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A d,2_,2 superconductor is modeled as the superconducting layers & thplane, whose coupling in the
c direction is approximated by the effective mass, within the Ginzburg-Landau theory. In this work, this model
is applied to the system where the coherence length along thection is greater than the layer spacing.
Based on our model, we calculate the upper critical field in a magnetic field lyiagciplane and tilted by an
angle from thec axis. According to our results, the curvature Bf,,(T) is upward, and the slope
—dH.,(T)/dT depends on the angle between thaxis and the external field. The most interesting feature is
that the ratio of thec-direction parameter related to the effective mass toatheplane parameter connected
with the effective mass can influenkk, . As the ratio is decreaseH,., becomes increased. We also find that
there is no admixture afwave component in the critical regime and believe that the upward curvature of the
H(T) is the characteristic property ofdawave superconductofS0163-182€29)01914-1

[. INTRODUCTION components for the order paramet¥tdzranz et al. derive
phenomenologically the Ginzburg-Landau theory for the

A fundamental issue that links microscopic theory andd-wave superconductor and study the properties of a single
experimental phenomenology of high-superconductors is vortex and of the Abrikosov vortex lattice. Mliller pro-
the symmetry of the pairing state® The symmetry of the posed that there exist in the copper oxide superconductors
order parameter provides further insight into the mechanisniwo condensates with different symmetry but the same tran-
of superconductivity. In mean-field theory, exact sition temperature, namely, there are two kinds of supercon-
calculations' and variational calculationsit appears that a  ducting gap:® Ren, Xu, and Ting assumeddawave pairing
d-wave symmetry is slightly lower in free energy. Many ex- interaction together with a repulsive on-site Coulomb
periments directly or indirectly prove the pairing state ininteraction'’ Using the finite temperature Green’s-function
high-T. temperature superconductors HTSC. For examplemethod!® they derived microscopically the Ginzburg-
Mathai et al. have found consistent unambiguous proof of aLandau equations for a superconductor with_,> symme-
time-reversal invariant order parameter withmashift in  try in the presence of a magnetic field. The structure of a
YBa,Cu;0;_5 (YBCO) by using a scanning SQUIBsuper-  single vortex is analyzed, but no upper critical field is de-
conducting quantum interference deviogicroscopé. Woll- rived.
man et al. measured the phase shift of the order parameter The Ginzburg-Landau theory @kwave superconductors
between the orthogonalandb directions in YBCO crystals in a magnetic field is quite rich. The measures of the upper
by studying the phase coherence of YBCO-Pb dc SQUTD’s. critical fieldsH, of high-T. superconductors are extremely
Tsuei et al. used the concept of flux quantization in super-important because they provide the direct information about
conducting YBaCu;O,_5 rings with 0, 2, and 3 grain- microscopic parameters. For example, the coherence léngth
boundary Josephson junctions to test the pairing symmetry iis one of the characteristic parameters and fails to be ob-
high-T. superconductor.All these experimental results served directly. It is often indirectly derived from the expres-
support thed-wave pairing in highF,, cuprate superconduct- Sion He,(0)= ¢o/2m¢?, whereH,(0) is the upper critical
ors, especiallyd,2_,2 symmetry. magnetic field measured ned@r=0, and ¢, is the magnetic

