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Application of Neural Fuzzy Network to
Pyrometer Correction and Temperature
Control in Rapid Thermal Processing

Jiun-Hong Lai and Chin-Teng Linyiember, IEEE

Abstract—Temperature measurement and control are two dif-
ficult problems in the rapid thermal processing (RTP) system.
For many applications such as rapid thermal processing chemical
vapor deposition (RTCVD) [1] and rapid thermal oxidation
(RTO) [2], large changes in wafer emissivity can occur during
film growing, leading to erroneous temperature measurements
with a single wavelength pyrometer. The error in the inferred
temperature will affect the temperature control of the RTP
system. In order to correct the temperature reading of the
pyrometer, a neural fuzzy network is used to predict the emis-

sivity changes for the compensation of measured temperature.

As for the temperature control, to overcome ill performance of
the temperature tracking system due to the inaccuracy of the
identified model, another neural fuzzy network is used in the
RTP system for learning inverse control simultaneously. The key
advantage of neural fuzzy approach over traditional ones lies
on that the approach does not require a mathematical descrip-
tion of the system while performing pyrometer correction and
temperature control. Simulation results show that the adopted
neural fuzzy networks can not only correct the pyrometer reading
accurately, but also be able to track a temperature trajectory
very well.

Index Terms—Emissivity, feedforward learning, inverse con-
trol, temperature measurement, TSK fuzzy rules, wafer.

I. INTRODUCTION

I N recent years, semiconductor manufacturing has be
moving toward single-wafer processing in individual op_—
cluster tools. The manufacture of high-density integrated c

deposition (RTCVD) [7], and nitridation (RTN) [5]. Wafer
temperature measurement and control are two critical issues
for RTP. Many recent papers have been done to identify and
compensate for the sources of the two problems [8]—[10].

At present, the temperature sensor used for RTP is typically
a single-wavelength pyrometer, which is a noncontact tech-
nique. The temperature is determined from the emissivity of
the wafer at the specified wavelength of the pyrometer. The
optical pyrometer has been successfully used for annealing,
cleaning, and nitridation where the emissivity of the wafer
surface does not change during processing. However, for
applications where the characteristics of the surface are being
changed (such as rapid thermal oxidation or rapid thermal
chemical vapor deposition), the emissivity is varying as a
function of the type of film structure, the thickness of the
film, and the composition of the surface it is being deposited
on. This change can lead to temperature errors in excess of
50°C for the cases described above. Some papers deal with
this problem and various techniques for improving temperature
measure are proposed, e.g., dual-wavelength pyrometer [11]
and models of the optical properties to predict the emissivity
change [14] that are based on measuring emitted radiation. The
dual-wavelength technique needs two different instruments to
rgﬁasure emitted radiation directly and emissivity indirectly.

ese testing results show difficulties with both implementa-
fions of the technique. The approach using the model-based

cuits on wafer with increasingly larger diameter and submicr&iniSSivity correction is only suitable for thin films and short-

design rules requires a minimization of the thermal budgé

itr_ne processing. Reference [14] showed this was due to

Rapid thermal processing (RTP) technology inherently pogi_f“ferences between expected and actual deposition rates. An

sesses these features and provides several advantages 3

%rpative approach has been the use of the temperature

traditional batch furnaces. One advantage of RTP is thatdgPendence of acoustic wave speed [12]. There are also

eliminates the long ramp-up and ramp-down time associat®

gvariety of approaches based on measuring the thermal

with furnaces, enabling a significant reduction in the therm§KPansion of wafer [13]. A survey of a broad range of RTP

budget. Another advantage of RTP is that it allows bett

control over the processing environment (e.g.,

oxygen present), which is becoming critical in some applic
tions. Today, RTP is in production used for annealing (RTAl

femperature sensing techniques was given in [32].
the amount ofiN this paper, the simulation technique is based on the RTP
global model which includes the temperature sensor, control

op, and lamp system. The process simulated is the rapid

[4], cleaning (RTC) [5], oxidation (RTO) [6], chemical vaport ermal oxidation (RTO). Emissivity changes during oxidation

are calculated according to reflection and refraction within thin
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_simulated by a linear parabolic model. Based on the basic heat
Wansfer law, we shall derive a pyrometer model to simulate

the temperature sensor in the RTP system. Then we use a
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Fig. 2. Schematic of the closed-loop rapid thermal processing system.
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neural fuzzy network to learn and predict the variations of | Controller
film growing as a function of oxidation time under different
process temperatures, and use the optical model to calculate the
emissivity of the wafer. The good prediction capability of the
neural fuzzy network can predict the emissivity changes on the
wafer surface and convert the pyrometer reading to a correct Emissivity Pyrometer
number. Another neural fuzzy network is used to control the Correcting Model
temperature of a RTP system to achieve two control objectivesorrected Pyrometer Model  § pyrometer
temperature trajectory following and temperature uniformityMeasured Temperature Reading
on the wafer. Fig. 3. Global model components of the closed-loop RTP system.
This paper is organized as follows. In Section I, physical
modeling of the RTP system is performed. In Section Il
the optical pyrometer model is discussed. In Section IV, the . .
configuration of the adopted neural fuzzy network, trainin ngle to the vertical. A pyrometer views the bottom surface of

process, and pyrometer measure correcting method are in Mwar\]fer th_roulgh a dce]ntrfal EOIe Im th delﬂoor.RTP .
duced. In Section V, simulation studies on temperature contsr(i% aﬁbe;n?]tlca ;_T\O e z It'e CI?Sde -Olopb | ds;:slt)em IS
combined temperature measurement of the RTP system us SC” ed here. The model IS called a global model because

the neural fuzzy networks are presented. Conclusions are migamulates all the components ?n the RTP system anpl can
in Section VI. thus be used to investigate the interplay of the wafer itself.

A simplified schematic of the closed-loop system is shown in
Fig. 2. The system uses one bank of lamps which is arranged
Il. MODELING OF THE RTP SYSTEM in orthogonal directions. The lamps are placed outside the

There have been a number of papers [15]-[17], [33] cofgaction chamber’s quartz windows. A flat reflector is located

cerning the analysis or modeling of the wafer temperatup€hind the bank of lamps. The system is controlled by a

distribution during RTP. However, these papers always nigedback control loop that utilizes the difference between the

glect some heat transform on the wafer or the temperatf@verted temperatutg. and the set temperafuig to control
sensor model. The importance of the interface (lamp dynami@® !amp power. The constituent components of the global
sampling, analog-to-digital, and digital-to-analog conversiongjedel are shown in Fig. 3. The components include a wafer
between controlling computer and RTP processor when impl@&rmal-dynamic model (in particular, the heat transfer to and
menting the software on the actual equipment is also ignorde®m the wafer) and a lamp dynamic and ray tracing model for
The lamps transfer function that we propose will take this inf§€ dynamics of lamp power to the wafer. A power supplier
account and a global modeling of the RTP system will bésed to provide the power to lamps and an emissivity corrector
used for off-line simulation. for correcting the pyrometer reading are also included. In the
The RTP system considered in this paper is shown in Fig. fellowing subsections, the mathematics model used for each
In Fig. 1, a bank of tungsten-halogen lamps mounted belonc@amponent is described separately. These models are then
diffusely reflection ceiling constitutes the heat source. Coolirigtegrated into a global model.
air is forced over the lamps to prevent the quartz sheaths fromrhe present application is to the growth of silicon oxide for
overheating. Two quartz plates separate the lamps from tieeperature above 600C and, hence, the wafer is opaque
lower half of the oven. The wafer rests on three quartz pitg lamp radiation [18]. When compared with conventional
above the black water cooled oven floor. The side walls of tifiernace oxidation, RTO has the advantages of single-wafer
bottom half of the oven are partially reflective and are at grocessing that customizes the process for each wafer and
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Radiation

