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A b s t r a c t - - P r o t o c o l  testing leads to the synchronization problem should test sequences be applied 
to multiple distanced testers, namely under the multiparty configuration. This paper presents a novel 
synchronization paradigm which seamlesely unifies two synchronization techniques, self-synchroniable 
sequences and external synchronization operations, by means of the state e.~pansion transformation. 
In the paradigm, the protocol specification is first transformed into a state expansion digraph with 
two pieces of datum augmented. They are: 

(a) a zero cost assigned to each synchronization-problem-free crossing from one transition to 
another transition, and 

(b) a weighted cost assigned to each external synchronization operation whenever the synchro- 
nization is deemed necessary. 

On the basis of the state expansion transformation, synchronizable, optimal sequences for testing can 
be efficiently derived. To demonstrate the viability of the proposed paradigm, we present the gener- 
ations of two synchronizable sequences, namely the synchronizable preamble and the synchronizable 
distinguishing sequence, which have previously been used for the testing of the correctness of a pro- 
tocol's transition. The paper also shows that the complexities of the two sequences generations are 
also polynomial-bounded, i.e., O((np 2) log(rip)) and O((n2p 2) log(rip)), respectively, where n and p 
are the numbers of states and input symbols of the protocol specification. (~) 1999 Elsevier Science 
Ltd. All rights reserved. 

K e y w o r d s - - P r o t o c o l  testing, Multiparty configuration, Synchronization problem, Synchronizable 
test sequence, Preamble, Distinguishing sequence. 

I. I N T R O D U C T I O N  

Protocol testing [1,2] examines the conformity of an Implementation Under Test (IUT) against 
its protocol specification [3]. To approach this problem, a set of input/output sequences, (i.e., 
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test cases) is initially derived from the protocol specification. Testing is then performed by 
applying the sequence of inputs to the IUT and verifying the sequence of outputs in response. 
However, predetermined test sequences may cause the synchronization problem [4] should they be 
applied to multiple distanced testers [1]. Such a problem arises when the ~th Remote Tester (RT) 
cannot determine when to send an input to the IUT due to ambiguity over whether the IUT has 
assumedly sent an output to the jth (j ~ i) RT or not. 

The synchronization problem can be resolved by two approaches: 

(a) constructing Self-Synchronizable (SS) sequences [5,6], and 
(b) employing External-Synchronization (ES) operations [1,7]. 

The first approach takes advantage of the fact that a protocol's SS sequence is consid- 
ered synchronization-problem free should the sequence solely consist of the protocol's transi- 
tions. Namely, the transitions in an SS sequence are intentionally arranged so that the previous 
transition always informs the input RT of any transition, thereby eliminating the synchroniza- 
tion problem. Unfortunately, this approach has two limitations. First, SS sequences may not 
exist [8]. For ensuring the existence of SS sequences, requirements of assumptions [6,9] on proto- 
cols under consideration confine the method's applicability. Second, should other synchronization 
mechanisms, e.g., ES operations, be prohibited, such incomplete testing renders some faults un- 
detectable [10]. In contrast to constructing SS sequences, the alternative approach relies on 
employing ES operations, such as via manual cooperation or extra reliable communication chan- 
nels, to realize synchronization between RTs. This approach is constrained by the high cost 
incurred by ES operations. The fact that ES operations are inevitable but should be reduced to 
minimum inspires the development of a method of combining the features of SS sequences and 
ES operations for protocol testing. 

This paper presents a novel synchronization paradigm which seamlessly unifies SS sequences 
and ES operations by means of the state expansion transformation. Initially in the paradigm, 
the protocol specification is transformed into a state expansion digraph with two pieces of datum 
augmented: 

(a) a zero cost assigned to each synchronization-problem-free crossing from one transition to 
another transition, and 

(b) a weighted cost, say a, assigning to each ES operation whenever the synchronization is 
deemed necessary. 

On the basis of the state expansion transformation, synchronizable, optimal sequences for testing 
can be efficiently derived. 