Experimental measurements, such as photoemissidifiux quantum. Many experimental observations have been
studies® Josephson interferen@and c-axis Josephson tun- reported from resistive transition curd@and dc magnetiza-
neling experiment? give evidence as a predominahtvave  tion measurementd. These experimental results showed a
order parameter and min@&rwave symmetry. Kouznetsov positive curvature ofH,(T) versusT plots, including layer
et al. reportc-axis Josephson tunneling between YBCO andcompounds;' the cubic bismuthate®,the “electron-doped”
experimental results to give a direct evidence for mixied cuprate$® and the Fe-doped YB&w0,.2* Suzuki and
and swave pairing in YBCO'! On the theoretical side, Hikata indicated an upward curvirtd.,(T) for the field ori-
Volovik*? and Soininen, Kallin, and Berlinsky have de- ented parallel to the axis?® But Samuelyet al?® deter-
rived the vortex structure of dwave superconductor. They mined the upper critical field of the fully three-dimensional
predicted that the- andd-wave components coexist. Betou- system of Ba ,K,BiO5; by using tunneling measurement
ras and Joynt show the existence of thwave andd-wave and found thatH.,(T) followed the WHH (Werthamer-
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Helfand-Hohenberng model revealing a saturation at low masses. In Sec. lll, we discuss our work and give some in-
temperature. Hence the positive curvatureHgf(T) for all ~ teresting conclusions. Choosing the ratio of the slopes
high-T, cuprates remains to be tested. On the theoreticallHco(T)/dT parallel to perpendicular directions relative to
side, Ovchinnikov and Kresth?® based their approach on thexaxis to exceed 5, we show that there is an extreme large
the method of integrated Green’s functions including the efanisotropy inH,.

fect of magnetic impurities for cuprates in HTSC to deter-

mine the exotic temperature dependenceHg$(T). Their Il. CALCULATIONS OF THE UPPER CRITICAL FIELD

results gave an evidence that the positive curvature of ,
H,(T) and also linear temperature dependence fiea The Ginzburg-LandayGL) theory for a superconductor

were due to magnetic impurities and their correlations at loWVith dx2—y2 symmetry 7has been microscopically deS§f'bed
temperature. They also showed thét,(T), in the absence PY Ren, Xu, and Tind’ They considered a repulsive “on-
of the magnetic impurities, has negative curvafir&im, site” interaction and a nearest—ngghbor_attrac.t|ve interac-
Zhu, and Ting° calculatedH .,(T) of a mixedd- ands-wave tion. It has been shown that the interactions give rise to a
superconductor based on the linearized gap equation. THUIréd-wave superconductor for a uniform system if the “on-
results demonstrate that the valuerth,(T) of the mixedd- ~ SIt€” repulsion is large. Finally, the generic Ginzburg-
and swave superconductor was larger than that of a purd-andau equations, as expressed in terms ofsthave and
d-wave superconductor, bt ,(T) still showed negative ¢-Wave components of the order parameter, are
curvature. Joynt explained this characteristic property with
help of the phenomenological Ginzburg-Landau thedry. (14 2V /V A% +ah,
Maki and Beal-Monod derived the Ginzburg-Landau equa-
tion microscopically within ad+ s)-wave superconductivity
model including the effect of the an orthorhombic +2|AgPA% +2|Ay2A% +A§2As}=0, (1)
distortion3? and got the upper critical fieltl ., for various
applied magnetic-field orientations. Affleck, Franz, and
Sharifzadeh Amin presented a simple model by expressing
component in terms of higher-order derivative terms indhe
component? In a similar approximation, Chareg al. calcga- 3
lated the upper critical fieltH .,(T) by perturbed method 2A% 4 A*2 > 2%
Takanaka and Kuboya calculated the angular dependence of T2AAPAG+ASTAG 4 |84l
the upper critical field in the LaSrCuyQn the a-b plane, . ) N
taking account of the effect of the gap anisotropy and nonWith @=7£(3)/8(mT¢)*, Aq=2zN(0)Vy4, and the operator
local correctior?® All H,,(T) results based on the Ginzburg- 11= ~iVr—€*Ag. Here V; and V4 correspond, respec-
Landau(GL) theory for two-dimensionat-wave supercon- t!vely, to the swave ahdd-wave interactions and are posi-
ductors show that some approximation is made in thdive, N(0) is the density of states at the Fermi surface, and
derivation and show positive curvature. Although the upperr is the Fermi velocity. Equationd) and(2) are valid for
critical field of ad-wave superconductor have been derivedtWo-dimensionab-wave superconductivity. In order to meet
within the phenomenological and microscopical GL model the reality, we use the effective mass to inclugirection
the weak-coupling model, and linearized gap model, none offect such ag,I12A% ; in Eq. (1) andy,II7AF ; in Eq. (2).
them includes the effects of the external field lyag plane  Such an approximation is valid for the coherent length larger
and the parameters related to the effective mass. In order #§an the layer spacing. Near the upper critical fielg, the
investigate the effect of the anisotropic effective-mass apamplitudes of the order parameters are small. We may ignore
proximation of ad-wave Superconductor rather than the the nonlinear. terms and obtain the linearized GianUfg-
single-layered two-dimensiondtwave superconductors, we Landau equations
here presenH., with the external field in an anisotropic . o oy by o oy
effective-mass approximation ofl,2_,2 superconductor ~@sAs +2y1(I+ YA+ yoll; A+, (I~ T1H)Ag =0,
based on the Ginzburg-Landau theory. ()]