Emission
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reduces the risk of scrapping a large number of wafers of low-The heat transfer model of the wafer takes into account
thermal-budget processing to form shallow junction, whicbonvective, conduction, and radiative energy transport mech-
RTO achieves with short oxidation time and ease of integranisms. The model is written as

tion into cluster tools for automationir-situ fabrication of

integrated circuits. T = —AadT* — Acone (T = T,) — Acondl + BP (2)

) ) whereT, is the ambient temperature expressed agvar 1
A. Wafer Thermal Dynamic and Lamp Dynamic Models  yector (the ambient temperature is assumed to be constant
The approach employed to modeling is analytical/numerical the chamber)l’ is the N x 1 temperature vector of the
in that the heat transfer to, from, and within the wafer iwafer elementsp is the N x M radiation-energy matrix from
calculated. Included in the calculation is the radiation hetite lamps to the wafer, ané is the M x 1 lamp-power
transfer to the wafer, the heat conduction within the wafevector, whereN is the number of the wafer segments and
and the heat convection and the heat loss emitted from thé is the number of lamps [15]. The matrice§ad, Acony
wafer surfaces. For the radiation, the heat from the lampadA..,q represent the radiative, convective, and conduction
is absorbed at the wafer surface and the radiation heat Ibest transfer, respectively. A complete description of these
occurs at the surface. As shown in Fig. 2, the controller senaigitrices can found in [15]. The capacitive effects of the
a voltage command to the power amplifier after receivintfpick windows are neglected here since the associated time
measured temperature signal from the pyrometer. The powenstant is two-order magnitude larger than that of the wafer.
reaches steady voltage level after receiving control voltayyestead, the windows heating model is considered as a slowly
command in the ideal case. But in the actual situation, it ¥&rying disturbance for the purpose of system identification
ramp up/down to reach steady-state level. The lamp dynamasd controller design. Physical parameters used in the RTP
describes the power from the lamps after receiving powerodel are the same as those used in [8].
supply voltage. In most published papers, the dynamics ofAs discussed above, the wafer temperature is measured
the lamp power intensity to the control voltage commanily a pyrometer and thus requires accurate knowledge of the
was neglected and the power from the lamps was assunesdissivity of the region of the wafer viewed by the pyrometer.
to be directly proportional to the power supply voltage. FoFhe sensitivity of this emissivity with respect to layer structure
this cause, we present a simple dynamic model betweamd to pyrometer wavelength can be modeled. This gives a
the command voltage and lamp power. The presented laguyide to correctly choose the emissivity value, evaluate the
dynamics has the following form: wafer temperature response, and thus predict overall furnace
operation. This approach will be illustrated in Section 1I-B.

V() = V(teo1) + (comy — V(tr_1))

t—thq B. Wafer Emissivity Model
x|1—exp| ———— L . . I
< < T )) Thermal radiation is a part of electromagnetic radiation.
Pramp = f(V(1), T(z, 1)) - V(t)? (1) Assume that a radiant heat fluk (a heat quantity in a unit

time) is incident on the surface of a wafer. Of this heat flux, the

whereV(¢) is the power supply temporary voltagen;, is the p(r)]rt|(f)n”<1>a IS aZscf)_rb_e_dq>p IS re_flectgd, ag_@T Is transmitted.
present command sent by the controligr,; the last time step, The following definitions are introduced:
t the time constantf}.,,, is the lamp power, and the function

f(V, T) is varied byV (t) and temperatur@ (z, t) at position absorptivity =, /®
. The present lamp dynamics will raise the complexity of reflectivity p=20,/0 (3)
the RTP simulation, and match up the overall RTP system to transmissivity =, /®.

actual RTP dynamics.
In our RTP system, electrical energy is supplied to a “ring%qr the wafer, applying the principle of energy conservation
cylindrical arrangement of tungsten-halogen bulbs of Wh'ctjlves
more will be mentioned later. Energy is radiated through a
guartz window onto a thin semiconductor wafer. A model of at+p+7=1 4

the heat transfer for such a system is developed in cylindrical .

coordinates, where the origin of the coordinate system is thaiS relation is also called Kirchhoff's law. Similar to (4),
center of the wafer bottom surface. and theaxis of the Which is valid for the total radiation, the spectral components

coordinate system coincides with the central axis of the waféf, @ #» 7 at wavelengthA, denoted by, pa, and 7,
pectively, also meet the following relation:

The model is based on the assumption that the temperat{fr&
distribution is axisymmetric and that the wafer is thin enough
such that axial { axis) thermal gradients can be neglected. arx+px+ma=1 (5)
Furthermore, the wafer is discretized into annular zones in

each of which the temperature is assume to be uniform. Sulhe values oty, p, andr depend upon the material, its surface
an approach is often used in radiative heat transfer applicaticatate and temperature, while,, p,, and 7, additionally
and has been used for RTP systems and for furnaces in [9Ylepend upon the wavelength
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8, By TABLE |
. . COMPARISONS BETWEEN EXPERIMENTAL MEASUREMENTS OFEMISSIVITIES AND
N, insert media
THE DESIRED THEORETIC RESULTS FORDIFFERENT OXIDE THICKNESSES
N, /! "
K R Emissivity (Eq. (8))
N, A Oxide thickness( A ) | Emissivity (Ref. [30]) (N=143, N.=3.43+i0.1) Error(%)
0 0.71 0.6988 1.6027
N 4
’ M the rth layer 500 0.72 0.7023 25202
N, N A 1000 073 07117 25713
p 2000 076 0.7467 L7811
N, N 4000 0.87 0.8613 1.0101
3 80000 0.87 0.8686 01611
\ Substrate
8, where
Fig. 4. Propagation of a radiation wave through multilayer films. A wavelength;
N,d,. cos 0, optical thickness (at a specific wave-
length Ag);

By the Kirchhoff's law as demonstrated above, the emissiv-
ity of the wafer surface can be determined immediately from
the reflectivity for the case of an opaque wafer (transmissivity, r
7, equals to zero). With the reflectivity known, the emissivity ="
is equated tol( — reflectivity). To determine the reflectivity
of multiple dielectric layers for a radiation wave at a given "~
wavelength and inserting angle, we need to consider the™

