94 (CH), 78.33 (CH₂), 78.25 (CH₂), 31.43 (CH₂), 23.47 (CH₂), 11.02 (CH₃); FAB-MS *m*/*z* 555 (M⁺ – 1). Anal. Calcd for C₃₈H₃₆O₄: C, 81.99; H, 6.52. Found: C, 82.01; H, 6.55.

25-Benzyloxy-27-butoxy-26,28-dihydroxycalix[4]arene (3d). The reaction mixture was refluxed with 1.70 mL (2.75 g, 14.9 mmol) of *n*-butyl iodide for 4 h to afford 2.59 g (91%) of colorless needlelike crystals: mp 196-197 °C; ¹H NMR (CDCl₃) δ 8.06 (s, 2 H), 7.73–7.74 (m, 2 H), 7.43–7.46 (m, 3 H), 6.60-7.06 (m, 12 H), 5.07 (s, 2 H), 4.34 (d, 2 H, J =13.0 Hz), 4.29 (d, 2 H, J = 13.0 Hz), 3.96 (t, 2 H, J = 6.1 Hz), 3.36 (2d, 4 H, J = 13.0 Hz), 1.92-2.02 (m, 2 H), 1.60-1.70 (m, 2 H), 1.06 (t, 3 H, J = 7.4 Hz); ¹³C NMR (CDCl₃) δ 153.33 (C_q), 151.92 (C_q), 151.69 (C_q), 136.74 (C_q), 133.30 (C_q), 133.23 (C_q), 129.56 (CH), 128.99 (CH), 128.86 (CH), 128.53 (CH), 128.45 (CH), 128.40 (CH), 128.00 (CH), 127.46 (CH), 125.48 (CH), 125.18 (CH), 118.89 (CH), 78.26 (CH₂), 76.45 (CH₂), 32.05 (CH₂), 31.40 (CH₂), 19.23 (CH₂), 14.03 (CH₃); FAB-MS m/z 569 (M⁺ - 1). Anal. Calcd for C₃₉H₃₈O₄: C, 82.08; H, 6.71. Found: C, 82.06; H, 6.74.

25-Allyloxy-27-benzyloxy-26,28-dihydroxycalix[4]arene (3e). Method A. From 25-Benzyloxycalix[4]arene (2f). A sample of 2.57 g (5.00 mmol) of 25-benzyloxy-26,27,-28-trihydroxycalix[4]arene (2f), 0.82 g (5.9 mmol) of K₂CO₃, and 1.30 mL (1.82 g, 15.0 mmol) of allyl bromide was refluxed in 50 mL of CH₃CN for 4 h. The solvent was removed, and the residue was recrystallized from CHCl₃ and CH₃OH to yield 2.55 g (92%) of colorless crystals: mp 213-214 °C; ¹H NMR (CDCl₃) δ 7.98 (s, 2 H), 7.70–7.72 (m, 2 H), 7.31–7.46 (m, 3 H), 6.63-7.06 (m, 12 H), 6.10-6.25 (m, 1 H), 5.69-5.75 (d, 1 H, J = 18.5 Hz), 5.30 (d, 1 H, J = 10.3 Hz), 5.07 (s, 2 H), 4.53 (s, 2 H), 4.26–4.37 (2d, 4 H, J = 12.9 Hz), 3.37 (2d, 4 H, J = 12.9 Hz); ^{13}C NMR (CDCl_3) δ 153.28 (Cq), 151.59 (Cq), 136.60 (C_q), 133.19 (C_q), 133.13 (CH), 132.62 (CH), 129.50 (CH), 128.98 (CH), 128.88 (CH), 128.55 (CH), 128.46 (CH), 128.44 (CH), 128.03 (CH), 127.92 (CH), 127.90 (CH), 127.58 (CH), 125.48 (CH), 125.36 (CH), 118.90 (CH), 117.54 (CH₂), 78.26 (CH₂), 76.66 (CH₂), 31.38 (CH₂); FAB-MS m/z 553 (M⁺ - 1). Anal. Calcd for C₃₈H₃₄O₄: C, 82.28; H, 6.18. Anal. Calcd for C₃₈H₃₄O₄. ¹/₄H₂O: C, 81.62; H, 6.22. Found: C, 81.80; H, 6.20.

Method B. From 25-Allyloxycalix[4]arene (2e). A sample of 2.32 g (5.00 mmol) of 25-allyloxy-26,27,28-trihydroxy-calix[4]arene (**2e**), 0.82 g (5.9 mmol) of K₂CO₃, and 1.50 mL (2.16 g, 12.6 mmol) of benzyl bromide was refluxed in 50 mL of CH₃CN for 4 h. The solvent was removed, and the residue was recrystallized from CHCl₃ and CH₃OH to yield 2.50 g (90%) of colorless crystals that were identical in physical and spectral properties with compound **3e** obtained by method A.

