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SUMMARY

Drug absorption in the human body depends on the dissolution rate of the drug. Suitable dissolution
characteristics are important to ensure that the drug will achieve the desired therapeutic effects. To assess the
similarity of dissolution rates of several drug lots, we apply a general growth curve model with different
covariance structures. The Box—Cox power transformation and the naive log transformation are applied to
a function of the dissolution rate. The predictive sample-reuse, or cross-validation, method is employed in
selecting an appropriate model with best predictive accuracy. A testing procedure for examining the
similarity among the drug lots is also conducted. A partially Bayesian approach is used for the assessment of
dissolution equivalence. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

The United States Food and Drug Administration (FDA) regulation requires dissolution testing,
when applicable, to confirm that the dissolution profile is consistent with the product which
formed the basis of new drug application (NDA) approval. Such a requirement is to be met when
a new lot is produced as well as during the shelf life stability estimation. The dissolution testing
apparatus is typically constructed so that dissolution testing may be performed on sampling units
of six tablets or capsules simultaneously. The dissolution value of an active ingredient is measured
at various predetermined time intervals to perform a dissolution profile analysis. For immediate
release drug products that dissolve almost completely within 30 minutes, the specification is
typically verified with the average dissolution value, plus or minus 2 to 3 standard deviations, at
15 or 30 minutes of the tested tablets of initial batches. For drug products that have slower
dissolution rates, the dissolution profile is determined by dissolution values at multiple time
points. The specifications of the sampling acceptance criteria are published in the U.S. Pharmaco-
poeia (USP) and are often used by the pharmaceutical industry as the standard for the innovative
and generic drug products.

For the drug dissolution data, as given in Table I, for each tablet, the dissolution rates have
been measured at seven time points: 1, 2, 3, 4, 6, 8 and 10 minutes. Our interest is to compare the
dissolution curves between the test lot and the standard lots.



Table I. Dissolution rates of test and standard lots

Time point 1 2 3 4 5 6 7

Lot 1 50 56 68 73 80 86 87
43 48 65 71 77 85 92
44 54 63 67 74 81 82
48 56 64 70 81 84 93
45 56 63 69 76 81 83
46 57 64 67 76 79 85
42 56 62 67 73 81 88
44 54 60 65 72 77 83
38 46 54 58 66 70 76
46 55 63 65 73 80 85
47 55 62 67 76 81 85
48 55 62 66 73 78 85

Lot 2 48 57 67 73 80 85 87
47 58 65 71 75 82 87
45 52 61 66 73 81 84
37 51 60 71 81 84 91
43 56 63 69 76 81 85
48 56 64 65 73 79 82
36 49 61 67 73 81 81
41 54 61 65 70 77 82
38 41 54 58 64 70 77
45 55 61 65 72 80 83
48 55 63 67 74 81 83
44 55 61 66 74 78 82

Lot 3 47 56 67 73 81 86 88
45 46 65 73 77 81 90
45 54 62 67 74 81 81
35 46 59 70 81 84 90
48 51 63 68 74 81 83
48 52 64 67 72 79 87
46 51 62 63 73 81 84
46 54 61 65 72 75 86
38 46 54 58 66 70 76
41 55 61 65 76 80 86
42 55 62 65 76 85 85
48 51 62 63 74 78 84

Test Lot 34 45 61 66 75 85 91
36 51 62 67 83 85 93
37 48 60 69 76 84 91
35 51 63 61 79 82 88
36 49 62 68 79 81 89
37 52 65 73 82 93 95
39 51 61 69 77 85 93
38 49 63 66 79 84 90
35 51 61 67 80 88 96
37 49 61 68 79 91 91
37 51 63 71 83 89 94
37 54 64 70 80 90 93
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For multiple time-point dissolution specifications the conventional application is to apply the
USP plan independently at each individual time point. This approach does not take into account
the correlations among dissolution rates at various time points. Chen and Tsong1 proposed using
multivariate confidence regions of the dissolution values at each time point. However, they failed
to take into consideration the fact that dissolution rate changes with time.

For extended release drug products, the dissolution profile for the whole time course is often of
interest; thus, it may be preferable to establish the specifications based on the dissolution curve
which is a function of time. This paper proposes a growth curve coupled with the Box—Cox
transformation to model the dissolution curves. The proposed methods are based on a regression
model for the dissolution rates with the time of observations as the independent variable. Also,
the Box—Cox transformation will help enhance the validity of the model assumptions. Two
methods are proposed for the lot acceptance. One is based on the confidence region of the
coefficients of the fitted dissolution curve. The other is based on the likelihood ratio test when the
covariance matrix is arbitrary positive definite. A partially Bayesian approach for the assessment
of dissolution equivalence is also given.