N, =n, —iK, complex refractive index;

real part of refractive index;

image part of refractive index{,, = 0
for nonabsorption material;

layer thickness;

therth layer’s insert angle determined by

multireflection phenomena on the adjacent surfaces in muItipIeN cind —N. sin %neﬂ Sj\fla\;\ilil 9.
thin layers. According to the basic theory for the optics in No o inrse_rt rr?aterials"s complex refractive in-
[19]-[22], each layer's optical property can be described by~ ¢ dex: P
a characteristic matrix that can be used to describe the optic o
insert angle;

of radiation through a planaW-layer structure. Fig. 4 shows °°
the propagation of a radiation wave through a multilayer film. ~ *®
For a given layer structure on top of a single crystal silicon ~°

complex refractive index of the substrate;
refractive angle of the substract.

substrate. the characteristic matrix is Table | lists the comparisons between the actual experi-
i mental measurements of emissivities and the above theoretic
cos 6, — sin 6, ©6) results for different oxide thicknesses. It is obvious that the
P ks ’ theoretic results and actual measurements are very close. In
i, sin o, cos O,

_ _ - o other words, if the oxide thickness is known, the emissivity
For \V dielectric layers, the characteristic matrix is a produgf the wafer can be inferred precisely by this optical model.

sequence as follows: The experimental measurements in the second column of the
N (A table were done in [30].
cos O, — sin 6,
o e (7)
r=1 [in, sin 6,  cos 6, C. Silicon Oxidation Growing Model

With the characteristic matrix available, the reflectivity can be In this paper, the application of the RTP system is on thermal

determined [21] by oxidation on a silicon wafer. The temperature of this formation
B_C\?2 process is exceeding 60C, where the wafer is opaque to the
R= <77°7> (8) wavelength of concern here. The thickness of the,;Si®the
B +C top of Sizy can be obtained from the equation derived by Deal
where and Grove [23] in their linear-parabolic model of oxidation
[B} B N [ cos 6, UL sin 6,,] {1} ©) 22 4 Az, = B(t+71) (10)
“l S iy sin 6, cos &, | where A and B are rate constants, and is the time dis-
where placement needed to account for the initial oxide laygat
o t=20
6. = — N.d, cos 6,.: phase thickness
A 7 = (27 + Ax;)/B. (11)
N, cos 8,, S polarization
Mo = N,/ cos 6,, P polarization Both B and (B/A) may be well represented at the singly

'N, cos §,, S polarization activated processes [24]

Ny = | N/ cos 6., P polarization B =0, exp(—E./kT) (12)
e = [N, cos 6, S polarization and
® 7 |Ns/cos 65, P polarization (BJA) = Cy exp(—Es/kT) (13)
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3 . : ; This also takes account of the conduction and convection heat
flux in addition to the radiation heat flux.
sl The spectral radiation intensifif’ is defined as
5 1150 °C dW
2 Wy = —— w/m? zm. (17)
Lél 2+ 100°C R d)\
g Planck’s law gives the radiant flux distribution of a black body
%1‘57 050 °C | as a function of the wavelength and of the body’s temperature
= , by the relation
[=] 000 °C
5 L . Cl)\_5
g ! Won = S /AT (18)
S 8o
%o.s» | where W, is the spectral radiant intensity of a black body,
w/m? pm (the suffix “0” will be used in the future to indicate
| a black body),\ is the wavelengthyum, 7" is the absolute
% P 100 150 200 s temperature of the thermal radiatdf, c, is the first radiation
RTO TIME (secs.) constanic; = 3.7415 x 108 w - pm*/m?, ande¢; is the second
Fig. 5. Silicon oxide thickness as a function of RTO time under differei@diation constant, = 1.4388 x 10* um - K.
temperatures (simulation results). For a given wavelength range from to X,, (18) can be
evaluated as
where C; = 7.72 x 10> pm?h, By = 123 eV, C; = N A
6.23 x 10° ym/h, andE, = 2.0 eV. Details of the thermal Wo, a1—2s —/ /AT 1 dA (19)

oxidation process can be found in [23].

Solving the quadratic equation in (10) gives the oxideherel, x, _», is the band radiant intensity of a black body.
thickness as a function of time The ratio of the spectral radiant intensiy, at the wave-
A{ {1 . (t + T)}m B 1} length A of a nonblack body to the spectral radiant intensity

To = Z/iB (14) of a black bodyW,, at the same temperature is called the
/ spectral emissivitye,, where

Fig. 5 is a plot of oxide thickness as a function of oxidation Wi
time at various temperatures. The curves in this figure are AT W N (20)
quite close to those obtained by practical experiments obtained

in [23] showing that the model derived in the above is very the spectral emissivity: of a given body is constant for
accurate. each wavelength (i.eg, = constant), such a body is called

a gray body. Similar to (20), if all the wavelengths from zero
. OPTICAL-PYROMETER TEMPERATURE MEASUREMENT to oo, are taken into consideration, the term “total emissivity”

) o ) £ is used
A single wavelength pyrometer is widely used to infer wafer
. , w
temperature in today’s RTP systems. Pyrometers can measure e = (21)
the temperature of an object without physically touching W,

the object. The temperature is determined from the radiat@ere W is the radiant intensity of any given body aii,
intensity of the wafer at the specified wavelength of thig the radiant intensity of a black body.
pyrometer. In Section Ill-A, we shall introduce the basic Following Kirchhoff's law, the spectral absorptivity, of

physics of energy transfer in thermally radiating bodies ang opaque bodies equals their emissivity so that we have
then develop the pyrometer model according to this basic heat

transfer law in Section IlI-B. Q) = Ex. (22)

For a given wavelength band froiy to A., Kirchhoff's law

is expressed by
The radiant intensity?” or the radiation exitance is the heat

flux per unit area expressed as the ratio of the heat diix OAi—2s = Ex =X, (23)
emitted from the infinitesimal element of the surfa¢d to
the surface aredA itself

A. Emission and Absorption of Radiation

wherea,, _», is the band absorptivity and,, _», is the band
emissivity.
W = ae w/mZ. (15) When all the wavelengths from; — 0 to A —
dA are taken into consideration, the corresponding form for (22),
In the same units as the radiant intensity, the heat flux densityich is also valid, then becomes
q of the incident radiation is given by
dd

= — wim?, 16 . - : o
1= A (16) where« is the total absorptivity ane is the total emissivity.

a=c¢ (24)
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B. Pyrometer Model T (k+1) T,(k+1)

Converter Pyrometer «——

A narrow-band pyrometer senses the radiation intensity
emitted by the center of the wafer at a specified wavelengt
according to the heat balance principle, i.e.,

T(ict1)

€, (k+1)

