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Exact solution of the Ginzburg-Landau equation for the upper critical field
of a dx22y2 superconductor

M. C. Dai and T. J. Yang
Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China

C. S. Ting
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~Received 16 October 1998!

A dx22y2 superconductor is modeled as the superconducting layers in thea-b plane, whose coupling in the
c direction is approximated by the effective mass, within the Ginzburg-Landau theory. In this work, this model
is applied to the system where the coherence length along thec direction is greater than the layer spacing.
Based on our model, we calculate the upper critical field in a magnetic field lying ina-c plane and tilted by an
angle from thec axis. According to our results, the curvature ofHc2(T) is upward, and the slope
2dHc2(T)/dT depends on the angle between thec axis and the external field. The most interesting feature is
that the ratio of thec-direction parameter related to the effective mass to thea-b plane parameter connected
with the effective mass can influenceHc2 . As the ratio is decreased,Hc2 becomes increased. We also find that
there is no admixture ofs-wave component in the critical regime and believe that the upward curvature of the
Hc2(T) is the characteristic property of ad-wave superconductor.@S0163-1829~99!01914-1#
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I. INTRODUCTION

A fundamental issue that links microscopic theory a
experimental phenomenology of high-Tc superconductors is
the symmetry of the pairing state.1–3 The symmetry of the
order parameter provides further insight into the mechan
of superconductivity. In mean-field theory, exa
calculations,4 and variational calculations,5 it appears that a
d-wave symmetry is slightly lower in free energy. Many e
periments directly or indirectly prove the pairing state
high-Tc temperature superconductors HTSC. For exam
Mathai et al. have found consistent unambiguous proof o
time-reversal invariant order parameter with ap shift in
YBa2Cu3O72d ~YBCO! by using a scanning SQUID~super-
conducting quantum interference device! microscope.6 Woll-
man et al. measured the phase shift of the order param
between the orthogonala andb directions in YBCO crystals
by studying the phase coherence of YBCO-Pb dc SQUID3

Tsuei et al. used the concept of flux quantization in supe
conducting YBa2Cu3O72d rings with 0, 2, and 3 grain-
boundary Josephson junctions to test the pairing symmetr
high-Tc superconductors.7 All these experimental result
support thed-wave pairing in high-Tc cuprate superconduct
ors, especially,dx22y2 symmetry.

Experimental measurements, such as photoemis
studies,8 Josephson interference,9 and c-axis Josephson tun
neling experiment,10 give evidence as a predominantd-wave
order parameter and minors-wave symmetry. Kouznetso
et al. reportc-axis Josephson tunneling between YBCO a
experimental results to give a direct evidence for mixedd-
and s-wave pairing in YBCO.11 On the theoretical side
Volovik12 and Soininen, Kallin, and Berlinsky13 have de-
rived the vortex structure of ad-wave superconductor. The
predicted that thes- andd-wave components coexist. Betou
ras and Joynt show the existence of thes-wave andd-wave
PRB 590163-1829/99/59~14!/9508~6!/$15.00
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components for the order parameters.14 Franz et al. derive
phenomenologically the Ginzburg-Landau theory for t
d-wave superconductor and study the properties of a sin
vortex and of the Abrikosov vortex lattice.15 Müller pro-
posed that there exist in the copper oxide superconduc
two condensates with different symmetry but the same tr
sition temperature, namely, there are two kinds of superc
ducting gap.16 Ren, Xu, and Ting assumed ad-wave pairing
interaction together with a repulsive on-site Coulom
interaction.17 Using the finite temperature Green’s-functio
method,18 they derived microscopically the Ginzburg
Landau equations for a superconductor withdx22y2 symme-
try in the presence of a magnetic field. The structure o
single vortex is analyzed, but no upper critical field is d
rived.

The Ginzburg-Landau theory ofd-wave superconductor
in a magnetic field is quite rich. The measures of the up
critical fieldsHc2 of high-Tc superconductors are extreme
important because they provide the direct information ab
microscopic parameters. For example, the coherence lengj
is one of the characteristic parameters and fails to be
served directly. It is often indirectly derived from the expre
sion Hc2(0)5f0/2pj2, whereHc2(0) is the upper critical
magnetic field measured nearT50, andf0 is the magnetic
flux quantum. Many experimental observations have b
reported from resistive transition curves19 and dc magnetiza-
tion measurements.20 These experimental results showed
positive curvature ofHc2(T) versusT plots, including layer
compounds,21 the cubic bismuthates,22 the ‘‘electron-doped’’
cuprates,23 and the Fe-doped YBa2Cu3O7.

