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Application of Neural Fuzzy Network to
Pyrometer Correction and Temperature
Control in Rapid Thermal Processing

Jiun-Hong Lai and Chin-Teng Lin,Member, IEEE

Abstract—Temperature measurement and control are two dif-
ficult problems in the rapid thermal processing (RTP) system.
For many applications such as rapid thermal processing chemical
vapor deposition (RTCVD) [1] and rapid thermal oxidation
(RTO) [2], large changes in wafer emissivity can occur during
film growing, leading to erroneous temperature measurements
with a single wavelength pyrometer. The error in the inferred
temperature will affect the temperature control of the RTP
system. In order to correct the temperature reading of the
pyrometer, a neural fuzzy network is used to predict the emis-
sivity changes for the compensation of measured temperature.
As for the temperature control, to overcome ill performance of
the temperature tracking system due to the inaccuracy of the
identified model, another neural fuzzy network is used in the
RTP system for learning inverse control simultaneously. The key
advantage of neural fuzzy approach over traditional ones lies
on that the approach does not require a mathematical descrip-
tion of the system while performing pyrometer correction and
temperature control. Simulation results show that the adopted
neural fuzzy networks can not only correct the pyrometer reading
accurately, but also be able to track a temperature trajectory
very well.

Index Terms—Emissivity, feedforward learning, inverse con-
trol, temperature measurement, TSK fuzzy rules, wafer.

I. INTRODUCTION

I N recent years, semiconductor manufacturing has been
moving toward single-wafer processing in individual or

cluster tools. The manufacture of high-density integrated cir-
cuits on wafer with increasingly larger diameter and submicron
design rules requires a minimization of the thermal budget.
Rapid thermal processing (RTP) technology inherently pos-
sesses these features and provides several advantages over
traditional batch furnaces. One advantage of RTP is that it
eliminates the long ramp-up and ramp-down time associated
with furnaces, enabling a significant reduction in the thermal
budget. Another advantage of RTP is that it allows better
control over the processing environment (e.g., the amount of
oxygen present), which is becoming critical in some applica-
tions. Today, RTP is in production used for annealing (RTA)
[4], cleaning (RTC) [5], oxidation (RTO) [6], chemical vapor
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deposition (RTCVD) [7], and nitridation (RTN) [5]. Wafer
temperature measurement and control are two critical issues
for RTP. Many recent papers have been done to identify and
compensate for the sources of the two problems [8]–[10].

At present, the temperature sensor used for RTP is typically
a single-wavelength pyrometer, which is a noncontact tech-
nique. The temperature is determined from the emissivity of
the wafer at the specified wavelength of the pyrometer. The
optical pyrometer has been successfully used for annealing,
cleaning, and nitridation where the emissivity of the wafer
surface does not change during processing. However, for
applications where the characteristics of the surface are being
changed (such as rapid thermal oxidation or rapid thermal
chemical vapor deposition), the emissivity is varying as a
function of the type of film structure, the thickness of the
film, and the composition of the surface it is being deposited
on. This change can lead to temperature errors in excess of
50 C for the cases described above. Some papers deal with
this problem and various techniques for improving temperature
measure are proposed, e.g., dual-wavelength pyrometer [11]
and models of the optical properties to predict the emissivity
change [14] that are based on measuring emitted radiation. The
dual-wavelength technique needs two different instruments to
measure emitted radiation directly and emissivity indirectly.
These testing results show difficulties with both implementa-
tions of the technique. The approach using the model-based
emissivity correction is only suitable for thin films and short-
time processing. Reference [14] showed this was due to
differences between expected and actual deposition rates. An
alternative approach has been the use of the temperature
dependence of acoustic wave speed [12]. There are also
a variety of approaches based on measuring the thermal
expansion of wafer [13]. A survey of a broad range of RTP
temperature sensing techniques was given in [32].

In this paper, the simulation technique is based on the RTP
global model which includes the temperature sensor, control
loop, and lamp system. The process simulated is the rapid
thermal oxidation (RTO). Emissivity changes during oxidation
are calculated according to reflection and refraction within thin
dielectric films on a silicon substrate. The oxide thickness
as a function of oxidation time at various temperatures is
simulated by a linear parabolic model. Based on the basic heat
transfer law, we shall derive a pyrometer model to simulate
the temperature sensor in the RTP system. Then we use a
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Fig. 1. Schematic of the RTP system.

neural fuzzy network to learn and predict the variations of
film growing as a function of oxidation time under different
process temperatures, and use the optical model to calculate the
emissivity of the wafer. The good prediction capability of the
neural fuzzy network can predict the emissivity changes on the
wafer surface and convert the pyrometer reading to a correct
number. Another neural fuzzy network is used to control the
temperature of a RTP system to achieve two control objectives:
temperature trajectory following and temperature uniformity
on the wafer.

This paper is organized as follows. In Section II, physical
modeling of the RTP system is performed. In Section III,
the optical pyrometer model is discussed. In Section IV, the
configuration of the adopted neural fuzzy network, training
process, and pyrometer measure correcting method are intro-
duced. In Section V, simulation studies on temperature control
combined temperature measurement of the RTP system using
the neural fuzzy networks are presented. Conclusions are made
in Section VI.

II. M ODELING OF THE RTP SYSTEM

There have been a number of papers [15]–[17], [33] con-
cerning the analysis or modeling of the wafer temperature
distribution during RTP. However, these papers always ne-
glect some heat transform on the wafer or the temperature
sensor model. The importance of the interface (lamp dynamic,
sampling, analog-to-digital, and digital-to-analog conversions)
between controlling computer and RTP processor when imple-
menting the software on the actual equipment is also ignored.
The lamps transfer function that we propose will take this into
account and a global modeling of the RTP system will be
used for off-line simulation.