T D) | Neural Fuzzy
I/Vw()\7 Tw, Ew) = I/Vp()\7 pr7 Ep) (25) Network

where the subscripb denotes the wafer andthe pyrometer. Fig. 6. Block diagram of the pyrometer measurement-correcting method.
Then, by the Planck’s law described in (18), we have
euCL A e, Oy AP of this method is due to the assumption of constant growth
W(Ca/NTw) 1 C(Cf/)‘Tp) 1 (26) rate of the film thickness as a function of temperature. Once

_ . the wafer temperature cannot be kept at the setting value
The actual temperaturg, can be obtained by solving (26) exactly, the growth rate will vary from time to time. If the

1 estimated growth rate chang&40% versus the actual growth
To=4—""> "2 By &p (27) rate, a large estimated temperature error will be observed at
T, C In - later time [26]. This method only can be applied to short-
P w

_ o _ time and thin-films processes, because the actual growth rate
wheree), is the emissivity of the pyrometee,, is the wafer s always not well known. In this paper, we use a separate
surface emissivity at the wavelengthand}, is the pyrometer neural fuzzy network to off-line learn the actual samples

reading. We also can obtaifj, by solving (26) of the oxide thickness growth as a function of oxidation
1 time at several different process temperatures. The neural
1, = T % = (28)  fuzzy network estimates the growth behavior as associative

T, + oA In i memories without requiring a mathematical description of how

the output functionally depends on the input, i.e., it learns from
In (27), we can see that if the emissivity of the wafer anfumerical samples. This method is more precise in estimating
that of the pyrometer are the same, the actual temperatuie actual oxide thickness than the mathematical function
and inferred temperature by the pyrometer are identical. dpproximate approach. With the film thickness being predicted
is evident from (28) that the temperature inferred from therecisely by the neural fuzzy network, the pyrometer reading

pyrometerZ, is only equal to the actual wafer temperaturgan be corrected accurately to the actual wafer temperature.
when the assumed emissivity is equal to the actual wafer

emissivity. Hence, the variations in wafer emissiviy,, can
lead to errors in temperature measurement. We shall prop@&seSelf-Constucting Neural Fuzzy Inference Network
a method to predict the different emissivity between wafer In this subsection, we shall introduce the neural fuzzy

and pyromgter and compeqsate the measurement errors Ofr{QfAWork used in our approach called self-constucting neural
pyrometer in the next section. fuzzy inference network (SONFIN), modified from the one
we proposed previously in [3]. The SONFIN is a fuzzy

IV. PYROMETER MEASUREMENT-CORRECTING METHOD rule-based network possessing neural learning ability. As
compared to other existing neural fuzzy networks [31], a major

A. Methodology characteristic of the network is that no preassignment and

In this Section, we propose a method of using a neur@fsign Of fUZZy rules are required. The I’uleS are Constructed
fuzzy network to correct the pyrometer reading. Fig. 6 shov@itomatically during the training process. The SONFIN can
the block diagram of this method. In Fig. 6, the previougvercome both the difficulty of finding a number of proper
corrected temperature Va“je(k) and the current processingrules for the fUZZy IOgiC controllers (FLC) and the over-tuned
time k are used as the inputs of the neural fuzzy network. TR&d slow-convergence phenomena of the backpropagation
network will then predict the current film thickness, whicieural networks [25]. Another feature of the SONFIN is that
is used to compute the emissivity of the wafdg(k + 1) it can optimally determine the consequent of fuzzy IF-THEN
according to the wafer optical model described in Section Ifules during the structure learning phase. We have shown that
B. The converter in Fig. 6 is used to correct the pyrometéi® SONFIN outperforms the pure neural networks greatly
reading valueT, (k + 1) to T(k + 1), which is the predicted both in learning speed and accuracy [3].
current wafer temperature. In Fig. 6, we uge! block to
represent the operator of unit-time delay. We expect that the
corrected temperature vali&(k + 1) is equal to the actual A Structure of the SONFIN
wafer temperaturd, (k + 1). We shall describe the details of The structure of the SONFIN is shown in Fig. 7. L€t
the block diagram in the following subsections. and a(®) denote the input and output of a node in layer

In [26], Sorrelet al. numerically integrated the Arrheniusrespectively. The functions of the nodes in each of the five
growth-rate equation over time to linearly approximate thayers of the SONFIN are described as follows.
actual film thickness and then calculated the wafer emissivityLayer 1: No computation is done in this layer. Each node
by the approximated film thickness. The major source of errars this layer, which corresponds to one input variable, only
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for the LMOM (local mean of maximum) defuzzification
operation [27] and the width is used for output clustering only.
Different nodes in layer 3 may be connected to a same blank

i node in layer 4, meaning that the same consequent fuzzy set is
Layer$ specified for different rules. The function of the blank node is
- a® = Z u](»4) - ag; (32)
Layer 4 J
R where ag; = mo;—the center of a Gaussian membership
B function. As to the shaded node, it is generated only when
Layer3 necessary. Each node in layer 3 has its own corresponding
= shaded node in layer 4. One of the inputs to a shaded node is
the output delivered from layer 3 and the other possible inputs
Laya 2 ™ (terms) are the input variables from layer 1. The shaded node
L function is
Layer 1 a® =" ajx, M (33)
J

where the summation is over all the inputs amd is the

1 *2 corresponding parameter. Combining these two types of nodes
Fig. 7. Structure of the proposed self-constructing neural fuzzy inferen!:% layer 5, we obtain the whole function performed by this
network (SONFIN). layer for each rule as
transmits input values to the next layer directly, i.e., a® = |3 ajiz; + ao u®, (34)
al) = ugl) =z;. (29) J

Layer 2: Each node in this layer corresponds to one lin- Layer 5: Each node in this layer corresponds to one output

guistic label (small, large, etc.) of one of the input variables ¥ftiable. The node integrates all the actions recommended by
layer 1. In other words, the membership value which specifit@/€rs 3 and 4 and acts as a defuzzifier with
the degree to which an input value belongs a fuzzy set is
calculated in layer 2. With the use of Gaussian membership al® — Z %(4)/2 %(3). (35)
function, the operations performed in this layer is f f

(2 2.2

a® = ¢~y i)/ (30) B. Learning Algorithms for the SONFIN

where m;; and o;; are, respectively, the center (or mean) Two types of learning—structure and parameter learn-
and the width (or variance) of the Gaussian membershipg—are used concurrently for constructing the SONFIN.
function of thejth term of theith input variabler;. Unlike The structure learning includes both the precondition and
other clustering-based partitioning methods, where each ingansequent structure identification of a fuzzy IF-THEN rule.
variable has the same number of fuzzy sets, the numberTdfere are no rules (i.e., no nodes in the network except
fuzzy sets of each input variable is not necessarily identidhle input/output nodes) in the SONFIN initially. They are
in the SONFIN. created dynamically as learning proceeds upon receiving on-

Layer 3: A node in this layer represents one fuzzy logitine incoming training data by performing the following
rule and performs precondition matching of a rule. Here, wearning processes simultaneously: 1) input/output space
use the following AND operation for each layer 3 node  partitioning; 2) construction of fuzzy rules; 3) consequent

@) (3) structure identification; and 4) parameter identification. In the
e = H U (31) above, processes 1, 2, and 3 belong to the structure learning
g phase and process 4 belongs to the parameter learning phase.
where the summation is over the layer 2 nodes participatiithe details of these learning processes are described in the
in the IF part of the rule. rest of this subsection.