24 Suzuki and
Hikata indicated an upward curvingHc2(T) for the field ori-
ented parallel to thec axis.25 But Samuelyet al.26 deter-
mined the upper critical field of the fully three-dimension
system of Ba12xKxBiO3 by using tunneling measuremen
and found thatHc2(T) followed the WHH ~Werthamer-
9508 ©1999 The American Physical Society
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Helfand-Hohenberg! model revealing a saturation at lo
temperature. Hence the positive curvature ofHc2(T) for all
high-Tc cuprates remains to be tested. On the theoret
side, Ovchinnikov and Kresin27,28 based their approach o
the method of integrated Green’s functions including the
fect of magnetic impurities for cuprates in HTSC to det
mine the exotic temperature dependence ofHc2(T). Their
results gave an evidence that the positive curvature
Hc2(T) and also linear temperature dependence nearT→0
were due to magnetic impurities and their correlations at
temperature. They also showed thatHc2(T), in the absence
of the magnetic impurities, has negative curvature.29 Kim,
Zhu, and Ting30 calculatedHc2(T) of a mixedd- ands-wave
superconductor based on the linearized gap equation.
results demonstrate that the value ofHc2(T) of the mixedd-
and s-wave superconductor was larger than that of a p
d-wave superconductor, butHc2(T) still showed negative
curvature. Joynt explained this characteristic property w
help of the phenomenological Ginzburg-Landau theory31

Maki and Beal-Monod derived the Ginzburg-Landau eq
tion microscopically within a (d1s)-wave superconductivity
model including the effect of the an orthorhomb
distortion,32 and got the upper critical fieldHc2 for various
applied magnetic-field orientations. Affleck, Franz, a
Sharifzadeh Amin presented a simple model by expressis
component in terms of higher-order derivative terms in thd
component.33 In a similar approximation, Changet al. calcu-
lated the upper critical fieldHc2(T) by perturbed method.34

Takanaka and Kuboya calculated the angular dependenc
the upper critical field in the LaSrCuO4 in the a-b plane,
taking account of the effect of the gap anisotropy and n
local correction.35 All Hc2(T) results based on the Ginzburg
Landau~GL! theory for two-dimensionald-wave supercon-
ductors show that some approximation is made in
derivation and show positive curvature. Although the up
critical field of ad-wave superconductor have been deriv
within the phenomenological and microscopical GL mod
the weak-coupling model, and linearized gap model, non
them includes the effects of the external field lyinga-c plane
and the parameters related to the effective mass. In orde
investigate the effect of the anisotropic effective-mass
proximation of a d-wave superconductor rather than t
single-layered two-dimensionald-wave superconductors, w
here presentHc2 with the external field in an anisotropi
effective-mass approximation ofdx22y2 superconductor
based on the Ginzburg-Landau theory.

In Sec. II, we use anisotropic Ginzburg-Landau equati
to derive the upper critical field for some directions of t
external field relative toa-c plane. By following the similar
approach in the simple harmonic-oscillator equation, the c
ation and annihilation operators are defined, and the two
cursion relations are presented. According to Sundaram
Joynt’s description,36 we can solve these relations by sta
dard methods37 and obtain an exact solution of the proble
of the upper critical field. Our relations do not close an
therefore, we reduce them to a matrix problem. By negle
ing the higher-order terms, the asymptotic solutions for so
cases are derived. We set the lowest eigenvalue to vanish
obtainHc2 . It is noteworthy that the upper critical field de
pends not only on the angle between the external field
the crystal axes, but also on the ratios of the effect
al
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masses. In Sec. III, we discuss our work and give some
teresting conclusions. Choosing the ratio of the slop
dHc2(T)/dT parallel to perpendicular directions relative
thex axis to exceed 5, we show that there is an extreme la
anisotropy inHc2 .

II. CALCULATIONS OF THE UPPER CRITICAL FIELD

The Ginzburg-Landau~GL! theory for a superconducto
with dx22y2 symmetry has been microscopically describ
by Ren, Xu, and Ting.17 They considered a repulsive ‘‘on
site’’ interaction and a nearest-neighbor attractive inter
tion. It has been shown that the interactions give rise t
pured-wave superconductor for a uniform system if the ‘‘o
site’’ repulsion is large. Finally, the generic Ginzbur
Landau equations, as expressed in terms of thes-wave and
d-wave components of the order parameter, are

2~112Vs /Vd!Ds* 1aldF1

2
vF

2P2Ds* 1
1

4
vF

2~Px
22Py

2!Dd*

12uDsu2Ds* 12uDdu2Ds* 1Dd*
2DsG50, ~1!