In Sec. I, we use anisotropic Ginzburg-Landau equations
to derive the upper critical field for some directions of the agA§ + yi(IIZ+TI9)AS + v IIZA% + v, (I1; - 115)A% =0,
external field relative t@-c plane. By following the similar
approach in the simple harmonic-oscillator equation, the cre-

ation and annihilation operators are defined, and the two reVere @s=2(1+2Vs/Va) and ag=—Aq In(Tc/T). It was
own thatay is negative when the purd-wave state is

cursion relations are presented. According to Sundaram a ! -

Joynt's descriptioﬁ? we can solve these relations by stan-n[ .ermodynamlrcl:ally stzbllle'a.,ln Eqs'(?) andh(4), Itis convs_—

dard method¥ and obtain an exact solution of the problem nlent_ tp use the symbolg; s to replace the corresponding
coefficients in Egs(1) and (2).

of the upper critical field. Our relations do not close and, ; . .
therefore, we reduce them to a matrix problem. By neglect- NOW. we want to determine the upper critical field. By
ing the higher-order terms, the asymptotic solutions for som@ssuming the applied field = H(sin éx+cos#z), in which 6
cases are derived. We set the lowest eigenvalue to vanish aiglthe angle from the axis (c axis), the commutative rela-
obtainH,. It is noteworthy that the upper critical field de- tions are

pends not only on the angle between the external field and

the crystal axes, but also on the ratios of the effective /’Z[HX,Hy]=i cosé, /Z[Hy,Hz]zi sin g,

1 1
§v§H2A§+ZUE(H§—H§)A:§

1 1
ZuEHZAg + Zué(ni—ngmg

- )\dAg |n(TC/T) + (X)\d

=0, 2
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/1L, TT;]=0, (5) S agm At b 19
= ap|n)s, = N)q,
where/? is the magnetic length and equals te*IiA ande* S o= M S Ao Jo
is the charge associated with the “super electrons.” Next,
we rotate the operatdd and get we have the properties

=II,sin6+11I,cosé, =—1II, cosf+1I,sing,
P1 X z P2 X z as|0>s:01 a:as|n>s:n|n>31

pSZHy- (6)
The new commutative relations become ag?nys=(n+1)(n+2)|n+2)s,
—i
[P2.ps]=—7. [P1.P2]=[P1.Ps]=0. (7 acln)s=Vn(n-1)ln-2)s, n=2 (14

The linear Ginzburg-Landau equations are associated witand similarly foray andag . By substituting forA¥ and
the Schrdinger equation for a simple harmonic oscillator A} , we obtain two recursion relations
system. To solve the problem, we define the creation and