General Procedure for 25,27-Dialkoxy-26-benzoyloxycalix[4]arenes 4a–c. A sample of 1.00 mmol of 25,27dialkoxycalix[4]arenes (**3c–e**) was dissolved in 10 mL of pyridine, and 2.00 mL (3.14 g, 17.0 mmol) of benzoyl chloride was added. The mixture was stirred at room temperature for 48 h and was then treated with 100 mL of diluted HCl to induce a white solid. The white solid was recrystallized from CHCl₃ with a slow addition of CH₃OH to yield the corresponding benzoate products **4a–c**.

25-Benzyloxy-26-benzoyloxy-28-hydroxy-27-propoxycalix[4]arene (4a). A sample of 0.56 g (1.0 mmol) of 25-benzyloxy-27-propoxy-26,28-dihydroxycalix[4]arene (3c) was benzoated and yielded 0.63 g (95%) of colorless needlelike crystals: mp 179–181 °C; ¹H NMR (CDCl₃) δ 7.80 (s, 1 H), 6.12–7.33 (m, 22 H), 5.05, 4.83 (AB, 2 H, J = 12.1 Hz), 4.26 (d, 1 H, J = 13.0 Hz), 4.12 (d, 1 H, J = 13.0 Hz), 3.72–4.05 (m, 6 H), 3.38 (d, 1 H, J = 13.0 Hz), 3.24 (d, 1 H, J = 13.0 Hz), 1.77–1.83 (m, 2 H), 1.04 (t, 3 H, J = 7.4 Hz); ¹³C NMR (CDCl₃) δ 163.46 (C_q), 154.47 (C_q), 153.43 (C_q), 153.21 (C_q), 147.96 (C_q), 137.61 (C_q), 133.14 (C_q), 133.04 (C_q), 132.49 (C_q), 132.39 (CH), 130.10 (CH), 129.73 (CH), 129.55 (CH), 129.17 (CH), 128.83 (CH), 128.16 (CH), 128.03 (CH), 127.90 (CH), 127.74 (CH), 127.07 (CH), 126.75 (CH), 123.57 (CH), 118.75 (CH), 75.20 (CH₂), 74.50 (CH₂), 37.94 (CH₂), 31.37 (CH₂), 30.91 (CH₂), 23.03 (CH₂), 10.61 (CH₃); FAB-MS *m*/*z* 661 (M⁺ + 1). Anal. Calcd for C₄₅H₄₀O₅· ¹/₄H₂O: C, 81.24; H, 6.14. Found: C, 81.31; H, 6.13.

25-Benzyloxy-26-benzoyloxy-27-butoxy-28-hydroxycalix[4]arene (4b). A sample of 0.57 g (1.0 mmol) of 25benzyloxy-27-butoxy-26,28-dihydroxy-calix[4]arene (3d) was benzoated and yielded 0.62 g (93%) of colorless crystals: mp 161–162 °C; ¹H NMR (CDCl₃) δ 7.63 (s, 2 H), 6.01–7.23 (m, 17 H), 4.94, 4.74 (AB, 2 H, J = 12.1 Hz), 3.61-4.17 (m, 8 H), 3.28 (d, 1 H, J = 12.7 Hz), 3.24 (d, 1 H, J = 12.7 Hz), 1.39-1.80 (m, 4 H), 0.92 (t, 3 H, J= 7.3 Hz); $^{13}\mathrm{C}$ NMR (CDCl_3) δ 163.60 (C_q), 154.60 (C_q), 153.59 (C_q), 153.28 (C_q), 148.04 (C_q), 137.70 (C_q), 133.24 (C_q), 132.55 (C_q), 132.46 (CH), 130.23 (CH), 129.89 (CH), 129.36 (CH), 129.29 (CH), 129.25 (CH), 128.93 (CH), 128.24 (CH), 128.09 (CH), 128.02 (CH), 127.53 (CH), 127.24 (CH), 127.16 (CH), 126.86 (CH), 125.08 (CH), 118.79 (CH), 74.68 (CH₂), 73.63 (CH₂), 37.98 (CH₂), 37.92 (CH₂), 31.73 (CH₂), 31.44 (CH₂), 30.98 (CH₂), 19.09 (CH₂), 14.15(CH₃); FAB-MS *m*/*z* 675 (M⁺ + 1). Anal. Calcd for C₄₆H₄₂O₅: C, 81.87; H, 6.27. Anal. Calcd for C₄₆H₄₂O₅·1/₄H₂O: C, 81.33; H, 6.31. Found: C, 81.24; H, 6.26.