2. EXAMPLE

The data given in Table I are the dissolution rates of three standard lots and one test lot. For each
lot, there are twelve tablets and for each tablet the dissolution rates are measured at seven time
points: 1, 2, 3, 4, 6, 8 and 10 minutes. Our interest is to compare the dissolution curves between the
test lot and the standard lots. The dissolution function F (t) of a drug is defined to be the
percentage of a tablet that has dissolved at time t, and R(t) is defined by F (t)/(1!F(t)). Since
0)F(t))1, and R(t)*0, both ranges are not the entire real line. It may cause the out of range
problem when we model them directly. We will therefore consider applying the Box—Cox and log
transformations to R(t) which will avoid the above problem.

To find an appropriate drug dissolution profile curve from the standard lots, scatter plots of
log R(t) in Figure 1 show that it is not a simple linear function of time t. There are two possible
change points at time 3 and time 6, because the slopes of the curves change significantly at these
two time points. Plot of F(t) and R(t) give somewhat clearer pictures of the non-linear relation-
ships.

Hence, for each lot, a piecewise linear regression model for the drug dissolution profile curve
seems to be more appropriate for this data set. This can be handled by the well-known growth
curve model of Potthoff and Roy.2 Also the famous Box—Cox transformation is useful for this
type of data, as explained later. Thus, in order to model the drug dissolution profile curve
properly, we will use the growth curve model with the Box—Cox transformation which will be
discussed in Section 3. The proposed model will handle this type of data nicely.

3. METHODS

We will next discuss some methods for dealing with the drug dissolution data as shown in Table I.

3.1. Modelling the Dissolution Curve

From Figure 1, it is clear that log F/(1!F) is not quite linear, but piecewise linear, in time. The
famous Box—Cox transformation applied to F/(1!F) will help achieve the linearity property. It
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Figure 1. Plots of dissolution, dissolution ratio, and log dissolution ratio curves
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is noted that the Box—Cox transformation will include the log transformation as a special case.
For this reason, we apply the Box—Cox transformation to the growth curve model. More
specifically, let ½

ij
be a function of observed drug dissolution rate at the ith time for the jth tablet.

The Box—Cox transformation of ½
ij

is defined as

½(j)
ij

"G
(Yij`v)j~1

j
log(½

ij
#v)

if jO0

if j"0
(1)

where v is a known constant such that ½
ij
#v'0.

If ½ (j)
ij

is a linear or piecewise linear function of time, then putting in a matrix form,
½(j)"(½(j)

1
, ½(j)

2
,2 , ½ (j)

N
), where ½ (j)

j
"(½ (j)

1j
, ½(j)

2j
,2, ½(j)

pj
)@, can be represented as a growth

curve model defined in (2) of the Appendix.
With regard to the covariance matrix &, specified in (2), due to the lack of any structural

information, we will assume & being either arbitrary positive definite, which is the most general
situation, or with an AR(1) dependence, which will usually be a useful first approximation for
somewhat short and serially observed data.

3.2. Parameter Estimation

For the general growth curve model as specified in (2), the maximum likelihood estimates of the
parameters q, & and j when & is assumed arbitrary positive definite and q, o, p2 and j when & is
assumed to have an AR(1) dependence are given in the Appendix. The computations involved are
relatively simple and should present no difficulty in practice.

3.3. Model Selection

In this subsection we will address the issue of the model selection with respect to the covariance
matrix &. As noted earlier, we assume two covariance structures for &, one being arbitrary
positive definite and the other being an AR(1) dependence. The likelihood ratio test and
a predictive accuracy procedure are discussed here.

Lee3 proposed a likelihood ratio test procedure for testing AR(1) covariance structure, that is,

H
0
:&"p2C versus H

1
:& is arbitrary positive definite

where C"(oD i~j D).
Under H

0
, we have !2 ln"&s2

v
, as NPR, where v"p(p`1)

2
!2 and " is the likelihood ratio

statistic as defined in (5).
The statistic, as given in (5), is easy to compute because it involves only simple matrix

computations which are available in most software such as SAS and S-plus. However, acceptance
of a certain null hypothesis does not mean that other hypotheses are not suitable for the data.
Alternatively, a conditional prediction approach via the predictive sample reuse (PSR) method of
Geisser4 can be used for selecting an appropriate model for the growth curve data. We will next
discuss the conditional prediction for the general growth curve model.