The RTP system considered in this paper is shown in Fig. 1.
In Fig. 1, a bank of tungsten-halogen lamps mounted below a
diffusely reflection ceiling constitutes the heat source. Cooling
air is forced over the lamps to prevent the quartz sheaths from
overheating. Two quartz plates separate the lamps from the
lower half of the oven. The wafer rests on three quartz pins
above the black water cooled oven floor. The side walls of the
bottom half of the oven are partially reflective and are at an

Fig. 2. Schematic of the closed-loop rapid thermal processing system.

Fig. 3. Global model components of the closed-loop RTP system.

angle to the vertical. A pyrometer views the bottom surface of
the wafer through a central hole in the floor.

Mathematical model of the closed-loop RTP system is
described here. The model is called a global model because
it simulates all the components in the RTP system and can
thus be used to investigate the interplay of the wafer itself.
A simplified schematic of the closed-loop system is shown in
Fig. 2. The system uses one bank of lamps which is arranged
in orthogonal directions. The lamps are placed outside the
reaction chamber’s quartz windows. A flat reflector is located
behind the bank of lamps. The system is controlled by a
feedback control loop that utilizes the difference between the
converted temperature and the set temperature to control
the lamp power. The constituent components of the global
model are shown in Fig. 3. The components include a wafer
thermal-dynamic model (in particular, the heat transfer to and
from the wafer) and a lamp dynamic and ray tracing model for
the dynamics of lamp power to the wafer. A power supplier
used to provide the power to lamps and an emissivity corrector
for correcting the pyrometer reading are also included. In the
following subsections, the mathematics model used for each
component is described separately. These models are then
integrated into a global model.

The present application is to the growth of silicon oxide for
temperature above 600C and, hence, the wafer is opaque
to lamp radiation [18]. When compared with conventional
furnace oxidation, RTO has the advantages of single-wafer
processing that customizes the process for each wafer and
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reduces the risk of scrapping a large number of wafers of low-
thermal-budget processing to form shallow junction, which
RTO achieves with short oxidation time and ease of integra-
tion into cluster tools for automation—in situ fabrication of
integrated circuits.

A. Wafer Thermal Dynamic and Lamp Dynamic Models

The approach employed to modeling is analytical/numerical
in that the heat transfer to, from, and within the wafer is
calculated. Included in the calculation is the radiation heat
transfer to the wafer, the heat conduction within the wafer,
and the heat convection and the heat loss emitted from the
wafer surfaces. For the radiation, the heat from the lamps
is absorbed at the wafer surface and the radiation heat loss
occurs at the surface. As shown in Fig. 2, the controller sends
a voltage command to the power amplifier after receiving
measured temperature signal from the pyrometer. The power
reaches steady voltage level after receiving control voltage
command in the ideal case. But in the actual situation, it is
ramp up/down to reach steady-state level. The lamp dynamics
describes the power from the lamps after receiving power
supply voltage. In most published papers, the dynamics of
the lamp power intensity to the control voltage command
was neglected and the power from the lamps was assumed
to be directly proportional to the power supply voltage. For
this cause, we present a simple dynamic model between
the command voltage and lamp power. The presented lamp
dynamics has the following form:

(1)

where is the power supply temporary voltage, is the
present command sent by the controller, the last time step,

the time constant, is the lamp power, and the function
is varied by and temperature at position

. The present lamp dynamics will raise the complexity of
the RTP simulation, and match up the overall RTP system to
actual RTP dynamics.

In our RTP system, electrical energy is supplied to a “ring”
cylindrical arrangement of tungsten-halogen bulbs of which
more will be mentioned later. Energy is radiated through a
quartz window onto a thin semiconductor wafer. A model of
the heat transfer for such a system is developed in cylindrical
coordinates, where the origin of the coordinate system is the
center of the wafer bottom surface, and theaxis of the
coordinate system coincides with the central axis of the wafer.
The model is based on the assumption that the temperature
distribution is axisymmetric and that the wafer is thin enough
such that axial ( axis) thermal gradients can be neglected.
Furthermore, the wafer is discretized into annular zones in
each of which the temperature is assume to be uniform. Such
an approach is often used in radiative heat transfer applications
and has been used for RTP systems and for furnaces in [9].

The heat transfer model of the wafer takes into account
convective, conduction, and radiative energy transport mech-
anisms. The model is written as

(2)

where is the ambient temperature expressed as an
vector (the ambient temperature is assumed to be constant
in the chamber), is the temperature vector of the
wafer elements, is the radiation-energy matrix from
the lamps to the wafer, and is the lamp-power
vector, where is the number of the wafer segments and

is the number of lamps [15]. The matrices , ,
and represent the radiative, convective, and conduction
heat transfer, respectively. A complete description of these
matrices can found in [15]. The capacitive effects of the
thick windows are neglected here since the associated time
constant is two-order magnitude larger than that of the wafer.
Instead, the windows heating model is considered as a slowly
varying disturbance for the purpose of system identification
and controller design. Physical parameters used in the RTP
model are the same as those used in [8].

As discussed above, the wafer temperature is measured
by a pyrometer and thus requires accurate knowledge of the
emissivity of the region of the wafer viewed by the pyrometer.
The sensitivity of this emissivity with respect to layer structure
and to pyrometer wavelength can be modeled. This gives a
guide to correctly choose the emissivity value, evaluate the
wafer temperature response, and thus predict overall furnace
operation. This approach will be illustrated in Section II-B.

B. Wafer Emissivity Model

Thermal radiation is a part of electromagnetic radiation.
Assume that a radiant heat flux (a heat quantity in a unit
time) is incident on the surface of a wafer. Of this heat flux, the
portion is absorbed, is reflected, and is transmitted.
The following definitions are introduced:

absorptivity

reflectivity

transmissivity

(3)

For the wafer, applying the principle of energy conservation
gives

(4)

This relation is also called Kirchhoff’s law. Similar to (4),
which is valid for the total radiation, the spectral components
of , , at wavelength , denoted by , , and ,
respectively, also meet the following relation:

(5)

The values of , , and depend upon the material, its surface
state and temperature, while , , and additionally
depend upon the wavelength.
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Fig. 4. Propagation of a radiation wave through multilayer films.