Layer 4: This layer is called the consequent layer. Two 1) Input/Output Space PartitioningThe way the input
types of nodes are used in this layer and they are denosgghce is partitioned determines the number of rules extracted
as blank and shaded circles in Fig. 7, respectively. The nodem training data as well as the number of fuzzy sets
denoted by a blank circle (blank node) is the essential node the universal of discourse of each input variable. For
representing a fuzzy set (described by a Gaussian membergadph incoming pattera, the strength a rule is fired can be
function) of the output variable. Only the center of eachterpreted as the degree the incoming pattern belongs to the
Gaussian membership function is delivered to the next layewrresponding cluster. For computational efficiency, we can
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use the firing strength given in (31) directly as this degreePART 2.{ find J = arg max; <;<.;) /()

measure IF Y > Fi(t)
. do nothing
] _ (3) _ —[D(z—m)]T[D(z—m
Fi(z) = H uY = e PE—m)]T [D(z—m)] (36) ELSE
' ! {ct+1)=c(t)+1
whereFV € [0, 1], D = diag(1/oi1, 1/0:2, - -+, 1/oin), and generate a new fuzzy rule, with
m = (mil, mi2, =, min)T- Mmer+1) = &, Dc(t+1) = —(1//3)
Using this measure, we can obtain the following criterion diag1/In(FY), ---, 1/1n(F7)).
for the generation of a new fuzzy rule. Left) be the newly After decomposition, we have
incoming pattern. Find Mpew—i = Tir Onew—i = —3 - In(F7)
; t=1---m.
J = arg 15?2(@) F(x) (37) Do the following fuzzy measure for

each input variable:

{ degree(i, t) = maxi<j<w,
E[N(mnew—iv ane'w—i)l N(mjzv ajz)]
wherek; is the number of partitions of
the ith input variable.

where ¢(t) is the number of existing rules at time If
F7 < F(t), then a new rule is generated whdrét) € (0, 1)
is a prespecified threshold that decays during the learning
process. Once a new rule is generated, the initial centers and

widths are set as IF degree(i, t) < a(t)
M(o(t)41) =T (38) THEN adopt this new membership
1 P P function, and sek; = k; + 1
Dietyy1y = — 3 -diag(1/In(F7), ---, 1/In(F7))  (39) ELSE set the projected membership

function as the closest oné.
according to the first-nearest-neighbor heuristic [27], where }

3 > 0 decides the overlap degree between two clusters.

th ?ftnﬁr I? d'rr:nlgn!ss'o%?erﬁ[rendb,etrr;ﬁ nefxtn;[% F;] |fso;cr(:]eddec_ﬁmgosem the above algorithme(t) is a scalar similarity criterion
i : . 'pfunction in 8t)mat is monotonically decreasing such that higher similarity

and (39) to the corresponding one-dimensional memberstﬁl

) ; . : Btween two fuzzy sets is allowed in the initial stage of
function for each input variable. For the Gaussian membersqé%mmg_ For the output space partitioning, the same measure

function used in the SONFIN, the task can be easily done ing (37) is used. Since the criterion for the generation of a
o~ [Pi(@=—m)]T [Di(z—m;)] _ H o= ((z=mi;)? [a?)) (40) new output cluster is related to the construction of a rule, we
J shall describe it together with the rule construction process in

: . Process 2 below.
wherem;; ando;; are, respectively, the projected center and 2) Construction of Fuzzy RulesAs mentioned in learning

W'gth oft;[]he mergbersfh;p functut)n 'rf' eaclr; !npu: d'megls'on';-&ocess 1, the generation of a new input cluster corresponds
reduce the number of fuzzy Sets of each input vanable andp,q generation of a new fuzzy rule, with its precondition

avoid the existence of redundant ones, we should check t constructed by the learning algorithm in Process 1. At

similarities between the newly projected membership functi Re same time, we have to decide the consequent part of the

énd th_e eX'Stmbg Oﬂ?sf'” (:_ach Input d:jm'entilons.osl\llr:zclil Wenerated rule. Suppose a new input cluster is formed after
aussian membership functions are used in the e presentation of the current input/output training pair (

use the formula of the similarity measu¥e(A, B) of two - :

J , then the consequent part is constructed by the followin
fuzzy setsA and B derived previously (see [28] for details),ggorithm. a part 1 ! y Wing
where 0 < F(A, B) < 1 and the largerE(A4, B) is, the '

more fuzzy setd is similar to B. Let u(m;, o;) represent the IF there are no output clusters

Gaussian memb_ership function with gente{ and widtha;. do { PART 1in Process 1, with: replaced byd }
The whole algorithm for the generation of new fuzzy rules ELSE '
as well as fuzzy sets iq each_ i_n_put dimensiqn i; as fgllows. do {
Suppose no rules are existent initially.#fs the first incoming find J = arg max; F4(d).
pattern THEN do IF F7 > Fou(t)
PART 1.{ Generate a new rule connect input clustet(¢ + 1) to the existing
with centerm,; = z, width output clusters
D = diag(l/aimt, BRI 1/Jinit) ELSE
wherec;,,;; is a prespecified constant. generate a new output cluster
After decomposition, we have do the decomposition process in PART 2 of
one-dimensional membership functions Process 1
with mqy; = z; andoy; = Gt connect input clustet(t 4+ 1) to the newly
i=1-n. generated output
cluster.

ELSE for each newly incoming, do .
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The algorithm is based on the fact that the preconditiomgherey?(¢) is the desired output ang(t) is the current output.
of different rules may be mapped to the same consequdilite parametersy;;, in layer 4 are tuned by RLS algorithm as
fuzzy set. Compared to the general fuzzy rule-based models d
with singleton output where each rule has its own individual @(f +1) =a(®) + P(t + Du(t + (") —u(?))  (44)
singleton value [9], [11], fewer parameters are needed in theP(t—i— 1) = 1 P(t) - P(t)u! (t + Du(t + ) P(}) (45)
consequent part of the SONFIN, especially for the case with A+uT(t+1D)Pu(t+1)