The notion of this synchronization paradigm has several advantages. First, the cost each tran- 
sition is associated with can be used in the quantitative analysis for selecting SS sequences or ES 
operations when both types of test sequences are available. In addition, the fact that the value 
can be dynamically adjusted reflects efforts to synchronize RTs in a realistic test environment. 
For instance, synchronizing testers within a local site is less expensive than synchronizing those 
locate remotely. Moreover, assigning the value c~ to infinite indicates the disregard for the use of 
ES operations. Owing to the flexibility and practicability, synchronizable, optimal sequences for 
testing can be derived. 

To demonstrate the viability of the proposed paradigm, we present the generations of two 
synchronizable sequences, namely the synchronizable preamble [1] and the synchronizable distin- 
guishing sequence [11]. Notably, a test case for testing the correctness of a protocol's transition 
comprises of three parts: 

(a) the preamble: a sequence which directs the protocol from the initial state to the head 
state of the transition being tested; 

(b) the transition: testing of the transition itself involves the checking of the correctness of 
the output symbol upon applying the input symbol; and 

(c) the postamble: a sequence for verifying the correctness of the transition's tail state. 
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In particular, the postamble can be adopted by a set of distinguishing sequences proposed by 
the W-method [3,11-13]. Therefore, the second goal of the paper is the provision of the two 
synchronizable sequences on the basis of the proposed paradigm, realizing the synchronization- 
problem-free W-method. 

The rest of the paper is organized as follows. Section 2 defines the protocol model and the 
synchronization problem. Section 3 presents the state expansion transformation of the proposed 
paradigm. The algorithms of the generations of the synchronizable preamble and the synchro- 
nizable distinguishing sequence are given in Sections 4 and 5, respectively. Concluding remarks 
are finally made in Section 6. 

~ I'"I ~ i ~ .  I ,,. I'" I ( ~  

Figure 1. Multiparty-configuration testing. 

2. MODEL AND P R O B L E M  

The test environment, referred to as the multiparty configuration [1], consists of k (k _> 2) 
RTs connected to the IUT through k interfaces, as depicted in Figure 1. Each interface is 
comprised of two FIFO queues attached to two end points. Upon receiving an input from an RT 
(i.e., the input-RT), the IUT updates its internal state and responds with a set of outputs to 
multiple RTs (i.e., the output-RTs). The IUT is thus formally specified as a k-port Finite State 
Machine (FSM) [3,10,13] represented as a digraph G = (8, E), where S denotes a nonempty set 
of states and each transition Te : [S~, Sj; (a, ma) / (x, rex), (y, mu), . . . ( z, mz)] E E represents that, 
as input a is received from RT ma, the FSM generates outputs x , y , . . . z  to RTs mz,mu,. . .mz, 
respectively, and progresses from state Si to Sj. Notably, one input-RT and one or more output- 
RTs exist for each transition. Moreover, for later explanation of the notations, transition set 
E can be considered as the combining of the next-state function 6 : S x I --. S and the output 
function A : S x I ~ O, where I and O are nonempty sets of input symbols and output symbols, 
respectively. For instance, transition Te mentioned above is the combination of 6(Si, (a, ma)) = Sj 
and A(Si, (a, ma)) = (x, ms), (l/, mu), . . .  (z, mz). Finally, the protocol FSM under consideration 
is assumed to be deterministic, minimized, strongly-connected, and completely-specified [3,14]. 
In addition, there exists a particular transition, say init, which resets the IUT to a specified initial 
state, and is associated with a zero cost. For instance, Figure 2 presents a three-port FSM. 

DEFINITION 1. The Transition Type (TT) of transition Te is defined as TT(Te) = (mi, Mo), m~ E 
{1.. .  k) and Mo C {1. . .  k }, where mi denotes the input-RT identification and Mo represents 
the set of output-RT identifications, respectively. 

DEFINITION 2. For two adjacent transitions Te and Ty , where TT(Te) = (m~, Moi) and TT(Tf) = 
(mj, Moj), sequence Te-T! is synchrano~, (i.e., synchronization-problem-free) if  and only if 
mj = mi or mj E Moi. Moreover, the Enabled Set (ESet) of transition Te is defined as F_~et 
(Te) = {m~) tJ Mo~. Therefore, sequence Te-T l is synchronous if and only if mj E ESet (Te). As 
an illustration, Table 1 summarizes the associated TT  and Eset of each transition of the protocol 
FSM in Figure 2. 
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Figure 2. A schematic diagram of a three-port FSM. 