After observing the sample ½, some partial observations on », namely »(1), are also at hand,
and our interest is in predicting »(2) given ½ and »(1) where

»"A
»(1)

»(2)B ,

» is p]1, »(i) is p
i
]1 and p

1
#p

2
"p.

Lee and Geisser5 suggested the predictor »K (2) of »(2) as given in (6).
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In order to select an appropriate covariance structure of &, we can utilize the observed sample
½ to do the conditional prediction of »(2) given »(1) repeatedly in the following manner. Let
½"(½

1
,2, ½

N
) and ½

i
"(½(1){

i
, ½(2){

i
)@ where ½(1)

i
is p

1
]1 and ½(2)

i
is p

2
]1. In the PSR method,

½(2)
i

is treated as the unobserved portion of the ‘future’ vector »(2) and ½(1)
i

the partially observed
portion. ½(2)

i
is then predicted using (6) with the sample ½

(i)
"(½

1
, ½

2
,2 , ½

i~1
, ½

i`1
,2 , ½

N
).

Thus, each vector ½
j
is included in the sample N!1 times in the prediction process, and hence the

procedure is called the PSR method.
The discrepancy measure by the PSR method is defined by the mean absolute relative deviation

(MARD) of the predicted values »K (2) from the actual observation »(2), defined as

1
p2N

&N
i/1

&p
j/p1`1

D(»(2)
ij
Y !»(2)

ij
)/»(2)

ij
D. The selected model corresponds to the minimum MARD.

This procedure is a data analytic aparametric method which simulates the predictive process
within the sample, given a complete lack of any distributional assumption. It can also be applied
to any number of competing models, nested or not. One drawback is computer-consumed. For
further details, please refer to Lee3 and Keramidas and Lee.6

3.4. Testing Equality of Mean Functions when R is Arbitrary Positive Definite

When an appropriate model is chosen, there are two types of problems to be investigated. One is
the one sample problem, the other is the r samples problem for r*2. The procedures, adapted
from Khatri7 and given in the Appendix, are based on the likelihood ratio criterion when the
covariance matrix & is arbitrary positive definite.

The one sample test is for testing the hypothesis, H
0
: s"s

0
, versus H

1
: sOs

0
, and we use the

statistic Q(q
0
) as given in (7).

The r sample test is designed for testing that the r mean functions are similar, that is,

H
0
: sD"0, versus H

1
: sDO0

where s"(q
1
, q

2
,2 , q

r
) and

D
r]q

"A
1 0 2 0

!1 1 0 F

0 !1 } 0

F 0 } 1

0 2 0 !1B .

We will use the statistic Q(qD"0), as given in (9), and the critical values are given in Krishnaiah
and Lee.8

3.5. Dissolution Equivalence

We next consider testing the null hypothesis H
0
"Mh"(b, b

0
, &) : D b

i
!b

0, i
D'dDb

0, i
D for some

iN versus the alternative hypothesis H
1
"Mh"(b, b

0
, &) : D b

i
!b

0, i
D)dDb

0, i
D for all iN, where

b and b
0

are m]1 mean vectors, d is a real number between 0 and 1, and & is a p]p covariance
matrix. It is noted that 100d per cent is the percentage of the relative difference between b

i
and

b
0, i

. The equivalence between the test and standard lots is concluded if H
1

is accepted. The
purpose is to find the likelihood function of H

0
, ¸ (H

0
), versus that of H

1
, ¸ (H

1
). The main idea is
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to use the averaging as follows:

¸(H
0
)"P

R1

¸ (h, x)n
1
(h) d(h)