By the Kirchhoff’s law as demonstrated above, the emissiv-
ity of the wafer surface can be determined immediately from
the reflectivity for the case of an opaque wafer (transmissivity,
, equals to zero). With the reflectivity known, the emissivity

is equated to ( reflectivity). To determine the reflectivity
of multiple dielectric layers for a radiation wave at a given
wavelength and inserting angle, we need to consider the
multireflection phenomena on the adjacent surfaces in multiple
thin layers. According to the basic theory for the optics in
[19]–[22], each layer’s optical property can be described by
a characteristic matrix that can be used to describe the optics
of radiation through a planar -layer structure. Fig. 4 shows
the propagation of a radiation wave through a multilayer film.
For a given layer structure on top of a single crystal silicon
substrate, the characteristic matrix is

(6)

For dielectric layers, the characteristic matrix is a product
sequence as follows:

(7)

With the characteristic matrix available, the reflectivity can be
determined [21] by

(8)

where

(9)

where

phase thickness

polarization
polarization

polarization
polarization

polarization
polarization

TABLE I
COMPARISONSBETWEEN EXPERIMENTAL MEASUREMENTS OFEMISSIVITIES AND

THE DESIRED THEORETIC RESULTS FORDIFFERENT OXIDE THICKNESSES

where

wavelength;
optical thickness (at a specific wave-
length );
complex refractive index;
real part of refractive index;
image part of refractive index,
for nonabsorption material;
layer thickness;
the th layer’s insert angle determined by
Snell’s law;

;
insert material’s complex refractive in-
dex;
insert angle;
complex refractive index of the substrate;
refractive angle of the substract.

Table I lists the comparisons between the actual experi-
mental measurements of emissivities and the above theoretic
results for different oxide thicknesses. It is obvious that the
theoretic results and actual measurements are very close. In
other words, if the oxide thickness is known, the emissivity
of the wafer can be inferred precisely by this optical model.
The experimental measurements in the second column of the
table were done in [30].

C. Silicon Oxidation Growing Model

In this paper, the application of the RTP system is on thermal
oxidation on a silicon wafer. The temperature of this formation
process is exceeding 600C, where the wafer is opaque to the
wavelength of concern here. The thickness of the SiOon the
top of Si can be obtained from the equation derived by Deal
and Grove [23] in their linear-parabolic model of oxidation

(10)

where and are rate constants, and is the time dis-
placement needed to account for the initial oxide layerat

(11)

Both and ( ) may be well represented at the singly
activated processes [24]

(12)

and

(13)
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Fig. 5. Silicon oxide thickness as a function of RTO time under different
temperatures (simulation results).

where m /h, eV,
m/h, and eV. Details of the thermal

oxidation process can be found in [23].
Solving the quadratic equation in (10) gives the oxide

thickness as a function of time

(14)

Fig. 5 is a plot of oxide thickness as a function of oxidation
time at various temperatures. The curves in this figure are
quite close to those obtained by practical experiments obtained
in [23] showing that the model derived in the above is very
accurate.

III. OPTICAL-PYROMETER TEMPERATURE MEASUREMENT

A single wavelength pyrometer is widely used to infer wafer
temperature in today’s RTP systems. Pyrometers can measure
the temperature of an object without physically touching
the object. The temperature is determined from the radiated
intensity of the wafer at the specified wavelength of the
pyrometer. In Section III-A, we shall introduce the basic
physics of energy transfer in thermally radiating bodies and
then develop the pyrometer model according to this basic heat
transfer law in Section III-B.

A. Emission and Absorption of Radiation

The radiant intensity or the radiation exitance is the heat
flux per unit area expressed as the ratio of the heat flux
emitted from the infinitesimal element of the surface to
the surface area itself

w/m (15)

In the same units as the radiant intensity, the heat flux density
of the incident radiation is given by

w/m (16)

This also takes account of the conduction and convection heat
flux in addition to the radiation heat flux.

The spectral radiation intensity is defined as

w/m m (17)

Planck’s law gives the radiant flux distribution of a black body
as a function of the wavelength and of the body’s temperature
by the relation

(18)

where is the spectral radiant intensity of a black body,
w/m m (the suffix “0” will be used in the future to indicate
a black body), is the wavelength, m, is the absolute
temperature of the thermal radiator,, is the first radiation
constant w m /m , and is the second
radiation constant m .

For a given wavelength range from to , (18) can be
evaluated as

(19)

where is the band radiant intensity of a black body.
The ratio of the spectral radiant intensity at the wave-

length of a nonblack body to the spectral radiant intensity
of a black body at the same temperature is called the
spectral emissivity , where

(20)

If the spectral emissivity of a given body is constant for
each wavelength (i.e., constant), such a body is called
a gray body. Similar to (20), if all the wavelengths from zero
to , are taken into consideration, the term “total emissivity”

is used

(21)

where is the radiant intensity of any given body and
is the radiant intensity of a black body.

Following Kirchhoff’s law, the spectral absorptivity of
all opaque bodies equals their emissivity so that we have

(22)

For a given wavelength band from to , Kirchhoff’s law
is expressed by

(23)

where is the band absorptivity and is the band
emissivity.