Table 1. TT and ESet of each transition of the protocol FSM in Figure 2. 

Transition TT ESet Transition TT ESet 

T1 (1,{1}) {1} T2 (2, {3}) {2,3} 

Tz (3, {2,3}) {2,3} T4 (1,{1,2}) {1,2} 

T5 (2, {3}) {2, 3} T6 (3, {2}) {2,3} 

T7 (1,{1}) (1} T8 (2, {3}) {2,3} 

T9 (3, {2, 3}) {2, 3} init (-, {i}) {I} 

DEFINITION 3. A sequence is self-synchronizable (SS) if  every subsequence consisting of two 
adjacent transitions is synchronous. 

The synchronization problem can be resolved by constructing SS sequences or employing ES op- 
erations. For instance, sequence init - T 1 - T 4 - T s - T 6 ,  which directs the protocol FSM in Figure 2 
from the initial state to state $3, is self-synchronizable. Similarly, sequence init-ESO(1, 2) - T2, 
where ESO(i,j) ,  1 < i , j  < k, denotes the ES Operation of the i th RT informing the jth RT of 
the valid time to send the next input, also directs the FSM from initial state to state $3 without 
the synchronization problem. However, in addition to the cost of normal transitions, the latter 
sequence requires an extra cost of realizing ES operations. 

3. STATE E X P A N S I O N  T R A N S F O R M A T I O N  

Generally, in the synchronization paradigm, the protocol specification is first transformed into 
a state expansion digraph with two pieces of datum augmented: 

(a) a zero cost assigned to each synchronous crossing from one transition to another transition, 
and 

(b) a weighted cost assigned to each external synchronization operation. 

Specifically, the construction of the state expansion digraph, or the transformation, is comprised 
of two steps. 

STEP 1. Each state S~ in the protocol FSM is replaced by a set of Attach Points (APs), where 
each AP is either the beginning point of an outgoing transition or the ending point of an incoming 
transition of Si. The beginning AP and ending AP of transition Te are hereinafter denoted as Be 
and Ee, respectively. 

STEP 2. For any two adjacent transitions Te and T I with common state S~, where Ee and B/  
denote the corresponding APs of Si, a transition from Ee to B f is created. The added transition 
is either a dummy transition with zero cost if sequence Te-T! is synchronous, or a weighted 
transition with cost a if sequence Te-Tf is not synchronous. 

As an illustration of the state expansion transformation, Figure 3 presents the state expansion 
digraph of the protocol FSM in Figure 2. We further analyze the complexity of the state expansion 
transformation. Assume that there are a total of n states and p legitimate input symbols in 
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the protocol FSM, namely a total of np transitions. For the state expansion digraph, there are 
2np+ 1 APs because each transition in the original FSM is associated with two APs and transition 
init with an A P R .  Furthermore, in addition to original np transitions, np ~ transitions are also 
created because, for each original transition, p legitimate transitions are outgoing from its ending 
state. Consequently, there are in total 2np÷l  APs and np+np 2 transitions in the state expansion 
digraph. In other words, there are 2 • IEI + 1 APs and IEI + p • IEI = (1 + p) • IEI transitions in 
the state expansion digraph, where IEI denotes the number of transitions in the original protocol 
FSM. 

init 

e 

s o ~  ~ : dummy transition with cost 0 

Ts:b/z ~ : normal transition with unit cost 

Figure 3. State expansion digraph of the FSM in Figure 2. 