¸(H
1
)"P

R2

¸ (h, x)n
2
(h) d(h)

where R
1
LH

0
, R

2
LH

1
, n

1
is a probability measure on R

1
, and n

2
is a probability measure on

R
2
. Thus the problem boils down to the choosing of R

1
, R

2
, n

1
and n

2
. From the idea of average

likelihood,9 we will choose n
i
(h)d(h)JD& D

p`1
2 d (&~1)d(b

0
)d(b) for i"1, 2. Since the range of b in

H
1
is bounded, usually we can choose R

2
to be H

1
, but the range of b in H

0
is unbounded, and we

will have some trouble. From simulation, we suggest choosing R
1
"Mh"(b, &) : D b

i
!bK

0, i
D

)a D bK
0, i

D for all iN where ‘a’ satisfies Volume(Mb : D b
i
!bK

0, i
D)a D bK

0, i
DN!Mb : D b

i
!bK

0, i
D)

d DbK
0, i

DN)"VolumeMb : D b
i
!bK

i
D)d DbK

i
DN) and is close to 21@m in general. Therefore we can

calculate the likelihood functions ¸(H
0
) and ¸ (H

1
), and the Bayes factor"L(H0)

L(H1)
. The equivalence

is established if the Bayes factor is less than 1. If we have some priors n (H
0
) and n (H

1
) on H

0
and

H
1
, we can easily get the posterior odds, L(H0)n(H0)

L(H1)n(H1)
, and then use this odds to perform the test.

4. RESULTS

In this section we will apply the results of the previous section to the drug dissolution data in
Section 1. As discussed in Section 2, both Box—Cox and the log transformations will be
considered for this data set. It is noted that both transformations, when applied to R(t) for the
pooled data, can stabilize the variance, as shown in Table II. Also, since there are two possible
change points at time 3 and time 6, the design matrix X for the growth curve model is

X"A
1 1 1 1 1 1 1

1 2 3 3 3 3 3

0 0 0 1 3 5 5

0 0 0 0 0 0 2B
@

,

and the model can be written as ½
ij
"b

0
#b

1
x
1
#b

2
x
2
#b

3
x
3
#e

i,j
, for i"1,2 , p;

j"1,2, N,

x
1
"G

t

3

for 0)x
1
(3

x
1
*3

, x
2
"G

0 for x
2
(3

t!3 3)x
2
(8

5 x
2
*8

, x
3
"G

0 for x
3
(8

t!8 8)x
3
(10

2 x
3
*10

and ½
ij

could be F (t), R(t), or Box—Cox transformed F(t) (or R(t)) at the ith time point for jth
tablet.

To compare the Box—Cox and log transformations, the prediction performance of the predictor
as given in (6), in terms of MARD, as described in Section 3.3, is considered. Sine p

2
has to be

specified in the prediction of »(2), a simulation of prediction performance for data generated from
the AR(1) dependence structure (N"12, p"7, m"4) with 300 replications is conducted and
reported in Table III. When p

2
)4, the mean of the difference in MARDs between arbitrary

positive definite covariance matrix and AR(1) covariance matrix is more than seven times of the
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Table II. Sample variances for different transformations of R(t) for pooled data

Time point 1 2 3 4 5 6 7

R(t) 0)015 0)028 0)044 0)124 0)413 0)937 4)851
log R (t) 0)026 0)026 0)018 0)031 0)045 0)059 0)105
power (0)7) 0)017 0)027 0)033 0)081 0)210 0)402 1)487

Powers
(jK

1
, jK

2
, jK

3
)* 0)029 0)026 0)015 0)015 0)014 0)018 0)020

*jK
1
"!0)179 is applied to time points 1, 2 and 3

jK
2
"!0)553 is applied to time points 4 and 5

jK
1
"!0)459 is applied to time points 6 and 7

Table III. Prediction performance for data generated from AR(1) structure with 300 replications*

MARD »
7

»
6
—»

7
»
5
—»

7
»
4
—»

7
»
3
—»

7
»
2
—»

7
»
1
—»

7

ar1 0)063 0)080 0)102 0)162 0)325 0)768 2)125
arb 0)102 0)117 0)134 0)199 0)351 0)815 2)158
arb-ar1 0)039 0)037 0)031 0)037 0)026 0)046 0)033
SE of (arb-ar1) 0)002 0)002 0)001 0)005 0)009 0)021 0)047
% of (arb-ab1'0) 0)91 0)95 0)93 0)92 0)81 0)74 0)54

*»
j
—»

7
denotes the last 7!j#1 values of »

corresponding standard error (SE). It is therefore safe to claim that the predictive performance for
the AR(1) covariance matrix is better. Also, the percentage that the AR(1) covariance perfor-
mance is better is at least 91 per cent.