When all the wavelengths from to
are taken into consideration, the corresponding form for (22),
which is also valid, then becomes

(24)

where is the total absorptivity and is the total emissivity.
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B. Pyrometer Model

A narrow-band pyrometer senses the radiation intensity
emitted by the center of the wafer at a specified wavelength
according to the heat balance principle, i.e.,

(25)

where the subscript denotes the wafer andthe pyrometer.
Then, by the Planck’s law described in (18), we have

(26)

The actual temperature can be obtained by solving (26)

(27)

where is the emissivity of the pyrometer, is the wafer
surface emissivity at the wavelength, and is the pyrometer
reading. We also can obtain by solving (26)

(28)

In (27), we can see that if the emissivity of the wafer and
that of the pyrometer are the same, the actual temperature
and inferred temperature by the pyrometer are identical. It
is evident from (28) that the temperature inferred from the
pyrometer is only equal to the actual wafer temperature
when the assumed emissivity is equal to the actual wafer
emissivity. Hence, the variations in wafer emissivity,, can
lead to errors in temperature measurement. We shall propose
a method to predict the different emissivity between wafer
and pyrometer and compensate the measurement errors of the
pyrometer in the next section.

IV. PYROMETER MEASUREMENT-CORRECTINGMETHOD

A. Methodology

In this section, we propose a method of using a neural
fuzzy network to correct the pyrometer reading. Fig. 6 shows
the block diagram of this method. In Fig. 6, the previous
corrected temperature value and the current processing
time are used as the inputs of the neural fuzzy network. The
network will then predict the current film thickness, which
is used to compute the emissivity of the wafer
according to the wafer optical model described in Section II-
B. The converter in Fig. 6 is used to correct the pyrometer
reading value to , which is the predicted
current wafer temperature. In Fig. 6, we use block to
represent the operator of unit-time delay. We expect that the
corrected temperature value is equal to the actual
wafer temperature . We shall describe the details of
the block diagram in the following subsections.

In [26], Sorrel et al. numerically integrated the Arrhenius
growth-rate equation over time to linearly approximate the
actual film thickness and then calculated the wafer emissivity
by the approximated film thickness. The major source of errors

Fig. 6. Block diagram of the pyrometer measurement-correcting method.

of this method is due to the assumption of constant growth
rate of the film thickness as a function of temperature. Once
the wafer temperature cannot be kept at the setting value
exactly, the growth rate will vary from time to time. If the
estimated growth rate changes10% versus the actual growth
rate, a large estimated temperature error will be observed at
later time [26]. This method only can be applied to short-
time and thin-films processes, because the actual growth rate
is always not well known. In this paper, we use a separate
neural fuzzy network to off-line learn the actual samples
of the oxide thickness growth as a function of oxidation
time at several different process temperatures. The neural
fuzzy network estimates the growth behavior as associative
memories without requiring a mathematical description of how
the output functionally depends on the input, i.e., it learns from
numerical samples. This method is more precise in estimating
the actual oxide thickness than the mathematical function
approximate approach. With the film thickness being predicted
precisely by the neural fuzzy network, the pyrometer reading
can be corrected accurately to the actual wafer temperature.

B. Self-Constucting Neural Fuzzy Inference Network

In this subsection, we shall introduce the neural fuzzy
network used in our approach called self-constucting neural
fuzzy inference network (SONFIN), modified from the one
we proposed previously in [3]. The SONFIN is a fuzzy
rule-based network possessing neural learning ability. As
compared to other existing neural fuzzy networks [31], a major
characteristic of the network is that no preassignment and
design of fuzzy rules are required. The rules are constructed
automatically during the training process. The SONFIN can
overcome both the difficulty of finding a number of proper
rules for the fuzzy logic controllers (FLC) and the over-tuned
and slow-convergence phenomena of the backpropagation
neural networks [25]. Another feature of the SONFIN is that
it can optimally determine the consequent of fuzzy IF–THEN
rules during the structure learning phase. We have shown that
the SONFIN outperforms the pure neural networks greatly
both in learning speed and accuracy [3].

A. Structure of the SONFIN

The structure of the SONFIN is shown in Fig. 7. Let
and denote the input and output of a node in layer,
respectively. The functions of the nodes in each of the five
layers of the SONFIN are described as follows.

Layer 1: No computation is done in this layer. Each node
in this layer, which corresponds to one input variable, only
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Fig. 7. Structure of the proposed self-constructing neural fuzzy inference
network (SONFIN).

transmits input values to the next layer directly, i.e.,

(29)

Layer 2: Each node in this layer corresponds to one lin-
guistic label (small, large, etc.) of one of the input variables in
layer 1. In other words, the membership value which specifies
the degree to which an input value belongs a fuzzy set is
calculated in layer 2. With the use of Gaussian membership
function, the operations performed in this layer is

(30)

where and are, respectively, the center (or mean)
and the width (or variance) of the Gaussian membership
function of the th term of the th input variable . Unlike
other clustering-based partitioning methods, where each input
variable has the same number of fuzzy sets, the number of
fuzzy sets of each input variable is not necessarily identical
in the SONFIN.

Layer 3: A node in this layer represents one fuzzy logic
rule and performs precondition matching of a rule. Here, we
use the following AND operation for each layer 3 node

(31)

where the summation is over the layer 2 nodes participating
in the IF part of the rule.

Layer 4: This layer is called the consequent layer. Two
types of nodes are used in this layer and they are denoted
as blank and shaded circles in Fig. 7, respectively. The node
denoted by a blank circle (blank node) is the essential node
representing a fuzzy set (described by a Gaussian membership
function) of the output variable. Only the center of each
Gaussian membership function is delivered to the next layer

for the LMOM (local mean of maximum) defuzzification
operation [27] and the width is used for output clustering only.
Different nodes in layer 3 may be connected to a same blank
node in layer 4, meaning that the same consequent fuzzy set is
specified for different rules. The function of the blank node is

(32)

where —the center of a Gaussian membership
function. As to the shaded node, it is generated only when
necessary. Each node in layer 3 has its own corresponding
shaded node in layer 4. One of the inputs to a shaded node is
the output delivered from layer 3 and the other possible inputs
(terms) are the input variables from layer 1. The shaded node
function is

(33)

where the summation is over all the inputs and is the
corresponding parameter. Combining these two types of nodes
in layer 5, we obtain the whole function performed by this
layer for each rule as

(34)

Layer 5: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layers 3 and 4 and acts as a defuzzifier with

(35)

B. Learning Algorithms for the SONFIN

Two types of learning—structure and parameter learn-
ing—are used concurrently for constructing the SONFIN.
The structure learning includes both the precondition and
consequent structure identification of a fuzzy IF–THEN rule.
There are no rules (i.e., no nodes in the network except
the input/output nodes) in the SONFIN initially. They are
created dynamically as learning proceeds upon receiving on-
line incoming training data by performing the following
learning processes simultaneously: 1) input/output space
partitioning; 2) construction of fuzzy rules; 3) consequent
structure identification; and 4) parameter identification. In the
above, processes 1, 2, and 3 belong to the structure learning
phase and process 4 belongs to the parameter learning phase.
The details of these learning processes are described in the
rest of this subsection.