A
a large number of rules. . . .
e <
3) Consequent Structure Identificatiotdp to now, the yvhereO < A - 1is the forgettllng factoru is the current
. : input vector,a is the corresponding parameter vector, dnd
SONFIN contains fuzzy rules in the form as . : . . )
is the covariance matrix. The initial parameter veai®) is
Rule j: IF x1 is A;; and --- andz, is A, determined in the structure learning phase @) = o/,
THEN y; is m; (41) wheres is a large positive constant. As to the free parameters
m;; and o;; of the input membership functions in layer 2,
where z; and y; are the input and output variables, respechey are updated by the backpropagation algorithm. Using the
tively, A;; is a fuzzy set, aneh; is the position of a symmetric chain rule, we have
membership function of the output variable with its width

neglected during the defuzzification process. Even though such mg) (t+1) = mg»)(t) -7 8]?2)

a basic SONFIN can be used directly for system modeling, a om;

large number of rules are necessary for modeling sophisticated @ OF oy 8@23)
systems under a tolerable modeling accuracy. To cope with =My () — - Z W PRC)) (46)
this problem, we adopt the spirit of the TSK model [29] Y5 Oay” Omy;

into the SONFIN. In the TSK model, each consequent pafiere
is represented by a linear equation of the input variables. It is

reported in [29] that the TSK model can model a sophisticated ok =y(t) —y*
system using a few rules. Even so, if the number of input Iy
and output variables is large, the consequent parts used in dy a§f> -y 47
the output are quite considerable, some of which may be 5,3 — 2 (47)
superfluous. To cope with the dilemma between the number “ <Z a53)>
of rules and the number of consequent terms, instead of using i
the linear equation of all the input variables (terms) in each 5 3) 2(xs —myj) i L
rule, we add these additional terms only to some rules whenaa,(c) )% o2 ,if term nodej is
necessary. The idea is based on the fact that for different inpup,,,@ — N connected to rule node
clusters, the corresponding output mapping may be simple or 0, otherwise.
complex. For simple mapping, a rule with a singleton output (48)
is enough, while for complex mapping, a rule with a linear
equation in the consequent part is needed. The criterion Y8nilarly, we have
deciding which type of consequent part should be used for 8F
each rule is based on computi 0(?)(t+ 1) :0(?)(t) -
puting ij ] PE)
o ’ 3
RE() =Y =2 (y(t) — y(1))? (42) — (1) _nz_E > 8?3) 8@%2)) 49)
t Zaf) Y day”’ do;
k=1
where

whereagg) is the firing strength of rulé, ¢ is the number of ) 2z —mi)? -
rules, y?() is the desired outputy(t) is the current output, da” M T3 if term nodey is
and RE(:) is the accumulated error caused by rdleBy 5 @ ~ * connected to rule node
monitoring the error curve, if the error doesn’t diminish over = * 0, otherwise.
a period of time and the error is still too large, we shall (50)

add linear combinations of input variables to the rules whose

RE(i) values are larger than a predefined threshold value. The Feedforward Learning of Oxide Film Growing
process may be done repeatedly after a period of time until
satisfactory result occurs.

4) Parameter Identification:The parameter identification
process is done concurrently with the structure identificati
process. The idea of backpropagation is used for this sup
vised learning. Considering the single-output case for claritg
our goal is to minimize the error function

al'he feedforward learning of the oxide film growing rate
is an off-line training process as shown in Fig. 8. The inputs
69 the SONFIN are the processing temperatufg &nd the
?_rnpling time {), and the desired output of the SONFIN is
e oxide thicknessX) at the corresponding sampling time
hd processing temperature. Due to the high nonlinearity of
the oxide thickness growth rate at the beginning of processing,
E=1iyt) - y*(t))? (43) we take more training samples in this period. The SONFIN is
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rule for the converter in Fig. 11 as
M ———*  SONFIN

. b e XK _ 1
) pTCdICtOl’ Tc - m (51)
A [P
Tp 02 E,/w

Fig. 8. Feedforward learning of the oxidation growing.
where 7 is the corrected temperature valdg, is the tem-

25 ‘ ‘ , : perature measured by the pyrometer, afydis the predicted

emissivity of the wafer. It can be seen that if the predicted

emissivity of the wafee!, is equal to the actual emissivity of

2F _x 211007 the wafere,,, then (27) will be the same as (51), i.€.,= 1.,

¥ 10500 and, thus, the corrected temperature will be equal to the actual

1000 °q wafer temperature.

1 In (51), 7}, is given by the pyrometer and can be calculated
by the pyrometer model in (28) in simulations asid can be
determined immediately from the reflectivity of the opaque
wafer, i.e., e/, = 1— reflectivity. According to (8), the
current film thickness is required to evaluate the reflectivity
R. Because the film thickness cannot be measured directly,
it is estimated by the SONFIN predictor, which has been
off-line trained before processing. To predict the current film
thickness, the previous corrected temperature Valig) and
0 50 100 150 200 250 the current processing time are used as the inputs of the

RTO Time(sec) SONFIN. We assume the emissivity of the pyrometer in (51) is
Fig. 9. The result of learning three oxidation growing profiles at 1000, 1058, constant value that is identical to the bare silicon wafer (i.e.,
and 1100°C simultaneously. g, = 0.7). Substituting these values described above into (51),

the approximate current temperat@gk + 1) can be inferred

updated supervisedly to minimize an error funct®rdefined and then used in the control Ioop for wafer temperature control.
by E = S0 (1/2)[X,a(k) — X (k)]2, where X,4(k) is the The' temperature control is ach|evepl by another SONFIN. The
desired film thicknessX(k) is the actual output (predicteddes'_gn of this SONFIN controller is introduced in the next
film thickness) of the training network andis the number of S€ction.
training patterns. After some epochs of training, the SONFIN
has learned the oxide film growth behavior and can be used V. INVERSE LEARNING FOR NEURAL
to predict the film thickness at given processing temperature Fuzzy CONTROLLER DESIGN

and t'lme. Flfgl 9 shows the result gf Iearmng tr:ree OX|dIat|on Of the various techniques for controlling the temperature of
\?vrr?g::]%?rdoelni?eit ti\%ogé:ttg??i]rﬁrlhii&r?gsj:1]# dt"fl‘g?%uesnz’tethe RTP system, model-based control has the greatest potential
the estimated ones by the SONFIN. The average red'ct'{%r attaining the best pe_rformance in the field of conventional
. y . g€ Predicliglyirol when the model is accurate. There have been a number
error 1S smaller than 0.012m. Notice thaF the learned resulf[so identification methods presented to help obtaining more
n F'g.' 9 are very clos_e to those obtained by the praCt'CgI:curate RTP models. Nevertheless, it is often difficult to
experiment performed in [23] identify the models accurately due to some complex and
highly nonlinear situations. Recently, neural networks have
been shown to possess good capability to adaptively control
a nonlinear model. To overcome the drawback of the model-
The block diagram of emissivity prediction and pyrometdsased control, we apply the inverse learning method, originally
reading correction is show in Fig. 6, where the wafer temeported in the neural network literature, to the design of the
perature is measured by a pyrometer. It is observed frameural fuzzy controller for the temperature control of the RTP
(27) that if we do not predict the emissivity changg, system. The key advantage of the neural fuzzy approach over
during processing, then the difference between the pyrometdraditional ones lies on it does not require a mathematical
measured temperature value and the wafer’'s actual temperatigscription of the system while controlling. Again, we shall
value can be more tha#i50 °C in few seconds [14]. Hence, use the SONFIN as the neural fuzzy controller here. In [31],
a converter is employed to convert the pyrometer reading tasv@ have compared the temperature control performance of
correct temperature value by predicting the wafer's emissivigeveral kinds of controllers on the RTP system, including
changes. The SONFIN is used here to predict the current oxitte backpropagation (BP) neural network controller, model-
film thickness and then infer the wafer emissivity by the opticaéference adaptive controller (MRAC), proportional-derivative
model described previously. (PD) controller, and our SONFIN. With the performance
According to the temperature-emissivity relation of théndexes of the nonuniformity, maximum positive error, max-
pyrometer described by (27), we set the emissivity correctiamum negative error, and mean-square tracking error, we