2ldDd* ln~Tc /T!1aldF1

4
vF

2P2Dd* 1
1

4
vF

2~Px
22Py

2!Ds*

12uDsu2Dd* 1Ds*
2Dd1

3

4
uDdu2Dd* G50, ~2!

with a57z(3)/8(pTc)
2, ld5 1

2 N(0)Vd , and the operator
P52 i¹R2e* AR . Here Vs and Vd correspond, respec
tively, to the s-wave andd-wave interactions and are pos
tive, N(0) is the density of states at the Fermi surface, a
vF is the Fermi velocity. Equations~1! and ~2! are valid for
two-dimensionald-wave superconductivity. In order to mee
the reality, we use the effective mass to includez-direction
effect such asg2Pz

2Dd* ; in Eq. ~1! andg2Pz
2Dd* ; in Eq. ~2!.

Such an approximation is valid for the coherent length lar
than the layer spacing. Near the upper critical fieldHc2 , the
amplitudes of the order parameters are small. We may ign
the nonlinear terms and obtain the linearized Ginzbu
Landau equations

asDs* 12g1~Px
21Py

2!Ds* 1g2Pz
2Ds* 1g1~Px

22Py
2!Dd* 50,

~3!

adDd* 1g1~Px
21Py

2!Dd* 1g2Pz
2Dd* 1g1~Px

22Py
2!Ds* 50,

~4!

where as52(112Vs /Vd) and ad52ld ln(Tc /T). It was
shown thatad is negative when the pured-wave state is
thermodynamically stable.15 In Eqs.~3! and ~4!, it is conve-
nient to use the symbolsg i8s to replace the correspondin
coefficients in Eqs.~1! and ~2!.

Now, we want to determine the upper critical field. B
assuming the applied fieldH5H(sinux̂1cosuẑ), in which u
is the angle from theẑ axis ~c axis!, the commutative rela-
tions are

l 2@Px ,Py#5 i cosu, l 2@Py ,Pz#5 i sinu,
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l 2@Px ,Pz#50, ~5!

wherel 2 is the magnetic length and equals to 1/e* H ande*
is the charge associated with the ‘‘super electrons.’’ Ne
we rotate the operatorP and get

p15Px sinu1Pz cosu, p252Px cosu1Pz sinu,

p35Py . ~6!

The new commutative relations become

@p2 ,p3#5
2 i

l 2 , @p1 ,p2#5@p1 ,p3#50. ~7!

The linear Ginzburg-Landau equations are associated
the Schro¨dinger equation for a simple harmonic oscillat
system. To solve the problem, we define the creation
annihilation operators

as5l ~usp22 ivsp3!,

as
15l ~usp21 ivsp3!, ~8!

and similarly forad andad
1 . In order to handle the problem

easily, we set the commutative relations@ai ,ai
1#51 for i

5s,d and the corresponding specific parameter values
allowed as

2usvs51, vs
45

1

2~2 cos2 u1g12sin2 u!
, ~9!

2udvd51, vd
45

1

4~cos2 u1g12sin2 u!
, ~10!

with g125g2 /g1 . Thus the Ginzburg-Landau equations b
come

Fas1
g1

l 2vs
2 ~2as

1as11!GDs* 1F S g1vd
2 cos2 u

l 2 1
g1

4l 2vd
2D

3~ad
121ad

2!1S g1vd
2

l 2 cos2 u2
g1

4l 2vd
2D

3~2ad
1ad11!GDd* 50, ~11!

Fad1
g1

l 2vd
2 ~2ad

1ad11!GDd* 1F S g1vs
2 cos2 u

l 2 1
g1

4l 2vs
2D

3~as
121as

2!1S g1vs
2

l 2 cos2 u2
g1

4l 2vs
2D

3~2as
1as11!GDs* 50. ~12!