25-Allyloxy-26-benzoyloxy-27-benzyloxy-28-hydroxycalix[4]arene (4c). A sample of 0.55 g (1.0 mmol) of 25allyloxy-27-benzyloxy-26,28-dihydroxycalix[4]arene (3e) was benzoated and yielded 0.64 g (98%) of colorless needlelike crystals: mp 162–163 °C; ¹H NMR (CDCl₃) δ 7.57 (s, 1 H), 6.18-7.36 (m, 22 H), 5.95-6.10 (m, 1 H), 5.34-5.37 (m, 2 H), 5.08, 4.84 (AB, 2 H, J = 11.9 Hz), 4.60-4.68 (m, 1 H), 4.26-4.36 (m, 1 H), 4.17 (d, 1 H, J = 13.1 Hz), 4.11 (d, 1 H, J = 13.1 Hz), 3.62-4.17 (m, 4 H), 3.37 (d, 1 H, J = 13.1 Hz), 3.27 (d, 1 H, J = 13.1 Hz); ¹³C NMR (CDCl₃) δ 163.60 (C_q), 154.20 (C_q), $\begin{array}{c} 153.49 \ (C_q), \ 153.18 \ (C_q), \ 147.95 \ (C_q), \ 137.25 \ (C_q), \ 133.59 \ (C_q), \\ 133.32 \ (C_q), \ 132.65 \ (C_q), \ 132.62 \ (C_q), \ 132.56 \ (C_q), \ 132.53 \ (CH), \end{array}$ 132.35 (CH), 130.27 (CH), 129.41 (CH), 128.21 (CH), 128.18 (CH), 128.10 (CH), 127.81 (CH), 127.42 (CH), 127.19 (CH), 127.11 (CH), 125.16 (CH), 118.77 (CH), 117.27(CH₂), 74.87 (CH₂), 73.87 (CH₂), 37.89 (CH₂), 37.86 (CH₂), 31.22 (CH₂), 31.02 (CH₂); FAB-MS m/z 659 (M⁺ + 1). Anal. Calcd for C₄₅H₃₈O₅: C, 82.04; H, 5.81. Anal. Calcd for C₄₆H₃₈O₅·¹/₄H₂O: C, 81.49; H, 5.85. Found: C, 81.30; H, 5.80.

General Procedure for 25,26,27-Trialkoxy-28-benzoyloxycalix[4]arenes 5a-d. A sample of 1.0 mmol of 25,-27-dialkoxy-26-benzoyloxycalix[4]arene (4a-c), 0.12 g (5.0 mmol) of NaH, and an excess amount of alkyl halides was refluxed in 50 mL of CH_3CN for 1 h. The solvent was removed, and the crude product was recrystallized from $CHCl_3$ with a slow addition of CH_3OH to yield the corresponding trialkoxy products 5a-d.

25-Allyloxy-26-benzyloxy-27-benzoyloxy-28-propoxycalix[4]arene (5a). A sample of 0.66 g (1.0 mmol) of 25benzyloxy-26-benzoyloxy-28-hydroxy-27-propoxycalix[4]arene (**4a**) was alkylated with 0.43 mL (0.60 g, 5.0 mmol) of allyl bromide and yielded 0.60 g (86%) of colorless crystals: mp 155–156 °C; ¹H NMR (CDCl₃) δ 6.39–7.74 (m, 22 H), 5.48– 5.62 (m, 1 H), 4.71–4.89 (m, 4 H), 4.03–4.20 (m, 4 H), 3.47– 3.85 (m, 6 H), 3.17 (d, 1 H, J= 13.2 Hz), 2.99 (d, 1 H, J= 13.2 Hz), 1.84–1.91 (m, 2 H), 1.04 (t, 3 H, J= 7.5 Hz); ¹³C NMR (CDCl₃) δ 166.12 (C_q), 157.70 (C_q), 157.45 (C_q), 157.21 (C_q), 150.07 (C_q), 139.60 (CH), 139.11 (C_q), 138.60 (C_q), 135.57 (C_q), 135.27 (CH), 134.88 (C_q), 133.80 (CH), 133.55 (CH), 133.42 (CH), 132.34 (CH), 130.63 (CH), 130.58 (CH), 130.49 (CH), 130.39 (CH), 129.89 (CH), 129.55 (CH), 129.41 (CH), 124.54 (CH), 123.42 (CH), 114.91 (CH₂), 78.29 (CH₂), 75.36 (CH₂), 38.65 (CH₂), 32.73 (CH₂), 32.65 (CH₂), 25.28 (CH₂), 12.42 (CH₃); FAB-MS m/z 701 (M⁺ + 1). Anal. Calcd for C₄₈H₄₄O₅: C, 82.26; H, 6.33. Anal. Calcd for C₄₈H₄₄O₅· $^{1}/_{2}$ H₂O: C, 81.21; H, 6.39. Found: C, 81.40; H, 6.29.