Thickness(um)
w

0.5

0

L

D. Pyrometer Measurement Correcting Rule
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u(k) i’l ’ t x(k-1) T'(k+])
ant I e DA P(k+1) T (k+1
SONFIN | ¥ RTP Plant|— )
controller
x(k}
SONFKIN z' :
Identifier S Fulerh
. T,(k+1)
Fig. 10. Block diagram of the learning phase of the inverse learning control Converter Fyrometer
method. T

e, (k+1)

found that the SONFIN had the best performance. Hence, T&) | SONFIN
in this paper we adopt the SONFIN controller in the RTP predictor
system to check the effectiveness of the SONFIN prediction _
for pyrometer-reading correction. After a while we shall usE9: 11. Block diagram of the overall RTP temperature control system.
a SONFIN as a pyrometer-reading corrector and another

SONFIN as the temperature control for the RTP system @ Simulation Results and Performance Comparisons
this section. The simulation results will be compared to those
of other approaches.

Fig. 11 shows the block diagram of close-loop temperature
control of the RTP system. The whole system consists of a
SONFIN controller, which has been trained in the inverse
A. Inverse Learning of the RTP System learning process described in Section V-A, and a SONFIN

The direct inverse leaming configuration shown in Fig. 1 redictor which has been trained through feedforward learning

. . . L scribed in Section IV-C.
is adopted in our approach, where off-line training is use ;
. ; ; The SONFIN controller is to control the wafer temperature
for the design of the controller. The inverse learning of the : : : . .
. . to follow a desired profile. The SONFIN predictor is to predict
SONFIN involves two phases. In the learning phase, the . . . .
. . : . the film thickness of the wafer at any processing time such
SONFIN is trained to model the inverse dynamics of the plan. .
at the actual emissivity of the wafer can be calculated

The obtained neural fuzzy model (which represents the inveqse . h di S I . |
dynamics of the plant) is then used to generate control actions correctlng the pyrometer reading. Severa experimenta
) - simulations have been done with this structure and the results
in the application phase. . . :
Suppose the plant of RTP model is described by are presenjted in this sgctlon. Wg alsq replace the SONFIN
predictor with a normal linear predictor in the structure shown
in Fig. 11 for performance comparisons.

y(k) = plant(y(k — 1), u(k)) (52) In the first simulation, we try to control the wafer tem-
perature to follow the desired temperature profile shown
in Fig. 12(a), where the desired final process temperature

wherey(k) andy(k — 1) are the wafer temperatures at tirhe (operating point) is 1050C. For this purpose, the SONFIN
andk — 1, respectively, and.(k) is the control signal at time predictor for correcting the pyrometer reading is trained to
k. Here we assume that the dynamics of the plant is unknovearn three oxidation profiles obtained by setting the wafer
and we are going to build a SONFIN that maps a giveemperature at 1000, 1050, 110C, respectively. Learning
pair (y(k), y(k + 1)) to a desired control action(k). This all the three profiles around the operating point 108D
mapping is not easily expressed as analytic formula becaese enhance the generalization capability of the SONFIN
the plant is nonlinear and system parameters vary with currgmédictor. The control performance of this simulation is shown
temperature. in Fig. 12. The actual wafer temperatur&,) under the

For off-line training, we have to collect a set of trainingSONFIN control as well as the desired temperature profile
data pairs and then train the SONFIN in the batch modare shown in Fig. 12(a). It is observed that the actual wafer
A sequence of random input signalgk) under the mag- temperature profile follows the desired one closely. In this
nitude limits of the plant input is injected directly to thefigure, we also show the SONFIN controller's output sig-
plant and then an open-loop input/output characteristic of thals. To see the control performance more closely, Fig. 12(b)
plant is obtained. According to the input/output characteristshows the difference between the actual and desired wafer
of the plant, proper training patterns are selected to cowemperatures, where two measure points are set, the center of
the entire reference output space. Using the collected traihe wafer (solid line) and the margin of the wafer (dashed
ing patterns with the values of the selected input variablése). To see the effect of the SONFIN predictor in correcting
as the input pattern and the corresponding control sigrthe pyrometer reading, the difference between the pyrometer
uqq(k) as the target pattern, the SONFIN can be updategladingZ, and the actual wafer temperaturg, are shown
supervisedly to minimize an error functioB' defined by in Fig. 12(c) as the solid line. In the same figure, the dashed
L= 2211(1/2)[%,(1(@ — w(k)]* according to the learning line shows the difference between the uncorrected pyrometer
algorithm developed in Section 1V-B, whekg is the number reading?,, and 7,,. We can see that the SONFIN predictor
of training patterns and(k) is the actual output of the training provides the controller with more accurate wafer temperature
network. information.
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Fig. 12. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set &tCLO&) The desired temperature
profile (dashed line), the actual wafer temperatdrg )(under control (solid line), and the SONFIN controller's output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer tempefatunéhere the solid line denotes the temperature measured at the center of the wafer and
the dashed line the margin of the wafer. (c) The difference of the actual wafer tempé&Fatanmed the corrected measured temperature vajuésolid line);

the difference of the actual wafer temperatfg and the pyrometer-measured temperatiise(dashed line).

To test the generalization capability of the SONFIN preFhe corresponding control performance is shown in Fig. 14.
dictor, we set the operating point of the RTP system at 960g. 14 shows that the temperature errors are larger than those
°C in the second simulation; the desired temperature profileds the previous two simulations. Especially, the errors are
shown in Fig. 13(a) (dashed line). In this simulation, we udacreasing as processing time is running. This is obviously due
the same SONFIN predictor and controller as those in the fitstthe big temperature measurement errors shown in Fig. 14(c).
simulation. Notice that since the SONFIN controller is trainefl is understood that the bigger temperature measurement
by the inverse learning scheme stated in the last section-ettors are due to the lower prediction accuracy of the linear
is independent of the operation point. On the contrary, thgedictor on the oxide thickness as compared to that of the
prediction power of the SONFIN predictor focuses only 08ONFIN predictor [see Figs. 12(c) and 14(c)].
the temperature region in which it is trained. The results of As a contrast, in the fourth simulation we take off the
this simulation, corresponding to those of the first simulatiopredictor and converter in Fig. 11 and feed the pyrometer’s
are show in Fig. 13. The figure shows that our control systef@ading value into the SONFIN controller directly. In other
still achieves quite good performance, although the operatiggrds, we want to see what happens if we don’t correct
point lies outside the region, [100TC, 1100°C], in which the pyrometer reading. The simulation results are shown

the SONFIN predictor was trained. _ in Fig. 15. Due to the inaccurate temperature measurement
~ To see the role played by the SONFIN predictor, we replaggown in Fig. 15(b), the SONFIN controller fails to track the
it by a normal linear predictor described by desired temperature profile [see Fig. 15(a)].