These two equations are the Hermitian operators acting
the statesDs* and Dd* . The lowest eigenvalue for the He
mitian operators determines the upper critical field. In co
trast to the Schro¨dinger equations the GL equations are ha
to solve because the two states,Ds* and Dd* , are coupled
each other. By takingDs* andDd* in the occupation numbe
representations,
t,

th

d

re

-

n

-

Ds* 5 (
n50

`

anun&s , Dd* 5 (
n50

`

bnun&d , ~13!

we have the properties

asu0&s50, as
1asun&s5nun&s ,

as
12un&s5A~n11!~n12!un12&s ,

as
2un&s5An~n21!un22&s , n>2 ~14!

and similarly for ad and ad
1 . By substituting forDs* and

Dd* , we obtain two recursion relations

Fas1
g1

l 2vs
2 ~2n11!Gan1S g1vd

2

l 2 cos2 u1
g1

4l 2vd
2D

3@An~n21!cn22,n22bn221A~n11!~n12!cn12,n12bn12#

1S g1vd
2

l 2 cos2 u2
g1

4l 2vd
2D ~2n11!cnnbn50, ~15!

Fad1
g1

2l 2vd
2 ~2n11!Gbn1S g1vs

2

l 2 cos2 u1
g1

4l 2vs
2D

3@An~n21!cn22,n22an22

1A~n11!~n12!cn12,n12an12#

1S g1vs
2

l 2 cos2 u2
g1

4l 2vs
2D ~2n11!cnnan50, ~16!

wherean5bn5cnn50 for n,0 andcnn represents the inne
product of two state functions,Ds* and Dd* , depending on
the angleu. For example,

c005
&~us /vs!

1/4~ud /vd!1/4

~us /vs1ud /vd!1/2 ~17!

for 0<u<p/2. Different fromc00(u50)51, we can prove
c00,1 for 0,u<p/2. According to these two recursion re
lations @Eqs. ~15! and ~16!#, the convergence of the large-n
asymptotic ofan and bn can be shown. These relations d
not close and Joynt treats the problem in perturbat
theory.31 According to standard method,37 the convergence
can be shown to be exponential, and is extremely rapid
n→`. The Airy equation has the analogous properti
Therefore we can truncate the relations atn55, and obtain
the eigenvalue correction to one part in 1023. Equations~15!
and ~16! can be reduced to a matrix problem. Foru50, the
lowest eigenvalue is produced whenu0&d couples tou2&s and
u4&d . For 0,u<p/2, the lowest eigenvalue is produce
when u0&d couples tou0&s and u2&s .

By neglecting the higher-order terms, which are small,
can simplify the calculation to solve the two recursion re
tions and then derive the asymptotic solutions. TheHc2
equation corresponding to thed-wave component is
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S as1
&g1~2 cos2 u1g12sin2 u!1/2

l 2 D S ad1
g1~cos2 u1g12sin2 u!1/2

l 2 D
5

c00
2 g2

2 sin4 u

4&l 4~cos2 u1g12sin2 u!1/2~2 cos2 u1g12sin2 u!1/2
. ~18!

Finally, we express the upper critical fieldHc2 for all directions of the external field in thea-c plane as

Hc2~u,T!5
2asad

e* $2g1@&~2 cos2 u1g12sin2 u!1/2ad1~cos2 u1g12sin2 u!1/2as#2AD%
, ~19!
va

s
e ra-

nd
ose
where

D5g1
2@&~2 cos2 u1g12sin2 u!1/2ad

1~cos2 u1g12sin2 u!1/2as#
2

1
asadc00

2 g2
2 sin4 u

&~cos2 u1g12sin2 u!1/2~2 cos2 u1g12sin2 u!1/2
.

~20!

It is easy to see that the upper critical field is upward cur
ture from the slope ofHc2 . As T→Tc ,

Hc2~u,T!5

ldS 12
T

Tc
D

e* g1
1/2~g1 cos2 u1g2 sin2 u!1/2. ~21!

There is no admixture ofs wave in this limit. The curves
show linear temperature dependence.

FIG. 1. Upper critical fields versus reduced temperaturet
5T/Tc for u50 and u5p/2, whereu is the angle between th
applied field and thec axes. The solid line representsu5p/2 and
the dashed line labelsu50. We chooseg150.526,g250.017,ld

51, andas52. We note that the upper critical field foru5p/2 is
larger than that foru50. There exists extreme anisotropy inHc2 .
-

FIG. 2. Upper critical fields as a function of reduced tempe
ture t: ~a! u50 and~b! u5p/2, whereu is the angle between the
applied field and thec axes. The solid line represents our results a
the dashed line corresponds to the asymptotic solution. We ch
g151, g250.588,ld51, andas52.
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For u50, only the space spanned by$u0&d ,u2&s% is in the
ground state. TheHc2 equation corresponding to thed-wave
component is

S ad1
g1

l 2D S as1
5g1

2l 2D52
g1

2

l 4 . ~22!