1) Input/Output Space Partitioning:The way the input
space is partitioned determines the number of rules extracted
from training data as well as the number of fuzzy sets
on the universal of discourse of each input variable. For
each incoming pattern, the strength a rule is fired can be
interpreted as the degree the incoming pattern belongs to the
corresponding cluster. For computational efficiency, we can
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use the firing strength given in (31) directly as this degree
measure

(36)

where , , , , , and
.

Using this measure, we can obtain the following criterion
for the generation of a new fuzzy rule. Let be the newly
incoming pattern. Find

(37)

where is the number of existing rules at time. If
, then a new rule is generated where

is a prespecified threshold that decays during the learning
process. Once a new rule is generated, the initial centers and
widths are set as

(38)

(39)

according to the first-nearest-neighbor heuristic [27], where
decides the overlap degree between two clusters.

After a rule is generated, the next step is to decompose
the multidimensional membership function formed in (38)
and (39) to the corresponding one-dimensional membership
function for each input variable. For the Gaussian membership
function used in the SONFIN, the task can be easily done as

(40)

where and are, respectively, the projected center and
width of the membership function in each input dimension. To
reduce the number of fuzzy sets of each input variable and to
avoid the existence of redundant ones, we should check the
similarities between the newly projected membership function
and the existing ones in each input dimension. Since the
Gaussian membership functions are used in the SONFIN, we
use the formula of the similarity measure of two
fuzzy sets and derived previously (see [28] for details),
where and the larger is, the
more fuzzy set is similar to . Let represent the
Gaussian membership function with center and width .
The whole algorithm for the generation of new fuzzy rules
as well as fuzzy sets in each input dimension is as follows.
Suppose no rules are existent initially. IFis the first incoming
pattern THEN do

PART 1. Generate a new rule
with center , width

diag
where is a prespecified constant.

After decomposition, we have
one-dimensional membership functions
with and

.

ELSE for each newly incoming, do

PART 2. find
IF

do nothing
ELSE

generate a new fuzzy rule, with
,

diag .
After decomposition, we have

,
.

Do the following fuzzy measure for
each input variable:

,
where is the number of partitions of
the th input variable.
IF
THEN adopt this new membership
function, and set
ELSE set the projected membership
function as the closest one.

In the above algorithm, is a scalar similarity criterion
that is monotonically decreasing such that higher similarity
between two fuzzy sets is allowed in the initial stage of
learning. For the output space partitioning, the same measure
in (37) is used. Since the criterion for the generation of a
new output cluster is related to the construction of a rule, we
shall describe it together with the rule construction process in
Process 2 below.

2) Construction of Fuzzy Rules:As mentioned in learning
process 1, the generation of a new input cluster corresponds
to the generation of a new fuzzy rule, with its precondition
part constructed by the learning algorithm in Process 1. At
the same time, we have to decide the consequent part of the
generated rule. Suppose a new input cluster is formed after
the presentation of the current input/output training pair (,
), then the consequent part is constructed by the following

algorithm:

IF there are no output clusters
do PART 1in Process 1, with replaced by

ELSE
do

find .
IF
connect input cluster to the existing
output cluster
ELSE
generate a new output cluster
do the decomposition process in PART 2 of
Process 1
connect input cluster to the newly
generated output
cluster.

.
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The algorithm is based on the fact that the preconditions
of different rules may be mapped to the same consequent
fuzzy set. Compared to the general fuzzy rule-based models
with singleton output where each rule has its own individual
singleton value [9], [11], fewer parameters are needed in the
consequent part of the SONFIN, especially for the case with
a large number of rules.

3) Consequent Structure Identification:Up to now, the
SONFIN contains fuzzy rules in the form as

Rule IF is and and is

THEN is (41)

where and are the input and output variables, respec-
tively, is a fuzzy set, and is the position of a symmetric
membership function of the output variable with its width
neglected during the defuzzification process. Even though such
a basic SONFIN can be used directly for system modeling, a
large number of rules are necessary for modeling sophisticated
systems under a tolerable modeling accuracy. To cope with
this problem, we adopt the spirit of the TSK model [29]
into the SONFIN. In the TSK model, each consequent part
is represented by a linear equation of the input variables. It is
reported in [29] that the TSK model can model a sophisticated
system using a few rules. Even so, if the number of input
and output variables is large, the consequent parts used in
the output are quite considerable, some of which may be
superfluous. To cope with the dilemma between the number
of rules and the number of consequent terms, instead of using
the linear equation of all the input variables (terms) in each
rule, we add these additional terms only to some rules when
necessary. The idea is based on the fact that for different input
clusters, the corresponding output mapping may be simple or
complex. For simple mapping, a rule with a singleton output
is enough, while for complex mapping, a rule with a linear
equation in the consequent part is needed. The criterion to
deciding which type of consequent part should be used for
each rule is based on computing

(42)

where is the firing strength of rule, is the number of
rules, is the desired output, is the current output,
and is the accumulated error caused by rule. By
monitoring the error curve, if the error doesn’t diminish over
a period of time and the error is still too large, we shall
add linear combinations of input variables to the rules whose

values are larger than a predefined threshold value. The
process may be done repeatedly after a period of time until a
satisfactory result occurs.