annihilation operators v
——>(2n+1)|a,+ y—l,z—cog 6+ iz)
as=/(Usp2—ivsps), /2 "t/ 4/%2
a;=/(usp2+ivsp3), (8) X[\/n(n_l)cn—z,n—zbn—2+ V(n+1)(n+2)cn+2,n+2bn+2]
and similarly foraq andag . In order to handle the problem 710d
easily, we set the commutative relatiofe ,a;" ]=1 for i + Wz 7 cos 0= 4/2 2| (2n+1)Cnnbn=0, (15
=s,d and the corresponding specific parameter values are
allowed as w2
ayq+ —22(2n+1) b,+ —TSCO§ (9"1‘—22
2uw.=1, vi= 1 (9) 2/ /7 4/%
sUsT TS 2(2cog 0+ yp,pSit 0)
X[ yn(n— 1)Cn72,n72an72
1
= 4_ +V(N+1)(N+2)Chion+28n+2]
ZUdUd 1, Uy 4(CO§ 0+ leslnz 0), (10) n+2n+2%n+2
with y,,=7y,/v;1. Thus the Ginzburg-Landau equations be- + 71 S co 60— /2 2 (2n+1)c,a,=0, (16
come
v1 N . ylvf, cog 6 V1 wherea,,=b,,=c,,=0 for n<0 andc,, represents the inner
ast —7 3(285a,+1) |Ag + e 4777 product of two state functions)¥ and A%, depending on
S , the angled. For example,
s Y1Ud Y1
X +aj)+ -
(aa"ad)+| Tz 008 0= 3772 V2 (Uglv ) Y(uglv )Y

17

C =
07 (uglvgtuglvg)t?

X (2ajag+1)|A% =0, (11

for 0= @< /2. Different fromcyy(#=0)=1, we can prove
Coo<1 for 0< A=< 7/2. According to these two recursion re-

* 71U§0032 ¢ Y1 lations[Egs. (15) and (16)], the convergence of the large-
agt /2 Z(Zad agt1)|Ag+ /2 + 4/%% asymptotic ofa,, and b, can be shown. These relations do
5 not close and Joynt treats the problem in perturbation
w2 o[ 7105 71 theory®! According to standard methdd,the convergence
X(as “t+ag) + /2 cos’ - 4,22 can be shown to be exponential, and is extremely rapid as
s n—oo., The Airy equation has the analogous properties.
. . Therefore we can truncate the relationsnat5, and obtain
X(2agast+1)|Ag=0. 12 the eigenvalue correction to one part in £0 Equationg15)

and(16) can be reduced to a matrix problem. bt 0, the
These two equatlons are the Hermitian operators actlng Obwest e|genva|ue is produced thﬂ’)d Coup|es td 2>S and
the states\y andAg . The lowest eigenvalue for the Her- |4),. For 0<#<m/2, the lowest eigenvalue is produced

mitian operators determlnes the upper critical field. In conwhen|0)4 couples tg0)s and|2).

trast to the Schidinger equations the GL equations are hard By neglecting the higher-order terms, which are small, we
to solve because the two statés) and Aj, are coupled can simplify the calculation to solve the two recursion rela-
each other. By taking¥ andA} in the occupation number tions and then derive the asymptotic solutions. THig
representations, equation corresponding to tliewave component is
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\/?'}’1(2 CO§ 0+ ’ylzsinz 0)1/2 ’}/1(C0§ 0+ 'yleinz 0)1/2
ast /2 agt /2

caoy5sint 6

= ; ; : (18)
4v2/%4(coS 0+ y1psir? 0)Y42 cog 0+ yy,sir? )22
Finally, we express the upper critical fiettl., for all directions of the external field in the-c plane as
Hes(60,T) 250 (19
T e = 3 [V2(2 cO€ 6+ y15SiM 8)M2ay+ (cOf 0+ yy,sir? )Y2a]— D}
|
where
D= y2[vV2(2 cog 0+ y;,Sir? 6)Y2ay 3 : :
+(cog 0+ y1,sir? 0)Y2ag]?
2 2 0 B
N asayCooYa sin* @ ' (a) 6=0
V2(coZ 0+ yy,sir? 0)Y3(2 cog 0+ y,,sir? )22
2 - ]
(20)
It is easy to see that the upper critical field is upward curva- % L i
ture from the slope oH.,. As T—T,, *
T T m
Heo(6,T) )\d(l_T_C) (1) Rt
2(0T)= 5 Y%y, cog 0+ y, sir? 6)Y2 . T.e Ll i
There is no admixture of wave in this limit. The curves | T .-l
show linear temperature dependence. 0 05 o o
t
12 ' \ \ \ '
20 — : I
3
v
B T 1
A
L (b) 6=n/2 —
8 — '
6=n/2 \
Ay
= 12 — \ _
Y - i \
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41— ] 08 |— ‘\ ]
= "‘~~-_~~9'-‘0 7 04 [ R -
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FIG. 1. Upper critical fields versus reduced temperatures
=TI/T, for #=0 and 8= x/2, where§ is the angle between the FIG. 2. Upper critical fields as a function of reduced tempera-
applied field and the axes. The solid line represenis=7/2 and  turet: (a) #=0 and(b) 6= m/2, whered is the angle between the
the dashed line label8=0. We choosey; =0.526,y,=0.017,\4 applied field and the axes. The solid line represents our results and
=1, andas=2. We note that the upper critical field fé== /2 is the dashed line corresponds to the asymptotic solution. We chose
larger than that fo®=0. There exists extreme anisotropyHt,. v1=1, ,=0.588,\y=1, anda,=2.
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FIG. 3. Upper critical fields versus reduced temperaturedfor
=/6: The solid line representy,=0.526, v,=0.017, and the FIG. 4. Dependence of dH.,/dT (evaluated af.=90K) on