For example,u5p/2, nog2 appears in this expression. Bu
for other u values,Hc2 depends ong2 . The Hc2 equation
corresponding to thed-wave component is

S ad1
~g1g2!1/2

l 2 D S as1
~2g1g2!1/2

l 2 D5
g1g2

4&l 4
c00

2 . ~23!

Herec00,1 can be easily proved. These results are in co
plete accord with experimental measurements.20

Of course, we can use the variational calculation to e
mate the lowest eigenvalue of Eqs.~3! and ~4!. For 0,u
<p/2, the variational solutions of ground state have
forms

Dd* 5d0eis1~2x cosu1z sin u!e21/2e* Hs1~cos2 u1g2 /g1 sin2 u!1/2y2

and

Ds* 5s0eis2~2x cosu1z sin u!e21/2e* Hs2~cos2 u1g2/2g1 sin2 u!1/2y2
,

wheres1 ands2 are the variational parameters. Substituti
these functions into Eqs.~3! and~4!, we can obtain the sam
consequences as we have done in asymptotic case. The
for Hc2(u50) is the same as that of Franzet al.15

III. CONCLUSIONS

Measurements ofHc2(T) are beyond accessible labor
tory magnetic fields as a ten-hundredth decrease in temp
ture, and so they are limited to temperatures nearTc . Thus
the Ginzburg-Landau theory is an appropriate one to inv

FIG. 3. Upper critical fields versus reduced temperature fou
5p/6: The solid line representsg150.526, g250.017, and the
dashed line corresponds tog151, g250.588. We also choseld

51 andas52.
-

i-

e

sult

ra-

s-

tigate the behavior ofHc2(T). Based on the Ginzburg
Landau theory, we express the upper critical field with t
external field lying in thea-c plane. Different from the
work,30 the nonzeros-wave order parameter in our model
only induced by spatial variations of thed-wave component.
From the results measured by U. Welpet al.,20 the critical-
field slopes from the linear fits are21.9 and210.5 T/K for
fields along theẑ and x̂ axis, respectively. Corresponding t
our model,g1 andg2 are equal to 0.526 and 0.017, respe
tively. By following the result of Monthoux and Pines,38 who
foundld close to 1 asTc590 K in a spin-fluctuation model
we setld51. We plot in Fig. 1 as a function of reduce
temperaturet5T/Tc for u50 andu5p/2. The upper criti-
cal field for u5p/2 is larger than that foru50. This result
points out that we can call our model, adding the termPz

2, a
pseudo-two-dimensional superconductor. The measurem
of electrical properties of single crystal (La12xSrx)CuO4 evi-
denced that the superconducting oxide systems favored
tremely large anisotropy in upper critical magnetic fields.39

We also derived the expressions of the asymptotic so
tions. Comparing with the experimental result,40 the ratio
g2 /g1 corresponds to the ratio of the effective masses p
pendicular and parallel to thec axis. We setg151 andg2
50.588,ld51 andas52. TheHc2 versust for our result
and asymptotic result is plotted in Fig. 2 at various ang
includingu50 andp/2. The upward curvature in Figs. 1 an
2 are expected for a superconductor with a tetragonal st
ture for an order parameter of combineds-wave andd-wave
symmetry. On the other hand, orthorhombic distortion in
pure d-wave superconductor can also have such curvatu
In summary, the nonzeros-wave component, derived by
mixed gradient coupling to thed-wave component, not only
forms fourfold symmetry but creates the upward curvature
Hc2 . In Fig. 3, Hc2 as functions oft for g1250.032 and
0.588 are shown. Note that as the ratio ofg12 is decreased,
Hc2 becomes increased. The most striking aspect is
variation of slope from low to high fields. The change

FIG. 4. Dependence of2dHc2 /dT ~evaluated atTc590 K! on
angle from theẑ axis corresponding to the ratio ofg1250.03.
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slope ofHc2 represents a crossover from ad wave at low
fields to (s1d)-wave at high fields. Finally, the slop
2dHc2 /dT nearTc at various angles is plotted in Fig. 4.

Thermodynamic fluctuations in the order parameter br
about meaningful correction for thedx22y2 superconductors
The effect of fluctuations may be important in high magne
field as expected for BCS mean-field model.41 In the near
future, we will study the effect of thermodynamic fluctu
tions to magnetic properties for thed-wave superconductor
~upper critical field, specific heat, etc.!.
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