4) Parameter Identification:The parameter identification
process is done concurrently with the structure identification
process. The idea of backpropagation is used for this super-
vised learning. Considering the single-output case for clarity,
our goal is to minimize the error function

(43)

where is the desired output and is the current output.
The parameters, , in layer 4 are tuned by RLS algorithm as

(44)

(45)

where is the forgetting factor, is the current
input vector, is the corresponding parameter vector, and
is the covariance matrix. The initial parameter vector is
determined in the structure learning phase and ,
where is a large positive constant. As to the free parameters

and of the input membership functions in layer 2,
they are updated by the backpropagation algorithm. Using the
chain rule, we have

(46)

where

(47)

if term node is
connected to rule node

otherwise.
(48)

Similarly, we have

(49)

where

if term node is
connected to rule node

otherwise.
(50)

C. Feedforward Learning of Oxide Film Growing

The feedforward learning of the oxide film growing rate
is an off-line training process as shown in Fig. 8. The inputs
to the SONFIN are the processing temperature () and the
sampling time (), and the desired output of the SONFIN is
the oxide thickness ( ) at the corresponding sampling time
and processing temperature. Due to the high nonlinearity of
the oxide thickness growth rate at the beginning of processing,
we take more training samples in this period. The SONFIN is
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Fig. 8. Feedforward learning of the oxidation growing.

Fig. 9. The result of learning three oxidation growing profiles at 1000, 1050,
and 1100�C simultaneously.

updated supervisedly to minimize an error functiondefined
by , where is the
desired film thickness, is the actual output (predicted
film thickness) of the training network andis the number of
training patterns. After some epochs of training, the SONFIN
has learned the oxide film growth behavior and can be used
to predict the film thickness at given processing temperature
and time. Fig. 9 shows the result of learning three oxidation
growing profiles at 1000, 1050, and 1100C simultaneously,
where “ ” denotes the actual film thickness and “o” denotes
the estimated ones by the SONFIN. The average prediction
error is smaller than 0.012m. Notice that the learned results
in Fig. 9 are very close to those obtained by the practical
experiment performed in [23].

D. Pyrometer Measurement Correcting Rule

The block diagram of emissivity prediction and pyrometer
reading correction is show in Fig. 6, where the wafer tem-
perature is measured by a pyrometer. It is observed from
(27) that if we do not predict the emissivity change ()
during processing, then the difference between the pyrometer’s
measured temperature value and the wafer’s actual temperature
value can be more than50 C in few seconds [14]. Hence,
a converter is employed to convert the pyrometer reading to a
correct temperature value by predicting the wafer’s emissivity
changes. The SONFIN is used here to predict the current oxide
film thickness and then infer the wafer emissivity by the optical
model described previously.

According to the temperature-emissivity relation of the
pyrometer described by (27), we set the emissivity correction

rule for the converter in Fig. 11 as

(51)

where is the corrected temperature value, is the tem-
perature measured by the pyrometer, andis the predicted
emissivity of the wafer. It can be seen that if the predicted
emissivity of the wafer is equal to the actual emissivity of
the wafer , then (27) will be the same as (51), i.e., ,
and, thus, the corrected temperature will be equal to the actual
wafer temperature.

In (51), is given by the pyrometer and can be calculated
by the pyrometer model in (28) in simulations and can be
determined immediately from the reflectivity of the opaque
wafer, i.e., reflectivity. According to (8), the
current film thickness is required to evaluate the reflectivity

. Because the film thickness cannot be measured directly,
it is estimated by the SONFIN predictor, which has been
off-line trained before processing. To predict the current film
thickness, the previous corrected temperature value and
the current processing time are used as the inputs of the
SONFIN. We assume the emissivity of the pyrometer in (51) is
a constant value that is identical to the bare silicon wafer (i.e.,

). Substituting these values described above into (51),
the approximate current temperature can be inferred
and then used in the control loop for wafer temperature control.
The temperature control is achieved by another SONFIN. The
design of this SONFIN controller is introduced in the next
section.

V. INVERSE LEARNING FOR NEURAL

FUZZY CONTROLLER DESIGN

Of the various techniques for controlling the temperature of
the RTP system, model-based control has the greatest potential
for attaining the best performance in the field of conventional
control when the model is accurate. There have been a number
of identification methods presented to help obtaining more
accurate RTP models. Nevertheless, it is often difficult to
identify the models accurately due to some complex and
highly nonlinear situations. Recently, neural networks have
been shown to possess good capability to adaptively control
a nonlinear model. To overcome the drawback of the model-
based control, we apply the inverse learning method, originally
reported in the neural network literature, to the design of the
neural fuzzy controller for the temperature control of the RTP
system. The key advantage of the neural fuzzy approach over
traditional ones lies on it does not require a mathematical
description of the system while controlling. Again, we shall
use the SONFIN as the neural fuzzy controller here. In [31],
we have compared the temperature control performance of
several kinds of controllers on the RTP system, including
the backpropagation (BP) neural network controller, model-
reference adaptive controller (MRAC), proportional-derivative
(PD) controller, and our SONFIN. With the performance
indexes of the nonuniformity, maximum positive error, max-
imum negative error, and mean-square tracking error, we
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Fig. 10. Block diagram of the learning phase of the inverse learning control
method.

found that the SONFIN had the best performance. Hence,
in this paper we adopt the SONFIN controller in the RTP
system to check the effectiveness of the SONFIN prediction
for pyrometer-reading correction. After a while we shall use
a SONFIN as a pyrometer-reading corrector and another
SONFIN as the temperature control for the RTP system in
this section. The simulation results will be compared to those
of other approaches.