Xjpr = Xpo 4+ p x X'(To) (53) Finally, to compare the performance of a traditional ap-

proach, we replace the SONFIN controller by the proportional
where X, is the oxide thickness at tim& + 1, X, is integral derivative (PID) controller and the SONFIN predictor
the oxide thickness at timg, p is the sampling period, and by the linear predictor [see (53)] in our control system in
X'(T,.) is the growth rate at temperatuig;. The corrected Fig. 11. We have tried our best to tune the PID controller to
temperature from the previous control sequefitg is used achieve its best performance and the simulation results are
to predict the current film thickness which is in turn usedhown in Fig. 16. The curves in the figure obviously show
to approximate the current temperatu¥é,;. The linear the inferior performance of this traditional control architecture.
predictor assumes that the oxide has a constant growth rdtke control system cannot track the desired temperature profile
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Fig. 13. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set&. 48D The desired temperature profile
(dashed line), the actual wafer temperatufg Y under control (solid line), and the SONFIN controller’s output signals (bar lines). (b) The difference between
the desired temperature and the actual wafer temperdtyrevhere the solid line denotes the temperature measured at the center of the wafer and the
dashed line the margin of the wafer. (c) The difference of the actual wafer tempefatuaed the corrected measured temperature vluésolid line);

the difference of the actual wafer temperatfg and the pyrometer-measured temperatiise(dashed line).

accurately and stablely. It was found in our trials that theontrolled results that the temperature gradient difference
oscillations in Fig. 16 were unavoidable. Two major reasommetween the inner and outer rings of wafer is not small
account for this phenomenon; first, we performed long-tinenough. In fact, to further reduce the nonuniformity, various
control; second, we performed temperature-trajectory trackingeans have been suggested, as for example, modification of
control instead of set-point control. The oscillation phenomeeflector characteristics, special lamp arrangements, individual
non of PID control was also observed by others in [1], [14]lamp powering, or mechanical movement of the wafer [31].
and [17]. Fig. 16 also shows increasing tracking errors d$iermal gradients may also be reduced by using either guard
processing time is running due to the low prediction accuraeygs or suspector, i.e., by virtually extending the wafer edge.
of the linear predictor. It is observed that the simulation resuffdie edge loss radiation energy of the wafer will be reflected
shown in Figs. 12-16 are very similar to those obtained by the guard ring and the difference between the outer and
others’ practical experiments [1], [14], [26]. edge energy will be reduced. Another approach to solving
The results of the above simulations are summarized tine nonuniformity problem thoroughly is to use a multioutput
Table 1. This table lists the maximum/minimum trackingcontroller. In this approach, a circular bank of lamps is added
errors, the mean square tracking error (tracking MSE), aoser the wafer border to compensate the edge-loss effect of
the temperature nonuniformity of different control structure#e wafer. The lamps emphasize the incident radiation energy
where the nonuniformity is given by the difference of the twon the wafer edge and also add the energy at the center. A
controlled temperatures measured at the center and the mangiiti-output controller is required to control the power of
of the wafer. From the table we see that the SONFIN controllgifferent lamps individually. In any approach of improving
with SONFIN predictor achieves the smallest tracking erreiformity mentioned in the above, the proposed SONFIN-
and keeps a low nonuniformity. Across wafer uniformitppased scheme can be applied to get even better performance
is one major issue in RTP processing. To obtain uniforihan the traditional PID scheme.
processing across the wafer surface and to prevent the creation
of slip defects due to the thermal stress, the temperature
must be nearly uniform across the wafer at all time. The VI. CONCLUSIONS
simulations in this section have shown that the SONFIN- This paper proposes the use of the neural fuzzy network
based scheme can keep better temperature uniformity th{ealled SONFIN) for solving the two difficult problems in
the traditional PID scheme. However, we observe from thiee RTP system, i.e., temperature measurement and control.
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Fig. 14. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set &tCLO&) The desired temperature
profile (dashed line), the actual wafer temperatdrg )(under control (solid line), and the SONFIN controller's output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer tempefatunéhere the solid line denotes the temperature measured at the center of the wafer and
the dashed line the margin of the wafer. (c) The difference of the actual wafer tempé&Fatanmed the corrected measured temperature vajuésolid line);

the difference of the actual wafer temperatfg and the pyrometer-measured temperatiise(dashed line).

Temperature (C)

0 20 40 60 80 100 120 14 16 180 200
Time (sec.)

(@)

Temperature (C)

0 20 40 60 80 100 120 140 160 180 200
Time (sec.)
(b)

Fig. 15. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set &tCLO&) The desired temperature
profile (dashed line), the actual wafer temperatdrg )(under control (solid line), and the SONFIN controller's output signals (bar lines). (b) The difference

between the desired temperature and the actual wafer tempefatumhere the solid line denotes the temperature measured at the center of the wafer
and the dashed line the margin of the wafer.

The SONFIN is a general connectionist model of a fuzzyroposed control structure. One is to learn the oxidant growth
inference system, which can find its optimal structure andte as a function of oxidation time at various processing
parameters automatically. Two SONFIN's are used in themperatures for correcting the measurement error of the
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Fig. 16. Simulation results of using SONFIN controller and SONFIN predictor with the wafer temperature set &tCLO&) The desired temperature
profile (dashed line), the actual wafer temperatdrg )(under control (solid line), and the SONFIN controller's output signals (bar lines). (b) The difference
between the desired temperature and the actual wafer tempefaturghere the solid line denotes the temperature measured at the center of the wafer and
the dashed line the margin of the wafer. (c) The difference of the actual wafer tempéFatanmed the corrected measured temperature vajuésolid line);

the difference of the actual wafer temperatfg and the pyrometer-measured temperatiise(dashed line).

TABLE 1l
SUMMARY TABLE OF PERFORMANCE INDEX
SONFIN controller | SONFIN controller | SONFIN controller PID controller
with with with
SONFIN predictor linear predictor without predictor linear predictor
Max. tracking error 11,4098 14.8810 11,5012 200.9889
Min. tracking error -6.7468 -11.7439 -80.7679 -55.0237
Nonuniformity 5.5033 4.7881 4.4996 1777
Tracking MSE 34.3811 73.4889 259.80 2037.0

pyrometer due to emissivity variations during film growingthan the RTO process, the prediction accuracy and control
The other SONFIN is to model the inverse of the RTP systeperformance of the proposed SONFIN-based scheme needs
for temperature control. To compensate the pyrometer errdigther investigation and improvement in the future.

we also derive the wafer emissivity model, silicon oxidation
growing model and pyrometer model. Several experimental
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