4 .  S Y N C H R O N I Z A B L E  P R E A M B L E  

Based on the synchronization paradigm proposed above, synchronizable preambles can be gen- 
erated. The preamble [15] of state Si is the shortest (minimum-cost) I /O sequence which directs 
the IUT from the initial state to state Si. A synchronizable preamble is then a synchronous 
preamble. The preamble stationing the IUT in state Si is normally prefixed to a Transition Un- 
der Test (TUT) with head state Si in the test case for testing the correctness of the transition. 
Notice that the synchronization problem may still occur when the IUT progresses from the syn- 
chronizable preamble to the following TUT. This fact implies that constructing a synchronous 
test case requires characterizing a synchronizable preamble by the ending state and the input-RT 
identification of the subsequent TUT. Therefore, a synchronizable preamble is represented as 
SP(Si, x). Formally speaking, SP(Si, x) is the synchronous, shortest I /O sequence which takes 
the IUT from the specified initial state to state Si, and does inform the X th  RT of the valid time 
to send the next input. 

The following scenario illustrates the generation of the synchronizable preamble, say SP(Si, x). 
The state expansion transformation of the protocol FSM is first performed as mentioned in 
the previous section. Next, the shortest paths with associated costs from R to all APs can be 
derived by performing the Single Source All Shortest Paths (SSASP) algorithm [16] from AP-  R. 
Moreover, the fact that the first attribute of target SP(Si, x) is the ending state where the IUT 
is directed to, accounts for why only the shortest paths to ending APs are considered herein. All 
ending APs attached to the same state and their shortest paths can be further grouped together; 
t h ~ a  total of n groups corresponding to n states are constructed. Therefore, sequentially 

_ J  

searching for each group i allows us to select the one with the minimum cost from the shortest 
paths belonging to the same group and, alternately, obtain the set {(SP(Si, Ai), c) I 1 < i < 
n, Ai C_ {1. . .  k}}, where Ai denotes the Enabled Set of the last transition in the shortest path 
just selected, and c is the derived cost of the selected path. 
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Unfortunately, the target SP(S~, x) may not be derived yet since it is possible that x ~ A~ for 
group i. All SP(Si, z), 1 < z < k, for each group i should be further derived for completeness. 
Sequentially searching for each group i one more time is then deemed necessary to identify the 
shortest path for other input-RT identification z, z ~ Ai and 1 < z < k. Interestingly, simply 
picking up the shortest one from the set of paths belonging to group i and their Enabled Set 
containing input-RT identification z may yield a wrong SP(Si, z). A valuable strategy in the 
second round is, if the cost of the considered path exceeds a + c, where c denotes the cost of 
the selected shortest path in the first round for each group i, the sequence SP(Si,z) derived 
previously should be replaced by the concatenated sequence of SP(Si, Ai) and ESO(v, z), y E Ai, 
and with cost a + c. This strategy is because the most cost-effective approach of directing the 
IUT from the initial state to state Si and enabling the z th RT is via SP(Si, Ai) derived in the 
first round. Then, ESO(y, z) is performed, where Y E Ai. 

The overall algorithm is formally specified as follows. 

Algor i thm:  The  Synchronizable  P r e a m b l e  Gene ra t i on  

INPUT. A k-port protocol FSM. 

OUTPUT. The set {(SP(Si, z), c) [ 1 <: i _< n, 1 < z < k}. 

STEP 1. Construct the state expansion digraph of the protocol FSM. 

STEP 2. Construct all shortest paths from R to all ending APs by performing the SSASP algo- 
rithm. 

STEP 3. Execute the first-round sequential search to obtain the set {(SP(Si, Ai, e))[1 < i < n, 
Ai C_ {1. . .  k}}, where Ai represents the Enabled Set of the last transition in the shortest path 
just selected and c is the cost of the selected path. 

STEP 4. By following the above mentioned strategy, execute the second-round sequential search 
to identify other (SP(Si, z), c), where z ¢ A~ and 1 < z < k. 

The full set {(SP(S~,z),c)[1 < i < n, 1 < z < k} is thus derived. 