A. Inverse Learning of the RTP System

The direct inverse learning configuration shown in Fig. 10
is adopted in our approach, where off-line training is used
for the design of the controller. The inverse learning of the
SONFIN involves two phases. In the learning phase, the
SONFIN is trained to model the inverse dynamics of the plant.
The obtained neural fuzzy model (which represents the inverse
dynamics of the plant) is then used to generate control actions
in the application phase.

Suppose the plant of RTP model is described by

(52)

where and are the wafer temperatures at time
and , respectively, and is the control signal at time
. Here we assume that the dynamics of the plant is unknown

and we are going to build a SONFIN that maps a given
pair to a desired control action . This
mapping is not easily expressed as analytic formula because
the plant is nonlinear and system parameters vary with current
temperature.

For off-line training, we have to collect a set of training
data pairs and then train the SONFIN in the batch mode.
A sequence of random input signals under the mag-
nitude limits of the plant input is injected directly to the
plant and then an open-loop input/output characteristic of the
plant is obtained. According to the input/output characteristic
of the plant, proper training patterns are selected to cover
the entire reference output space. Using the collected train-
ing patterns with the values of the selected input variables
as the input pattern and the corresponding control signal

as the target pattern, the SONFIN can be updated
supervisedly to minimize an error function defined by

according to the learning
algorithm developed in Section IV-B, where is the number
of training patterns and is the actual output of the training
network.

Fig. 11. Block diagram of the overall RTP temperature control system.

B. Simulation Results and Performance Comparisons

Fig. 11 shows the block diagram of close-loop temperature
control of the RTP system. The whole system consists of a
SONFIN controller, which has been trained in the inverse
learning process described in Section V-A, and a SONFIN
predictor which has been trained through feedforward learning
described in Section IV-C.

The SONFIN controller is to control the wafer temperature
to follow a desired profile. The SONFIN predictor is to predict
the film thickness of the wafer at any processing time such
that the actual emissivity of the wafer can be calculated
for correcting the pyrometer reading. Several experimental
simulations have been done with this structure and the results
are presented in this section. We also replace the SONFIN
predictor with a normal linear predictor in the structure shown
in Fig. 11 for performance comparisons.

In the first simulation, we try to control the wafer tem-
perature to follow the desired temperature profile shown
in Fig. 12(a), where the desired final process temperature
(operating point) is 1050C. For this purpose, the SONFIN
predictor for correcting the pyrometer reading is trained to
learn three oxidation profiles obtained by setting the wafer
temperature at 1000, 1050, 1100C, respectively. Learning
all the three profiles around the operating point 1050C
can enhance the generalization capability of the SONFIN
predictor. The control performance of this simulation is shown
in Fig. 12. The actual wafer temperature () under the
SONFIN control as well as the desired temperature profile
are shown in Fig. 12(a). It is observed that the actual wafer
temperature profile follows the desired one closely. In this
figure, we also show the SONFIN controller’s output sig-
nals. To see the control performance more closely, Fig. 12(b)
shows the difference between the actual and desired wafer
temperatures, where two measure points are set, the center of
the wafer (solid line) and the margin of the wafer (dashed
line). To see the effect of the SONFIN predictor in correcting
the pyrometer reading, the difference between the pyrometer
reading and the actual wafer temperature are shown
in Fig. 12(c) as the solid line. In the same figure, the dashed
line shows the difference between the uncorrected pyrometer
reading and . We can see that the SONFIN predictor
provides the controller with more accurate wafer temperature
information.
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(a)

(b)

(c)

Fig. 12. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set at 1050�C. (a) The desired temperature
profile (dashed line), the actual wafer temperature (Tw) under control (solid line), and the SONFIN controller’s output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer temperatureTw where the solid line denotes the temperature measured at the center of the wafer and
the dashed line the margin of the wafer. (c) The difference of the actual wafer temperatureTw and the corrected measured temperature valueTc (solid line);
the difference of the actual wafer temperatureTw and the pyrometer-measured temperatureTp (dashed line).

To test the generalization capability of the SONFIN pre-
dictor, we set the operating point of the RTP system at 900
C in the second simulation; the desired temperature profile is

shown in Fig. 13(a) (dashed line). In this simulation, we use
the same SONFIN predictor and controller as those in the first
simulation. Notice that since the SONFIN controller is trained
by the inverse learning scheme stated in the last section—it
is independent of the operation point. On the contrary, the
prediction power of the SONFIN predictor focuses only on
the temperature region in which it is trained. The results of
this simulation, corresponding to those of the first simulation,
are show in Fig. 13. The figure shows that our control system
still achieves quite good performance, although the operation
point lies outside the region, [1000C, 1100 C], in which
the SONFIN predictor was trained.

To see the role played by the SONFIN predictor, we replace
it by a normal linear predictor described by

(53)

where is the oxide thickness at time , is
the oxide thickness at time, is the sampling period, and

is the growth rate at temperature . The corrected
temperature from the previous control sequence is used
to predict the current film thickness which is in turn used
to approximate the current temperature . The linear
predictor assumes that the oxide has a constant growth rate.

The corresponding control performance is shown in Fig. 14.
Fig. 14 shows that the temperature errors are larger than those
of the previous two simulations. Especially, the errors are
increasing as processing time is running. This is obviously due
to the big temperature measurement errors shown in Fig. 14(c).
It is understood that the bigger temperature measurement
errors are due to the lower prediction accuracy of the linear
predictor on the oxide thickness as compared to that of the
SONFIN predictor [see Figs. 12(c) and 14(c)].

As a contrast, in the fourth simulation we take off the
predictor and converter in Fig. 11 and feed the pyrometer’s
reading value into the SONFIN controller directly. In other
words, we want to see what happens if we don’t correct
the pyrometer reading. The simulation results are shown
in Fig. 15. Due to the inaccurate temperature measurement
shown in Fig. 15(b), the SONFIN controller fails to track the
desired temperature profile [see Fig. 15(a)].