dashed line corresponds tg =1, y,=0.588. We also choskq angle from thez axis corresponding to the ratio gf,,=0.03.
=1 andas=2.

tigate the behavior ofH.,(T). Based on the Ginzburg-
Landau theory, we express the upper critical field with the
external field lying in thea-c plane. Different from the
work,*® the nonzeras-wave order parameter in our model is
1 5y, ¥2 only induced by spatial variations of trmlewa\zlgz component.
72 2—/2) :27‘ (22 From the results measured by U. Wedpal,™ the critical-

- - field slopes from the linear fits are1.9 and—10.5 T/K for

For example 8= /2, no y, appears in this expression. But fields along thez and% axis, respectively. Corresponding to
for other 6 values,H., depends ony,. The H., equation —our model,y; andy, are equal to 0.526 and 0.017, respec-

For 6=0, only the space spanned P¥)q,|2)s} is in the
ground state. Theél., equation corresponding to tlilewave
component is

ad+ as-l—

Corresponding to thd-wave component is tiVG'y. By following the result of Monthoux and Plﬂé%WhO
found A4 close to 1 ag .=90K in a spin-fluctuation model,
(y172)*? (2y17,)Y? Yiv2 we setAg=1. We plot in Fig. 1 as a function of reduced

(a'd+ —/2—) as 2 = v e (23)  temperatura=T/T, for =0 and #==/2. The upper criti-

cal field for 6= /2 is larger than that fod=0. This result

Herecye<1 can be easily proved. These results are in compoints out that we can call our model, adding the tétf) a

plete accord with experimental measureméfits. pseudo-two-dimensional superconductor. The measurements
Of course, we can use the variational calculation to estiof electrical properties of single crystal (L.8Sr,) CuQ, evi-

mate the lowest eigenvalue of Eq8) and (4). For 0<#  denced that the superconducting oxide systems favored ex-

<x/2, the variational solutions of ground state have thetremely large anisotropy in upper critical magnetic fields.

forms We also derived the expressions of the asymptotic solu-
tions. Comparing with the experimental resifltthe ratio

A% =dge! 7a(~xcosotzsin 6) g~ 12" Hoy(coS 0+ 3 |y, sit? )Y32 v» 1y, corresponds to the ratio of the effective masses per-
and pendicular and parallel to the axis. We sety;=1 andy,

=0.588,\yj=1 andas=2. TheH, versust for our result
and asymptotic result is plotted in Fig. 2 at various angles
including 6=0 and#/2. The upward curvature in Figs. 1 and

whereo; ando, are the variational parameters. Substituting2 are expected for a superconductor with a tetragonal struc-
these functions into Eq$3) and(4), we can obtain the same ture for an order parameter of combing@ave andd-wave

consequences as we have done in asymptotic case. The restifnmetry. On the other hand, orthorhombic distortion in a
for H.,(#=0) is the same as that of Fraezal®® pure d-wave superconductor can also have such curvatures.