Complex i ty  Analysis  

Assume that there are n states and p legitimate input symbols in the protocol FSM. Thus, 
there are a total of 2np+ l  APs and np+np 2 transitions in the state expansion digraph. Since the 
SSASP algorithm requires an execution time of O(([S[ + [El) log IS[), where IS[ and [E[ denote the 
numbers of states and transitions of the target digraph, respectively, the algorithm thus requires a 
polynomial-bounded execution time of O(((2np+l)+(np+np2)) log(2np+l)) = O((np 2) log(rip)). 

imt  

T4:a/x,y 

~ ;  ~,  , : w ~ i ~ d  tnmsition with ~ a 
F4 -- : dummy ~ o a  wi th cost 0 

: nomal tmmition with ~ i t  ~ 

Figure 4. Shortest paths of the diagrsph in Figure 3. 
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As an illustration, Figure 4 and Table 2 summarize all the shortest paths and the SPs derived 

from Figure 3, in which the cost of an ES operation a = 4 is given. For instance, SP($3,2) is 

sequence init -T1 -:/"4-Ts-T6 with cost 4. In addition, SP(S3, 1) is the concatenated sequence of 
SP(S3, 2) and ESO(2, 1) with aggregate cost 4 + c~ = 8. For each state, three SPs, i.e., SP(Si, 1), 
SP(Si, 2), and SP(S~, 3), corresponding to three RTs are derived. Once the table is constructed, 
for a given ending state and an input-RT identification, the synchronizable preamble can be easily 

derived. 

Table 2. Synchronizable preambles. 

Source Ending Ending Enable Derived SPs Derived SPs 
Cost 

AP State AP Set in First Round in Second Round 

(SP(SI, 2), 4) 
R $I I 0 {I} (SP(SI, {1}), 0) 

(sP(s~, 3), 4) 
Sl E3 5 {2, 3} 

R S1 E7 9 {1} 
R $2 E1 1 {1} (SP(S2, {1}), 1) 
R f12 E4 2 {1, 2} (SP(S2, 2), 2) 
il~ S2 E 5 3 {2, 3} (SP(S2,3), 3) 
R f12 E9 5 {2,3} 
R $3 E2 5 {2,3} 
R $3 E6 4 {2,3} (SP(S3, {2, 3}),4) (SP(S3, 1), 8) 
R ~'a Es 5 {2,3} 

5. S Y N C H R O N I Z A B L E  D I S T I N G U I S H I N G  S E Q U E N C E  

Based on the same synchronization paradigm, in this section we present another example of 
how to generate Synchronizable Distinguishing Sequences (SDSs). Distinguishing sequences of 
two states are used to distinguish one state from another. For protocol testing, the W-method 
further utilizes a set of distinguishing sequences (i.e., characterizing set) [13] to ascertain which 
state the IUT is currently in. According to the Automata Theory [3,17], distinguishing sequences 
of any two states in a protocol FSM always exist if the FSM is minimized. Formally speaking, 
states Si and Sj are considered to be distinguishable if an input sequence exists such that, upon 
applying the input sequence, states Si and Sj produce different output sequences. Such an input 
sequence is thus referred to as a distinguishing sequence of states Si and Sj. For instance, states 
$1 and $3 in Figure 2 are distinguishable since they produce different output sequences xy and 
x(y, z) after applying the input sequence, ac. 

However, predetermined distinguishing sequences may lead to the synchronization problem 
should they be applied to multiple distanced testers. For instance, distinguishing sequence ac of 
states $1 and $3 incurs the synchronization problem, even causing the states to produce different 
output sequences. Surprisingly, another input sequence aa is also a distinguishing sequence of 
states $1 and $3 but free from the synchronization problem. Such a synchronous distinguishing 
sequence is thus called an SDS and notably required for protocol testing under the multiparty 
configuration. 

In contrast to the preamble prefixed to a TUT, the distinguishing sequence, as one member 
subsequence of the postamble verifying the tail state of the TUT, is postfixed to the TUT. This 
situation implies that an important attribute of an SDS is the enabled input-RT identification, 
i.e., one member of the ESet of the antecedent TUT. Therefore, an SDS is characterized by the 
state-pair to be distinguished and the required input-RT identification of the first transition of 
the SDS which is confined by the ESet of the antecedent transition. An SDS is thus denoted 
as SDS((S~, Sj), x), where x denotes the desired input-RT identification. Next, before applying 
the proposed synchronization paradigm, we introduce an algorithm for generating distinguishing 
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sequences: the compound digraph approach [18-20]. Therefore, we illustrate how to perform the 
state expansion transformation for a compound digraph and then generate all SDSs. 