25-Benzyloxy-26-benzoyloxy-27-butoxy-28-propoxycalix[4]arene (5b). A sample of 0.67 g (1.0 mmol) of 25benzyloxy-26-benzoyloxy-27-butoxy-28-hydroxy-calix[4]arene (4b) was alkylated with 0.48 mL (0.84 g, 4.9 mmol) of n-propyl iodide and yielded 0.58 g (82%) of colorless crystals: mp 158-159 °C; ¹H NMR (CDCl₃) δ 6.40–7.80 (m, 22 H), 4.84, 4.66 (AB, 2 H, J = 10.9 Hz), 4.12-4.19 (m, 2 H), 3.82 (bd, 3 H, J =12.3 Hz), 3.25-3.58 (m, 5 H), 3.10 (t, 2 H, J = 13.5 Hz), 1.74-1.84 (m, 2 H), 1.51-1.56 (m, 2 H), 1.10-1.45 (m, 2 H), 1.02 (t, 3 H, J = 7.3 Hz), 0.53 (t, 3 H, J = 7.6 Hz); ¹³C NMR (CDCl₃) δ 164.52 (C_q), 156.72 (C_q), 155.85 (C_q), 155.51 (C_q), 148.47 (C_q), 137.39 (C_q), 136.78 (C_q), 136.69 (C_q), 133.94 (C_q), 133.72 (C_q), 133.41(CH), 133.31 (C_q), 133.21 (C_q), 132.03 (CH), 131.86 (CH), 130.69 (CH), 130.08 (CH), 129.94 (CH), 129.04 (CH), 128.92 (CH), 128.82 (CH), 128.75 (CH), 128.36 (CH), 127.97 (CH), 127.75 (CH), 124.28 (CH), 122.65 (CH), 122.04 (CH), 121.66 (CH), 76.73 (CH₂), 75.37 (CH₂), 74.28 (CH₂), 36.96 (CH₂), 32.55 (CH₂), 30.50 (CH₂), 30.35 (CH₂), 21.56 (CH₂), 19.50 (CH₂), 14.04 (CH₃), 8.98(CH₃); FAB-Ms *m*/*z* 717 (M⁺ + 1). Anal. Calcd for C₄₉H₄₈O₅: C, 82.09; H, 6.75. Anal. Calcd for C₄₉H₄₈O₅·¹/₄H₂O: C, 81.58; H, 6.78. Found: C, 81.70; H, 6.67.

25-Allyloxy-26-benzyloxy-27-benzoyloxy-28-butoxycalix-[4]arene (5c). A sample of 0.67 g (1.0 mmol) of 25-benzyloxy-26-benzoyloxy-27-butoxy-28-hydroxy-calix[4]arene (4b) was alkylated with 0.43 mL (0.60 g, 5.0 mmol) of allyl bromide and yielded 0.61 g (86%) of colorless crystals: mp 152–153 °C; ¹H NMR (CDCl₃) δ 6.37–7.72 (m, 17 H), 5.42–5.58 (m, 1 H), 4.69– 4.88 (m, 4 H), 4.00-4.17 (m, 4 H), 3.71-3.87 (m, 3 H), 3.56-3.62 (m, 1H), 3.38–3.49 (m, 2 H), 3.14 (d, 1 H, J = 13.2 Hz), 2.98 (d, 1 H, J = 13.2 Hz), 1.79-1.81 (m, 2 H), 1.46-1.56 (m, 2 H), 0.99 (t, 3 H, J = 7.4 Hz); ¹³C NMR (CDCl₃) δ 164.52 (C_q), 156.11 (C_q), 155.82 (C_q), 155.58 (C_q), 148.42 (C_q), 137.97 (C_q), 137.49 (CH), 136.98 (Cq), 133.94 (Cq), 133.65 (Cq), 133.38 (Cq), 133.24 (CH), 132.17 (Cq), 131.93 (CH), 131.78 (CH), 130.76 (CH), 130.69 (CH), 129.89 (CH), 129.82 (CH), 128.99 (CH), 128.87 (CH), 128.77 (CH), 128.26 (CH), 127.92 (CH), 127.78 (CH), 124.13 (CH), 122.87 (CH), 122.12 (CH), 121.75 (CH), 113.23 (CH₂), 76.25 (CH₂), 74.35 (CH₂), 73.72 (CH₂), 37.01 (CH₂), 32.51 (CH₂), 31.11 (CH₂), 31.01 (CH₂), 29.70 (CH₂), 19.47 (CH_2) , 14.01 (CH_3) ; FAB-MS m/z 715 $(M^+ + 1)$. Anal. Calcd for C₄₉H₄₆O₅: C, 82.32; H, 6.49. Anal. Calcd for C₄₉H₄₆O₅·1/₄H₂O: C, 81.81; H, 6.51. Found: C, 81.82; H, 6.54.