In summary, the nonzersswave component, derived by a
mixed gradient coupling to thé-wave component, not only
forms fourfold symmetry but creates the upward curvature of
Measurements oH.,(T) are beyond accessible labora- H.,. In Fig. 3, H., as functions oft for y,,=0.032 and
tory magnetic fields as a ten-hundredth decrease in temper@:588 are shown. Note that as the ratioygh is decreased,
ture, and so they are limited to temperatures riearThus  H., becomes increased. The most striking aspect is the
the Ginzburg-Landau theory is an appropriate one to invesvariation of slope from low to high fields. The change in

A; — Soei op(—Xx cosf+zsin 0)e7 1/2e* Hop(co 6+ y,l2yq sin? 6)1/2y2,

Ill. CONCLUSIONS



PRB 59 EXACT SOLUTION OF THE GINZBURG-LANDAU . .. 9513

slope ofH., represents a crossover fromdawave at low ACKNOWLEDGMENTS

fields to (s+d)-wave at high fields. Finally, the slope  M.C. and T.J. thank the National Science Council of the
—dHg,/dT nearT, at various angles is plotted in Fig. 4. Republic of China which gave financial support for this work

Thermodynamic fluctuations in the order parameter bringhrough Grant No. NSC 88-2112-M-009-003. T.J. would like
about meaningful correction for thag2_,2 superconductors. to thank faculty of the Texas Center for Superconductivity at
The effect of fluctuations may be important in high magneticthe University of Houston for their hospitality and partial
field as expected for BCS mean-field motfeln the near financial aid when he visited there last summer. C.S. would
future, we will study the effect of thermodynamic fluctua- like to thank the Texas Center for Superconductivity at the
tions to magnetic properties for tlikwave superconductors University of Houston, and the Robert A. Welch Foundation
(upper critical field, specific heat, elc. for a financial support for this work.

1p. W. Anderson, Chap. VII of a forthcoming book on high-

superconductivityPrinceton University Press, Princeton, NJ, in
press; N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. J.

Mod. Phys. B1, 687 (1987; P. Monthououx, A. V. Balastsky,
and D. Pines, Phys. Rev. Le@7, 3448(199J); Z. Y. Weng, T.
K. Lee, and C. S. Ting, Phys. Rev. 3, 6561(1988.

2D. J. Van Harlingen, Rev. Mod. Phy$§7, 515 (1995; W. N.

Hardy, P. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang,

Phys. Rev. Lett70, 3999(1993; J. Annett, N. Goldenfeld, and

A. J. Leggett, inPhysical Properties of High Temperature Su-

perconductorsedited by D. M. GinsbergWorld Scientific, Sin-
gapore, 1995 Vol. 5.

3D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg,

and A. J. Leggett, Phys. Rev. Leftl, 2134(1993.
4G. Kotliar, Phys. Rev. B37, 3664(1988; D. Polblanc,ibid. 39,
140 (1989.

19G. W. Crabree, W. K. Kwok, U. Welp, R. Burriel, H. Claus, K.
G. Vandervoort, and J. Z. Liu, J. Magn. Magn. Matgé6é-77,
547 (1988; M. Oda, Y. Hidaka, M. Suzuki, and M. Murakami,
Phys. Rev. B38, 252 (1988.

2°For example, T. K. Worthington, W. J. Gallaghen, and T. R.
Dinger, Phys. Rev. Lett59, 1160 (1987; U. Welp, W. K.
Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Libid.
62, 1908(1989.

2IR. V. Coleman, G. K. Eiserman, S. J. Hillenius, A. T. Mitchell,
and J. L. Vicent, Phys. Rev. B7, 125(1983.

22|, Welp, W. K. Kwok, G. W. Crabtree, H. Claus, K. G. Vander-
voort, B. Dabrowski, A. W. Mitchell, D. R. Richards, D. T.
Marx, and J. Z. Liu, Physica @56, 27 (1988.

23y, Hidaka and M. Suzuki, Naturé_ondon 338 635 (1989.

24M. D. Lan, J. Z. Lin, Y. X. Jia, Lu Zhang, Y. Nagata, P. Klavins,
and R. N. Shelton, Phys. Rev. &, 457 (1993.