A compound digraph (G x G) of a protocol FSM (G) is defined and constructed as follows. The 
input and output symbols of G x G are the same as those of G. The node set in G x G consists 

of all possible state-pairs in G as well as a newly created node, called the Source. Considering a 
node, [Si, Sj] (Si # Sj), with the input a received from RT ma in G x G, the outgoing transition 
of the node is determined as follows. 

1. If A(S~, (a, ma)) # A(Sj, (a, ma)), i.e., different output symbols, in G, S~, and Sj are 
immediately distinguishable by input (a, ma), a transition from [S~, Sj] to the Source with 
label (a, ma)/- is created. 

2. If A(S~, (a, ma)) = A(Sj, (a, ma)) and 6(Si, (a, ma)) = 5(Sj, (a, ma)) = Sk, i.e., same 
output symbol and same next state, in G, a transition from [Si, Sj] to [Sk, Ski with label 
(a, m~)/A(Si, (a, m~)) is created. Node [Sk, Ski is referred to as a trivial node. Notably, 
distinguishing between two identical states in a trivial node is unnecessary. Therefore, no 
outgoing transition leaves from [Sk, Ski in G x G. 

3. If A(Si,(a, ma)) = A(S#,(a,m~)) but 6(Si,(a,m~)) # 6(S#,(a,m~)), i.e., same output 
symbol but different next states, in G, a transition from [Si, S#] to [6(S~, (a, ma)), 6(S#, (a, 
m~))] with label (a, m~)/A(Si, (a, m~)) is created. This finding suggests that the distin- 
guishability of state-pair [Si, Sj] relies on the distinguishability of state-pair [6(S~, (a, ms)), 

(a, m,))]. 
Notably, the order of states in any pair is irrelevant, i.e., [Si, Sj] = [Sj, Si], since the compound 

digraph (G x G) is employed for deriving distinguishing sequences of all state-pairs. Further- 
more, Huffman et al. [18-20] proposed a novel theory in which any two states Si and Sj are 
distinguishable if and only if there exists a path from [Si, Sj] to the Source in G x G; the in- 
put sequence of the path then becomes a legitimate distinguishing sequence of states Si and Sj. 
Herein, distinguishing sequences of all state-pairs are derived by merely performing an inverse 
Breadth-First Search from the Source to all nodes in G x G. The fact that the FSM in mind is 
minimized, i.e., any two states are distinguishable allows for all required distinguishing sequences 
to be discovered. 

Once the compound digraph is constructed, target SDS((Si, Sj),x) can be generated on the 
basis of the synchronization paradigm, similar as in the procedures in Section 4. The complete 
algorithm is specified as follows. 

Algorithm: The Synchronizable Distinguishing Sequences Genera t i on  

INPUT. A k-port protocol FSM. 

OUTPUT. The set {SDS((Si, Sj),z),c) [ 1 _< i, j < n, i # j, 1 < z < k}, where z denotes the 
desired input-RT identification and c denotes the associated cost of the SDS. 

STEP 1. Construct the compound digraph of the protocol FSM. 

STEP 2. Construct the state expansion digraph of the derived compound digraph. 

STEP 3. Construct all shortest paths from all beginning APs to the Source by performing the 
inverse SSASP algorithm from the Source. 

STEP 4. Group together all beginning APs attached to the same state-pair as well as their 
shortest paths. 

STEP 5. Execute the first-round sequential search to pick up the shortest one for each group and 
to yield legitimate (SDS((S~, Sj), z), c). 

STEP 6. Execute the second-round sequential search to yield other (SDS((Si, S~), z),c). 

The full set {(SDS((Si, Sj), z), c)} is thus derived. 



Protocol Testing under Multiparty Configuration 133 

C o m p l e x i t y  Analys is  

First, since there are n states and p legitimate input symbols in the protocol FSM, there 
are a total of np transitions. Second, O(n 2) nodes and O(n2p) transitions are in the compound 
digraph. Third, 0(2* (n2p) + 1) = O(n2p) APs and O((1 + p ) ,  (n2p)) = O(n2p s) transitions are in 
the expanded eompotmd digraph. Therefore, the algorithm thus requires a polynomial-bounded 
execution time of O(((nZp) + (nZp2)) log(n2p)) = O((n2p 9) log(rip)). 