Finally, to compare the performance of a traditional ap-
proach, we replace the SONFIN controller by the proportional
integral derivative (PID) controller and the SONFIN predictor
by the linear predictor [see (53)] in our control system in
Fig. 11. We have tried our best to tune the PID controller to
achieve its best performance and the simulation results are
shown in Fig. 16. The curves in the figure obviously show
the inferior performance of this traditional control architecture.
The control system cannot track the desired temperature profile
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(a)

(b)

(c)

Fig. 13. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set at 900�C. (a) The desired temperature profile
(dashed line), the actual wafer temperature (Tw) under control (solid line), and the SONFIN controller’s output signals (bar lines). (b) The difference between
the desired temperature and the actual wafer temperatureTw where the solid line denotes the temperature measured at the center of the wafer and the
dashed line the margin of the wafer. (c) The difference of the actual wafer temperatureTw and the corrected measured temperature valueTc (solid line);
the difference of the actual wafer temperatureTw and the pyrometer-measured temperatureTp (dashed line).

accurately and stablely. It was found in our trials that the
oscillations in Fig. 16 were unavoidable. Two major reasons
account for this phenomenon; first, we performed long-time
control; second, we performed temperature-trajectory tracking
control instead of set-point control. The oscillation phenome-
non of PID control was also observed by others in [1], [14],
and [17]. Fig. 16 also shows increasing tracking errors as
processing time is running due to the low prediction accuracy
of the linear predictor. It is observed that the simulation results
shown in Figs. 12–16 are very similar to those obtained by
others’ practical experiments [1], [14], [26].

The results of the above simulations are summarized in
Table II. This table lists the maximum/minimum tracking
errors, the mean square tracking error (tracking MSE), and
the temperature nonuniformity of different control structures,
where the nonuniformity is given by the difference of the two
controlled temperatures measured at the center and the margin
of the wafer. From the table we see that the SONFIN controller
with SONFIN predictor achieves the smallest tracking error
and keeps a low nonuniformity. Across wafer uniformity
is one major issue in RTP processing. To obtain uniform
processing across the wafer surface and to prevent the creation
of slip defects due to the thermal stress, the temperature
must be nearly uniform across the wafer at all time. The
simulations in this section have shown that the SONFIN-
based scheme can keep better temperature uniformity than
the traditional PID scheme. However, we observe from the

controlled results that the temperature gradient difference
between the inner and outer rings of wafer is not small
enough. In fact, to further reduce the nonuniformity, various
means have been suggested, as for example, modification of
reflector characteristics, special lamp arrangements, individual
lamp powering, or mechanical movement of the wafer [31].
Thermal gradients may also be reduced by using either guard
rings or suspector, i.e., by virtually extending the wafer edge.
The edge loss radiation energy of the wafer will be reflected
by the guard ring and the difference between the outer and
edge energy will be reduced. Another approach to solving
the nonuniformity problem thoroughly is to use a multioutput
controller. In this approach, a circular bank of lamps is added
over the wafer border to compensate the edge-loss effect of
the wafer. The lamps emphasize the incident radiation energy
on the wafer edge and also add the energy at the center. A
multi-output controller is required to control the power of
different lamps individually. In any approach of improving
uniformity mentioned in the above, the proposed SONFIN-
based scheme can be applied to get even better performance
than the traditional PID scheme.

VI. CONCLUSIONS

This paper proposes the use of the neural fuzzy network
(called SONFIN) for solving the two difficult problems in
the RTP system, i.e., temperature measurement and control.
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(a)

(b)

(c)

Fig. 14. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set at 1050�C. (a) The desired temperature
profile (dashed line), the actual wafer temperature (Tw) under control (solid line), and the SONFIN controller’s output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer temperatureTw where the solid line denotes the temperature measured at the center of the wafer and
the dashed line the margin of the wafer. (c) The difference of the actual wafer temperatureTw and the corrected measured temperature valueTc (solid line);
the difference of the actual wafer temperatureTw and the pyrometer-measured temperatureTp (dashed line).

(a)

(b)

Fig. 15. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set at 1050�C. (a) The desired temperature
profile (dashed line), the actual wafer temperature (Tw) under control (solid line), and the SONFIN controller’s output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer temperatureTw where the solid line denotes the temperature measured at the center of the wafer
and the dashed line the margin of the wafer.

The SONFIN is a general connectionist model of a fuzzy
inference system, which can find its optimal structure and
parameters automatically. Two SONFIN’s are used in the

proposed control structure. One is to learn the oxidant growth
rate as a function of oxidation time at various processing
temperatures for correcting the measurement error of the
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(a)

(b)

(c)

Fig. 16. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set at 1050�C. (a) The desired temperature
profile (dashed line), the actual wafer temperature (Tw) under control (solid line), and the SONFIN controller’s output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer temperatureTw, where the solid line denotes the temperature measured at the center of the wafer and
the dashed line the margin of the wafer. (c) The difference of the actual wafer temperatureTw and the corrected measured temperature valueTc (solid line);
the difference of the actual wafer temperatureTw and the pyrometer-measured temperatureTp (dashed line).

TABLE II
SUMMARY TABLE OF PERFORMANCE INDEX

pyrometer due to emissivity variations during film growing.
The other SONFIN is to model the inverse of the RTP system
for temperature control. To compensate the pyrometer errors,
we also derive the wafer emissivity model, silicon oxidation
growing model and pyrometer model. Several experimental
simulations have been done and the performance comparisons
to other control structures are also presented in this paper.
The simulation technique is based on the desired accurate RTP
global model, which includes the temperature sensor, control
loop, and lamp system. From the simulation results, we see
that the SONFIN controller with SONFIN predictor has the
best performance. Although we test the performance of the
proposed scheme on the RTO process only in this paper due
to the shortage of available experimental data, we can also
apply our scheme to other process such as RTCVD. However,
since the RTCVD process has a higher emissivity change rate

than the RTO process, the prediction accuracy and control
performance of the proposed SONFIN-based scheme needs
further investigation and improvement in the future.
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