SF. C. Zhang, C. Gros, T. M. Rice, and F. Shiba, Supercond. Sci®®M. Suzuki and M. Hikata, Jpn. J. Appl. Phys., Par2@ L1368

Technol.1, 36 (1988.
6A. Mathai, Y. Gim, R. C. Black, A. Amar, and F. C. Wellstoo,
Phys. Rev. Lett74, 4523(1995.

(1989.
26p_samuely, P. Szabo, T. Klein, A. G. M. Jansen, J. Marcus, C.
Escribe-Filippini, and P. Wyder, Europhys. Lett, 207(1998.

7C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, 2’Yu. N. Ovchinnikov and Vladimir Z. Kresin, Phys. Rev. &,

T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. L#31.593
(1994.

8J. Ma, C. Quitman, R. J. Kelley, H. Bergen, C. Margaritondo, and

M. Onellion, Science267, 862 (1995; M. Ding, J. C. Campu-
zano, and G. Jennings, Phys. Rev. L&t 2784(1995.
9p. Chaudhari and S. Y. Li, Phys. Rev. LetR, 1084 (1994).

3075(1995.

28yu. N. Ovchinnikov and Vladimir Z. Kresin, Phys. Rev. B},
1251(1996.

29y N. Ovchinnikov and Vladimir Z. Kresin, J. Supercorid, 257
(1997.

30w, Kim, J. X. Zhu, and C. S. Ting, Phys. Rev.5B, 6455(1998.

10A. G. Sun, D. A. Gajewski, M. B. Maple, and R. C. Dynes, Phys. 3!R. Joynt, Phys. Rev. B1, 4271(1990.

Rev. Lett.72, 2267(1994).

32K Maki and M. T. Beal-Monod, Phys. Rev. 5, 11 730(1997.

11K, A. Kouznetsov, A. G. Sun, B. Chen, A. S. Katz, S. R. Bahcall, *®lan Affleck, Marcel Franz, and M. H. Sharifzadeh Amin, Phys.

J. Clarke, R. C. Dynes, D. A. Gajewski, S. H. Han, M. B. Maple,

Rev. B55, R704(1997).

J. Giapintzakis, J. T. Kim, and D. M. Ginsberg, Phys. Rev. Lett.3*D. Chang, C. Y. Mou, B. Rosenstein, and C. L. Wunpub-

79, 3050(1997.

2G. E. Volovik, JETP Lett58, 469 (1993.

13p |, Soininen, C. Kallin, and A. J. Berlinsky, Phys. Rev5B,
13 883(1994.

143, Bertouras and R. Joynt, Europhys. L&, 119(1995.

M. Franz, C. Kallin, P. I. Soininen, A. J. Berlinsky, and A. L.
Fetter, Phys. Rev. B3, 5795(1996.

16K Alex Muiller, Nature(London 377, 133(1995.

"yong Ren, Ji-Hai Xu, and C. S. Ting, Phys. Rev. L&4, 3680
(1995; Phys. Rev. B52, 7663(1995.

8. P. Gorkov, Zh. Eksp. Teor. FiZ36, 1918(1959 [Sov. Phys.
JETPY9, 1364(1960)].

lished.
35K, Takanaka and K. Kuboya, Phys. Rev. Léts, 323(1995.

365, K. Sundaram and R. Joynt, Phys. Rev. L&.512(1991).
87C. M. Bender and S. A. Orszaggdvanced Mathematical Methods
for Scientists and Engineef$icGraw-Hill, New York, 1978,

Chaps. 2 and 5.

38p_ Monthoux and D. Pines, Phys. Rev4B, 6069(1993.

39y, Hidaka, Y. Enomoto, M. Suzuki, M. Oda, and T. Murakami,
Jpn. J. Appl. Phys., Part 26, L377 (1987.

40B. S. Shivaram, T. F. Rosenbaum, and P. G. Hinks, Phys. Rev.
Lett. 57, 1259(1986.

413, Ullah and A. T. Dorsey, Phys. Rev. 8}, 262 (1991]).