25-Allyloxy-26-benzoyloxy-27-benzyloxy-28-propoxycalix[4]arene (5d). A sample of 0.66 g (1.0 mmol) of 25-allyloxy-26-benzoyloxy-27-benzyloxy-28-hydroxycalix[4]arene (4c) was alkylated with 0.48 mL (0.84 g, 4.9 mmol) of n-propyl iodide and yielded 0.59 g (84%) of colorless crystals: mp 156-158 °C; ¹H NMR (CDCl₃) δ 6.40-7.76 (m, 22 H), 6.08-6.20 (m, 1 H), 5.29-5.39 (m, 2 H), 4.84, 4.66 (AB, 2 H, J = 10.9Hz), 4.19-4.21 (m, 1 H), 4.13-4.17 (3d, 3 H), 3.81 (bd, 2 H, J = 14.1 Hz), 3.45 (bd, 2 H, J = 13.8 Hz), 3.31-3.33 (m, 2 H), 3.04-3.14 (m, 2 H), 1.26-1.30 (m, 2 H), 0.52 (t, 3H, J = 7.6Hz); ¹³C NMR (CDCl₃) δ 164.29 (C_q), 156.44 (C_q), 155.24 (C_q), 154.98 (C_q), 148.15 (C_q), 137.13 (C_q), 136.42 (C_q), 134.23 (CH), 133.69 (C_q), 133.57 (CH), 133.18 (C_q), 132.92 (C_q), 131.81 (C_q), 131.56 (CH), 128.79 (CH), 128.71 (CH), 128.52 (CH), 128.44 (CH), 128.09 (CH), 127.71 (CH), 127.52 (CH), 122.39 (CH), 121.76 (CH), 116.99 (CH₂), 76.43 (CH₂), 75.06 (CH₂), 75.01 (CH₂), 36.70 (CH₂), 30.30 (CH₂), 30.27 (CH₂), 21.34 (CH₂), 8.81 (CH₃); FAB-MS m/z 701 (M⁺ + 1). Anal. Calcd for C₄₈H₄₄O₅: C, 82.26; H, 6.33. Anal. Calcd for C₄₈H₄₄O₅·¹/₄H₂O: C, 81.73; H, 6.36. Found: C, 81.87; H, 6.36.

General Procedure for 25,26,27-Trialkoxy-28-hydroxycalix[4]arenes 6a–d. A solution of 0.71 mmol of 25,26,27trialkoxy-28-benzoyloxycalix[4]arene (5a–d) in 10 mL of THF was added to a solution of 1.25 g of KOH in 5 mL of H_2O and 10 mL of EtOH, and the mixture was then refluxed for 4 h. The solvent was removed, and the residue was treated with CH₃OH to induce an off-white solid. Further recrystallization from CHCl₃ and CH₃OH afforded the corresponding hydrolysis products 6a–d.

25-Allyloxy-26-benzyloxy-27-hydroxy-28-propoxycalix-[4]arene (6a). A sample of 0.50 g (0.71 mmol) of 25-allyloxy-26-benzyloxy-27-benzoyloxy-28-propoxycalix[4]arene (5a) was subjected to hydrolysis and yielded 0.35 g (81%) of colorless crystals: mp 106-107 °C; ¹H NMR (CDCl₃) δ 7.45-7.48 (m, 2 H), 7.32-7.38 (m, 3 H), 6.38-7.30 (m, 12 H), 5.09 (s, 1 H), 4.78-4.99 (m, 4 H), 4.54-4.58 (m, 2 H), 4.31-4.44 (m, 4 H), 3.72-3.78 (m, 2 H), 3.07-3.33 (m, 4 H), 1.83-1.91 (m, 2 H), 1.18 (t, 3 H, J = 7.5 Hz); ¹³C NMR (CDCl₃) δ 155.85 (Cq), 154.20 (Cq), 154.07 (Cq), 153.27 (Cq), 137.29 (C_q) , 137.15 (C_q) , 136.23 (CH), 133.43 (C_q) , 133.34 (C_q) , 132.87 (C_q), 132.49 (C_q), 131.01 (C_q), 130.67 (C_q), 129.01 (CH), 128.58 (CH), 128.41 (CH), 128.31 (CH), 127.92 (CH), 127.85 (CH), 123.26 (CH), 123.21 (CH), 123.09 (CH), 119.20 (CH), 116.12 (CH₂), 77.44 (CH₂), 75.11 (CH₂), 31.35 (CH₂), 31.18 (CH2), 30.86 (CH2), 23.31 (CH2), 10.76 (CH3); FAB-MS m/z 597 $(M^+ + 1)$. Anal. Calcd for $C_{41}H_{40}O_4$: C, 82.52; H, 6.76. Anal. Calcd for $C_{41}H_{40}O_4 \cdot {}^{1}\!/_4H_2O$: C, 81.90; H, 6.79. Found: C, 82.08; H, 6.79.