In the following, Figure 5 illustrates the compound digraph (G x G) for the FSM in Figure 2. 
Figure 6 depicts the state expansion digraph, all shortest paths are presented in Figure 7, and 
Table 3 summarizes the derived SDSs, in which the cost of an ES operation c~ = 4 is given. 
Notably, it is possible to select more than one shortest path for each group in the first-round 
sequential search (Step 5) if the shortest paths are associated with the same cost. Moreover, in 
contrast to the SP prefixed to the TUT in a test case, the SDS is merely postfixed to the TUT. 
This accounts for why only beginning APs are considered during the generation of SDSs. 

Tr iv ia l  , ,  Nodes to 
_ , nodes., di~nmaished.,,,', qp,.+ . - . -  

. . . . . . . . . . . . .  .;-.'.-. ". . . . . . . . . . .  . ~ . . ' . . s q ~  ~ s .  

T ~  : 4.~f... 

: T..h~, ,',,...,_~'.,,~...~]~g~--,~ 
- o ~ -  

l Ip,~ , ¢ .~  ~ 

1 

Figure 5. Compound digraph of the FSM in Figure 2. 
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.... : weighted muui 
. . . . . . . . . .  d m m m y . ~  TT:a/- 

: IxltmaJ Inmstdoo with ml~t ~ ~ ~  
Ts:b~ "w ~ [S:z, Sz] 

| 

Figure 6. State expansion digraph of the digraph in Figure 5. 

6. C O N C L U S I O N S  

This paper has proposed a novel synchronization paradigm using the state expansion transfor- 
mation which can be applied to generate several synchronizable, optimal sequences for protocol 
testing. In the paradigm, both the features of SS sequences and ES operations are seamlessly 
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Trivial ," Nodm to be 

: nod~-" ~stingu~tz.ed.--"" 

, - - ~  - - ~ - ~ -  ........... : dummy transition with cost 0 

T~," ~ : normal transition with unit cost 

Figure 7. Shortest paths of the digraph in Figure 6. 

Table 3. Synchronizable distinguishing sequences. 

Destination Beginning i Beginning Cost Input-RT Derived SDSs Derived SDSs 
AP State-Pnir AP Identification in First Round in Second Round 

Source (SI, $3) BI 2 1 (SDS((SI, Sa), 1), 2) (SDS((SI, $3), 2), 6) 

Source (Si, S3) B2 oo 2 

Source ($1, $3) B3 2 3 (SDS((Sx, Sa), 3), 2) (SDS((S1, $3), 2), 6) 

Source ($I, $2) B4 1 1 (SDS((S1, $2), 1), 1) 

Source ($I, $2) B5 2 2 (SDS((S1, $2), 2), 2) 

Source (s1, s2) Be 1 3 (SDS((&, S2), 3), 1) 
Source ($2, $3) B7 1 1 (SDS((S2, $3), I), 1) 

Source (S2, s j )  Bs 2 2 (SDS((S2, S3), 2), 2) 
Source ($2, $3) B9 1 3 (SDS((S2, $3), 3), 1) 

combined  by  quant i fy ing  the  execut ion difficulty of  ES opera t ions  and  explici t ly augment ing  

t h e m  into the  pro tocol  FSM via  the  not ion of the  cost. T w o  typica l  sequences uti l ized in the  
W - m e t h o d  for pro tocol  test ing,  i.e., the  synchronizable  p r eamble  and  the  synchronizable  distin- 
guishing sequence, are thus  der ived on the  basis of  the  p roposed  p a r a d i g m  to  d e m o n s t r a t e  its 

viability. Finally, the  pa r ad igm is under  the  general  m u l t i p a r t y  configurat ion,  t he r eby  mak ing  it 
qui te  effective aga ins t  the  synchroniza t ion  p rob lem in a realistic tes t  conf igurat ion for protocol  
test ing.  
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