From the simulation results given in Table III, it is reasonable to set p
2
"1, 2, 3, 4 in the

conditional prediction process. Furthermore, for the likelihood ratio test statistic (8) with
a"0)05 the acceptance rate reaches only 63 per cent which is much less than the theoretical rate
of 95 per cent. Thus, the likelihood ratio test could give a misleading result in small samples.

The comparison in prediction performance using both transformations is summarized in
Table IV and Figure 2. The Box—Cox transformation always gives smaller MARDs than the log
transformation for three standard lots. This is true for both arbitrary positive definite and AR(1)
covariance matrices. However, since their differences are quite small and the log R(t) is easier to
compute and interpret, the following analyses are based on this transformation.

Pooled data always contains more information than single lots if they came from the same
population. Furthermore, the three standard lots have similar performance and similar scatter
plots. Thus, the comparison of predictive performance is considered for both pooled data and
single lots. The pooled data are used to estimate the parameters and then to compute the MARD
for each lot. Table V and Figure 3 summarize the prediction results. The performances of pooled
data are always better than those of individual lots. Moreover, the arbitrary positive definite
covariance matrix has better performance than the AR(1) covariance. Hence, the three single lots
are combined for analyses and arbitrary positive definite covariance is selected as the covariance
structure.
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Table IV. Prediction performance of different models*

Drug data & Transformation MARD (0)1%)

»
7

»
6
—»

7
»
5
—»

7
»
4
—»

7

Lot 1 arbitrary log 83)4 47)9 32)0 31)5
positive definite power 80)5 46)9 31)3 29)2

AR(1) log 28)9 29)8 27)1 30)0
power 27)7 29)4 25)8 26)9

Lot 2 arbitrary log 41)2 29)4 29)1 38)4
positive definite power 39)2 28)3 25)7 36)8

AR(1) log 16)6 17)4 22)0 30)1
power 16)9 16)7 19)9 27)4

Lot 3 arbitrary log 41)0 36)2 35)4 30)9
positive definite power 40)9 34)6 32)5 29)4

AR(1) log 34)7 30)4 34)4 38)4
power 35)1 30)4 34)9 38)6

* »
j
—»

7
denotes the last 7!j#1 values of »

Next, the testing procedures discussed in Section 3.4 are applied to the drug dissolution data
for testing four hypotheses. The q estimates are given in Table VI.

The first test is a one sample test. The purpose is to check if the mean function of a test lot is
equal to the standard which is assumed known. Here we use all three standard lots as the
standard. By applying (8) with m"4, N"12, p"7, q

0
"(!0)575, 0)357, 0)180, 0)143)@,

qL"(!1)069, 0)519, 0)275, 0)283)@, we have the statistic F
1
"55)35'F

4,5
(0)95)"5)19. We

conclude that the test lot’s mean function is not equal to the standard.
Another test is a two sample test which is a comparison between test lot and the combined

standard lots. Here both mean functions have to be estimated. Applying (9) and (10) with
D"(1,!1)@, we have, under H

0
, Q(qD"0)&º

1,4,40
and the statistic F

2
"30)63'

F
4,40

(0)95)"2)61. The null hypothesis is rejected at the 5 per cent level, which means the test lot
does not meet the specification.

The third test is a four sample test which compares the test lot with the three standard lots.
Applying (9) with

D"A
1 0 0

!1 1 0

0 !1 1

0 0 !1B ,

we have, under H
0
, Q (qD"0)&º

3,4,42
. Comparing with the critical value given in Krishnaiah

and Lee,8 we reject the null hypothesis at the 5 per cent level, which means that the test lot is
different from the three standard lots.

The last test is a test of homogeneity among the three standard lots. Here, q"2, N"36, r"3,
p"7, m"4 and the estimates of the three mean functions are qL

1
"(!0)564, 0)362, 0)179, 0)174)@,
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Figure 2. Comparison of predictive performance without pooled information
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Table V. Prediction performance of different models with pooled data and log
transformation

Drug data & MARD (0)1%)

»
7

»
6
—»

7
»
5
—»

7
»
4
—»

7

Lot 1 arbitrary 31)5 21)1 20)1 23)3
AR(1) 25)2 26)4 24)5 27)8

Lot 2 arbitrary 20)2 16)9 21)3 28)1
AR(1) 23)6 21)4 24)4 30)7

Lot arbitrary 23)5 22)4 29)8 24)3
AR(1) 31)2 25)3 29)5 33)7

* »
j
—»

7
denotes the last 7!j#1 values of »

qL
2
"(!0)570, 0)348, 0)171, 0)112)@, qL

3
"(!0)606, 0)365, 0)193, 0)118)@. Under H

0
, Q(qC)&º

4,2,30
.