25-Benzyloxy-27-butoxy-26-hydroxy-28-propoxycalix-[4]arene (6b). A sample of 0.40 g (0.56 mmol) of 25-benzyloxy-26-benzoyloxy-27-butoxy-28-propoxycalix[4]arene (5b) was subjected to hydrolysis and yielded 0.29 g (85%) of colorless crystals: mp 117–118 °C; ¹H NMR (CDCl₃) δ 7.50–7.52 (m, 2 H), 7.35-7.38 (m, 2 H), 6.36-7.17 (m, 12 H), 4.86, 4.74 (AB, 2 H, J = 10.9 Hz), 4.71 (s, 1 H), 4.32–4.45 (m, 4 H), 3.72–3.75 (m, 4 H), 3.17-3.30 (m, 4 H), 1.78-1.81 (m, 2 H), 1.52-1.63 (m, 2H), 1.41–1.49 (m, 2 H), 0.98 (t, 3 H, J = 7.3 Hz), 0.64 (t, 3 H, J = 7.5 Hz); ¹³C NMR (CDCl₃) δ 156.83 (C_q), 154.18 (C_q), 154.08 (C_q), 153.24 (C_q), 137.08 (C_q), 137.07 (C_q), 133.48 (C_q), 132.88 (C_q), 132.46 (C_q), 131.26 (C_q), 130.99 (C_q), 129.14 (C_q), 130.99 (C_q), 130.9 129.12 (C_q), 128.60 (CH), 128.43 (CH), 128.37 (CH), 128.00 (CH), 127.95 (CH), 127.89 (CH), 127.83 (CH), 127.80 (CH), 122.94 (CH), 119.31 (CH), 77.76 (CH₂), 76.59 (CH₂), 75.69 (CH2), 32.35 (CH2), 30.87 (CH2), 30.79 (CH2), 30.68 (CH2), 22.31 (CH₂), 19.59 (CH₂), 14.04 (CH₃), 9.39 (CH₃); FAB-MS m/z 613 $(M^+ + 1)$. Anal. Calcd for C₄₂H₄₄O₄: C, 82.32; H, 7.24. Found: C, 82.00; H, 7.44.

25-Allyloxy-26-benzyloxy-28-butoxy-27-hydroxycalix-[4]arene (6c). A sample of 0.30 g (0.42 mmol) of 25-allyloxy-26-benzyloxy-27-benzoyloxy-28-butoxycalix[4]arene (5c) was subjected to hydrolysis and yielded 0.21 g (81%) of colorless crystals: mp 114–116 °C; ¹H NMR (CDCl₃) δ 4.46–7.48 (m, 2 H), 7.34-7.39 (m, 3 H), 6.39-7.25 (m, 13 H), 5.05 (s, 1 H), 4.95-4.99 (m 2 H), 4.88, 4.82 (AB, 2 H, J = 11.3 Hz), 4.54-4.60 (m, 2 H), 4.32-4.44 (m, 4 H), 3.77-3.79 (m, 2 H), 3.08-3.33 (m, 4 H), 1.92-2.02 (m, 2 H), 1.52-1.54 (m, 2 H), 0.98 (t, 3 H, J = 7.4 Hz); ¹³C NMR (CDCl₃) δ 155.89 (C_q), 154.25 (C_q), 154.07 (C_q), 153.29 (C_q), 137.31 (CH), 137.28 (C_q), 137.16 (C_q), 136.29 (C_q), 133.43 (C_q), 133.35 (C_q), 132.89 (C_q), 132.51 (C_q), 131.01 (C_q), 130.65 (C_q), 129.03 (CH), 129.00 (CH), 128.60 (CH), 128.34 (CH), 127.95 (CH), 127.89 (CH), 127.87 (CH), 127.84 (CH), 123.12 (CH), 119.22 (CH), 116.02 (CH₂), 77.59 (CH₂), 75.84 (CH2), 75.13 (CH2), 32.22 (CH2), 31.34 (CH2), 31.16 (CH2), 30.86 (CH₂), 19.50 (CH₂), 14.03 (CH₃); FAB-MS m/z 611 (M⁺ + 1). Anal. Calcd for C₄₂H₄₂O₄: C, 82.59; H, 6.93. Found: C, 82.27; H, 6.93.

25-Allyloxy-27-benzyloxy-26-hydroxy-28-propoxycalix-[4]arene (6d). A sample of 0.61 g (0.87 mmol) of 25-allyloxy- $26\mbox{-benzoyloxy-27-benzyloxy-28-propoxycalix} [4] arene~({\bf 5d})~was$ subjected to hydrolysis and yielded 0.45 g (87%) of colorless crystals: mp 142-143 °C; ¹H NMR (CDCl₃) & 7.52-7.54 (m, 2 H), 7.38-7.40 (m, 3 H), 6.41-7.18 (m, 12 H), 6.08-6.22 (m, 1 H), 5.20-5.46 (m, 2 H), 4.87 (s, 1 H), 4.86, 4.76 (AB, 2 H, J =14.1 Hz), 4.32-4.45 (m, 6 H), 3.75 (t, 2 H, J = 8.5 Hz), 3.20-3.34 (m, 4 H), 1.86-2.14 (m, 2 H), 0.64 (t, 3 H, J = 7.5 Hz); ^{13}C NMR (CDCl₃) δ 156.82 (Cq), 154.03 (Cq), 153.83 (Cq), 153.25 (C_q) , 137.27 (C_q) , 137.00 (C_q) , 136.95 (C_q) , 133.97 (CH), 133.53 (C_q) , 132.83 (C_q) , 132.66 (C_q) , 131.10 (C_q) , 130.88 (C_q) , 129.11 (CH), 128.60 (CH), 128.43 (CH), 128.24 (CH), 128.02 (CH), 127.97 (CH), 127.90 (CH), 127.85 (CH), 123.33 (CH), 122.92 (CH), 119.30 (CH), 117.72 (CH2), 77.44 (CH2), 76.59 (CH2), 76.39 (CH₂), 30.98 (CH₂), 30.84 (CH₂), 22.32 (CH₂), 9.42 (CH₃); FAB-MS *m*/*z* 597 (M⁺ + 1). Anal. Calcd for C₄₁H₄₀O₄: C, 82.52; H, 6.76. Found: C, 82.57; H, 6.92.

General Procedure for 25,26,27,28-Tetraalkoxycalix [4]arenes 7a–c. A sample of 0.65 mmol of 25,26,27-trialkoxycalix[4]arene (**6a–c**), 0.06 g (2.5 mmol) of NaH, and an excess amount of alkyl halides was refluxed in 30 mL of CH₃CN for 1 h. The solvent was removed, and the crude product was recrystallized from CHCl₃ with a slow addition of CH₃-OH or *n*-hexane to yield the corresponding tetraalkoxy products 7a–c.

25-Allyloxy-26-benzyloxy-27-butoxy-28-propoxycalix-[4]arene (7a). A sample of 0.19 g (0.32 mmol) of 25-allyloxy-26-benzyloxy-27-hydroxy-28-propoxycalix[4]arene (6a) was alkylated with 0.18 mL (0.29 g, 1.6 mmol) of n-butyl iodide and yielded 0.16 g (76%) of colorless crystals: mp 90-91 °C; ¹H NMR (CDCl₃) δ 7.38–7.39 (m, 2 H), 7.24–7.26 (m, 3 H), 6.26– 6.82 (m, 13 H), 4.93-5.02 (m, 2 H), 4.75 (s, 2 H), 4.26, 4.44 (m, 6 H), 3.86 (t, 2 H, J = 8.0 Hz), 3.68 (t, 2 H, J = 7.1 Hz), 2.99-3.09 (m, 4 H), 1.74-1.87 (m, 4 H), 1.15-1.18 (m, 2 H), 0.97 (t, 3 H, J = 7.4 Hz), 0.79 (t, 3 H, J = 7.3 Hz); ¹³C NMR $\begin{array}{c} (CDCl_3) \ \delta \ 157.28 \ (C_q), \ 156.50 \ (C_q), \ 155.70 \ (C_q), \ 154.90 \ (C_q), \\ 137.79 \ (C_q), \ 136.50 \ (C_q), \ 136.45 \ (C_q), \ 136.23 \ (C_q), \ 136.12 \ (CH), \end{array}$ 134.20 (Cq), 134.09 (Cq), 133.92 (Cq), 129.09 (CH), 128.53 (CH), 128.41 (CH), 128.12 (CH), 127.84 (CH), 127.75 (CH), 127.72 (CH), 127.64 (CH), 127.61 (CH), 122.15 (CH), 121.82 (CH), 116.31 (CH₂), 76.79 (CH₂), 75.58 (CH₂), 74.73 (CH₂), 31.93 (CH₂), 31.21 (CH₂), 31.16 (CH₂), 31.05 (CH₂), 30.94 (CH₂), 23.44 (CH2), 19.01 (CH2), 14.03 (CH3), 10.70 (CH3); FAB-MS m/z 653 $(M^+ + 1)$. Anal. Calcd for $C_{45}H_{48}O_4$: C, 82.79; H, 7.41. Anal. Calcd for C45H48O4 ·1/2H2O: C, 81.66; H, 7.46. Found: C, 81.34; H, 7.56

25-Allyloxy-26-benzyloxy-28-butoxy-27-propoxycalix-[4]arene (7b). Method A. From 25-Benzyloxy-27-butoxy-26-hydroxy-28-propoxycalix[4]arene (6b). A sample of 0.40 g (0.65 mmol) of 25-benzyloxy-27-butoxy-26-hydroxy-28propoxycalix[4]arene (6b) was alkylated with 0.17 mL (0.24 g, 2.0 mmol) of allyl bromide and yielded 0.29 g (67%) of colorless crystals: mp 62-63 °C; ¹H NMR (CDCl₃) & 7.45-7.46 (m, 2 H), 7.34-7.37 (m, 3 H), 6.31-6.89 (m, 13 H), 4.96-5.08 (m, 2 H), 4.83 (bd, 2 H), 4.32-4.45 (m, 6 H), 3.78-3.92 (m, 4 H), 3.10-3.17 (m, 4 H), 1.81-1.88 (m, 4 H), 1.49-1.51 (m, 2 H), 0.98 (t, 3 H, J = 7.4 Hz), 0.81 (t, 3 H, J = 7.4 Hz); ¹³C NMR (CDCl₃) δ 156.97 (C_q), 156.28 (C_q), 155.51 (C_q), 154.58 (C_q), 137.49 (CH), 136.19 (C_q), 136.14 (C_q), 135.93 (C_q), 135.87 (C_q) , 134.02 (C_q) , 133.90 (C_q) , 133.73 (C_q) , 128.92 (CH), 128.28 (CH), 128.22 (CH), 128.15 (CH), 127.84 (CH), 127.59 (CH), 127.52 (CH), 127.45 (CH), 127.40 (CH), 121.90 (CH), 121.67 (CH), 116.05 (CH₂), 76.32 (CH₂), 76.20 (CH₂), 75.37 (CH₂), 74.62 (CH2), 32.10 (CH2), 30.93 (CH2), 30.87 (CH2), 30.81 (CH2), 30.68 (CH₂), 22.77 (CH₂), 19.17 (CH₂), 13.79 (CH₃), 9.65 (CH₃); FAB-MS m/z 653 (M⁺ + 1). Anal. Calcd for C₄₅H₄₈O₄: C, 82.79; H, 7.41. Anal. Calcd for $C_{45}H_{48}O_4 \cdot 1/_4CH_3OH$: C, 82.27; H, 7.42. Found: C, 82.46; H, 7.53.