The statistic Q"0)82, and the statistic F
3
"0)704(F

8,54
(0)95)"2)097. Thus the null

hypothesis is accepted at the 5 per cent level, which means that the three standard lots are
similar.

Finally, the equivalence between the test lot and the three standard lots is performed when d is
set to be 0)2. We found that the posterior odds is about 4 with n(H

0
)"n (H

1
)"1

2
. We thus

conclude that they are not equivalent.

5. DISCUSSION

The variance of the dissolution ratio, R(t), increases with time. There are two methods to handle
this situation. One is to model covariance structure allowing for different variances correspond-
ing to different measurement times or model the variance as an increasing function of time. The
other is to transform it to achieve stability, then use some simple structure to model the
transformed series, for example AR(1) or uniform etc. Here we adopted the transformation
method. Since the log transformation is a special case of the Box—Cox transformation defined in
(1), the global maximum likelihood estimate of j should be close to 0 if log function gives a better
performance. However, the estimate of j from our analysis is about 0)7, and the variance is not
very stable as time increases, especially in the last measurement. If the time is cut into three pieces,
1—3, 4—6, 8—10, just as in the design matrix in the beginning of the previous section, and the
Box—Cox transformation is applied to the three pieces separately, the variances are more stabler
and the estimates of the three power transformation parameters are (!0)179,!0)553,!0)458),
respectively. However, the prediction performance is not better, perhaps due to the increase
in the number of parameters by two. Another question is the model selection. Table III compares
the prediction performance in terms of MARD. It is clear that the conditional prediction
approach is reasonable for p

2
)4. It is also more appropriate than the likelihood ratio test.

However, when the number of measurement, p, changes, p
2
also changes. It is not clear what is an

appropriate p
2

in general. Our suggestion is to do simulation to get some clues regarding the size
of p

2
.
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Figure 3. Comparison of predictive performance with pooled information
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Table VI. q estimates for each batch

qL Intercept a
1

a
2

a
3

Lot 1 !0)564 0)362 0)179 0)174
Standard error 0)126 0)033 0)021 0)113
Lot 2 !0)570 0)348 0)171 0)112
Standard error 0)180 0)045 0)020 0)054
Lot 3 !0)606 0)365 0)193 0)118
Standard error 0)129 0)043 0)036 0)091
Combined losts (1—3 lots) !0)575 0)357 0)180 0)143
Standard error 0)169 0)046 0)030 0)094
Test lot !1)069 0)519 0)275 0)283
Standard merror 0)073 0)030 0)032 0)105

APPENDIX: SOME DETAILS OF THE GENERAL GROWTH CURVE MODEL

Let

½(j)"XqA#e (2)

where q"(q
1
, q

2
,2 , q

r
) with q

i
representing the ith group’s mean function parameters, r is the

number of group, X is a known p]m design matrix characterizing the type of polynomial for the
regression function and A a group indicator matrix. The ranks of X and A are m(p and r(n,
respectively. Also, N"N

1
#N

2
#2#N

r
, where N

i
is the number of vector observations in the

ith group. For example, if there is only one group, and the mean function is linear in time, then

X"A
1,

t
1
,

1,

t
2
,
2,

2,

1

t
p
B
@

and A"(1, 1,2 , 1). If there are two groups, with N
1

of them in group 1 and N
2

in group 2, then

A"A
1,2, 1,

0,2, 0,

0,2 , 0

1,2 , 1B ,

that is, there are N
1

(1, 0)@s and N
2

(0, 1)@s in A. Furthermore, e"(e
1
,2 , e

N
), where e

i
are

identically and independently distributed as N(0, &). The covariance matrix & can be arbitrary
positive definite or with some structures. Also, v"0 if ½@

ij
s are positive. For the general growth

curve model as given in (2), it is an extension of the growth curve model of Potthoff and Roy,2
having the Box—Cox transformation applied to the observation matrix ½.

The maximum likelihood estimates of j, q, & are given below:

qL (&ª )"(X@&ª ~1X)~1X@&ª ~1½(jª )A@ (AA@)~1

and jK , &ª maximize the profile likelihood function

¸
.!9

(j, &)"D & D~
N
2 expM!1

2
tr(X@&~1X)~1X@&~1S

Y
&~1X

!1
2
tr(Z@&Z)~1Z@½(j)½(j){ZN]<

i, j

(½
ij
)(j~1).

The above representation is useful when & has a certain structure.
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When & is assumed arbitrary positive definite, the maximum likelihood estimates of q and & are

qL"(X@S~1X)~1X@S~1½(jK )A@(AA@)~1

&ª "N~1(½(jK )!XqL A) (½(jª )!XqL A)@ (3)

S"½(jK ) (I!A@ (AA@)~1A)½(jª )@

and jK is obtained by maximizing the log profile likelihood function

l
.!9

(j)"!

N

2
log D&ª (j) D#(j!1) )+

i, j

log(½
ij
). (4)

It is noted that j can assume different values for different time intervals and (4) can be modified by
writing the second term as a sum of several j, that is, +k

a/1
(j

a
!1)&

i, j
log(½

ij
), if there are

k intervals with k different values of j.
For the AR(1) covariance structure, &"p2C, C"(oD i~j D), Keramidas and Lee10 showed that

the maximum likelihood estimates of q, p and j are given by

qL"(X@CK ~1X)~1X@CK ~1½(jK )A@(AA@)~1

pL 2"
1

pN
(tr(X@CK ~1X)~1X@CK ~1SCK ~1X#tr(Z@CK Z)~1Z@½(jK )½(jK ){Z)

where Z is a p](p!m) matrix with rank p!m such that X@Z"0, CK "(oL D i~j D) and oL , jK are
obtained by maximizing the log profile likelihood function

l
.!9

(o, j)"!

pN

2
log pL 2(o, j)!

N (p!1)

2
log(1!o2)#(j!1) +

i,j

log(½
ij
).

Comments regarding the j values for (4) are also applied here when there are different values of
j for different time intervals.

The likelihood ratio criterion for testing AR(1) versus positive definite & is

""N~
pN
2 (p2Y (o))

~pN
2 (1!o2)

~N(p~1)
2 D(B@Z) D~N DZ@½½@Z D

N
2 DX@S~1X D~

N
2 (5)

with B"(X@X)~1X@.
The conditional predictor of »(2) given »(1) is

»K (2)"X(2)qL F#&ª
21

&ª ~1
11

(»(1)!X(1)qL F) (6)
where

X"A
X(1)

p1]m
X(2)

p2]m
B

F is a known r]1 group indicator vector, qL and

&ª "A
&ª
11

&ª
21

&ª
12

&ª
22
B

are the maximum likelihood estimates of q and &.
We next consider some testing problem for the Potthoff and Roy2 in which no Box—Cox

transformation is applied to the observation matrix ½. In order to test the null hypothe-
sis H

0
: q"q

0
against the alternative hypothesis H

1
: qOq

0
, Khatri7 showed that for general r,
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under H
0

Q(q
0
)"

D (X@S~1X)~1 D
D (X@S~1X)~1#(q!q

0
)G(q!qL

0
)@ D
&º

m,r,N~r~p`m
(7)

where G"AA@!A½@Z(Z@½½@Z)~1Z@½@A@, qL and S are given in (3) with ½(jK ) replaced by ½.
When r"1, the test statistic becomes

F
1
"

N!p

m
G (qL!q

0
)@(X@S~1X) (qL!q

0
)&F

m,N~p
. (8)

As for the r sample test, we have, under H
0

Q(qD"0)"
D (X@S~1X)~1 D

D (X @S~1X)~1#qL D(D@G~1D)~1D@qL @ D
&º

m,k,N~r~p`m
(9)

where G~1"(AA@)~1#(AA@)~1A½@Z (Z@SZ)~1Z@½A@ (AA@)~1.
When m"1, 2 or q"1, 2, special results are available, see Anderson.11 For example, when

q"1

F
2
"A

1

º
1,m,N~1~p

!1B]
N!1!p

m
&F

m,N~1~p
. (10)

When q"2

F
3
"

(1!Jº
m,2,n

)

Jº
m,2,n

]
n!1!m

m
&F

2m,2(n`1~m)
.

For the situation where special results are not available, we can use the following approximation:

F
4
"!GN!r!p#m!

1

2
(m!q#1)H log(Q)/s2(0)95)

by Pearson’s type I distribution. The critical values are given in Krishnaiah and Lee.8
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