If the recrystallization of compound **7b** was carried out in CHCl₃ and *n*-hexane, the resulting crystals melted at 88–89 °C and the elemental analysis had a value of C, 82.78 and H, 7.81. (Anal. Calcd for $C_{45}H_{48}O_4 \cdot {}^1/_4C_6H_{14}$: C, 82.81; H, 7.70.)¹⁶

Method B. From 25-allyloxy-26-benzyloxy-28-butoxy-27-hydroxycalix[4]arene (6c). A sample of 0.10 g (0.16 mmol) of 25-allyloxy-26-benzyloxy-28-butoxy-27-hydroxy-calix-[4]arene (**6c**) was alkylated with 0.11 mL (0.20 g, 1.6 mmol) of *n*-propyl iodide and yielded 0.06 g (54%) of colorless crystals, which were identical in physical and spectral properties with the product **7b** afforded in method A.

25-Allyloxy-27-benzyloxy-26-butoxy-28-propoxycalix-[4]arene (7c).¹⁴ A sample of 0.30 g (0.50 mmol) of 25-allyloxy-27-benzyloxy-26-hydroxy-28-propoxycalix[4]arene (6d) was alkylated with 0.28 mL (0.49 g, 2.9 mmol) of n-propyl iodide and yielded 0.28 g (85%) of colorless crystals: mp 82-83 °C; ¹H NMR (CDCl₃) δ 7.37–7.39 (m, 2 H), 7.33–7.34 (m, 3 H), 6.32– 6.70 (m, 13 H), 5.12-5.24 (m, 2 H), 4.99 (s, 2 H), 4.30, 4.53 (m, 6 H), 3.74-3.79 (m, 4 H), 3.06-3.18 (m, 4 H), 1.81-1.84 (m, 4 H), 1.32-1.40 (m, 2 H), 0.90-0.96 (m, 6 H); ¹³C NMR $(CDCl_3) \delta 156.87 (C_q), 156.81 (C_q), 156.44 (C_q), 155.96 (C_q),$ 138.39 (C_q), 136.38 (C_q), 136.19 (CH), 136.15 (C_q), 136.12 (C_q), 135.31 (Cq), 135.13 (Cq), 130.12 (CH), 128.77 (CH), 128.66 (CH), 128.46 (CH), 128.43 (CH), 128.40 (CH), 128.38 (CH), 128.36 (CH), 128.27 (CH), 122.66 (CH), 122.62 (CH), 122.38 (CH), 117.04 (CH2), 77.17 (CH2), 76.89 (CH2), 76.10 (CH2), 75.39 (CH₂), 32.51 (CH₂), 31.67 (CH₂), 31.54 (CH₂), 23.60 (CH₂), 19.69 (CH₂), 14.51 (CH₃), 10.73 (CH₃); FAB-MS m/z 653 (M⁺ + 1). Anal. Calcd for C₄₅H₄₈O₄: C, 82.79; H, 7.41. Found: C, 82.77; H, 7.59.

Acknowledgment. Financial support of this work from the National Science Council of the Republic of China (Grant NSC-86-2113-M034-002 and NSC-87-2113-M-009-002) is gratefully acknowledged.

Supporting Information Available: NMR spectra for **2f**, **3e**, **4c**, **5d**, **6d**, and **7c** and an ORTEP diagram. This material is available free of charge via the Internet at http://pubs.acs.org.

JO981648L

⁽¹⁶⁾ A different crystal structure was formed when compound **7b** was crystallized from different solvent-pair systems (e.g., CHCl₃ and CH₃OH, or CHCl₃ and *n*-hexane); consequently, a different melting point was also observed. We speculated that the different crystal structures of compound **7b** was caused by the inclusion of different solvent molecules such as CH₃OH or *n*-hexane into the same cavity.