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Abstract

Based on a two-dimensional linear water wave theory, this study develops the boundary
element method (BEM) to examine normally incident wave scattering by a fixed, submerged,
horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth.
Numerical results for the transmission coefficients are also presented. In addition, the numeri-
cal technique’s accuracy is demonstrated by comparing the numerical results with previously
published numerical and experimental ones. According to that comparison, the transmission
coefficient relies not only on the submergence of the horizontal impermeable plate and the
height of the permeable breakwater, but also on the distance between horizontal plate and
permeable breakwater. Results presented herein confirm that the transmission coefficient is
minimum for the distance approximately equal to four times the water depth. 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Offshore structures, both submerged horizontal plate and submerged breakwater,
are generally used to protect harbours, inlets, and beaches from wave action. In such
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cases, a minimum transmission coefficient is of priority concern in their design. In
general, submerged structures are advantageous in that they are less expensive than
a subaerial breakwater. Moreover, they do not obstruct the ocean view, which is
critical for recreational and residential shore development.

Previous investigations have treated the two-dimensional scattering of linear water
waves by thin rigid plates in several manners. Burke (1964) analytically solved wave
scattering by a submerged horizontal plate in deep water using the Wiener-Hopf
technique. Siew and Hurley (1977) employed the method of matched asymptotic
expansions to solve the problem of a submerged horizontal plate in shallow water.
Patarapanich (1984a, b) applied the finite element and calculated the reflection and
transmission coefficients for a submerged horizontal plate from deep to shallow-
water limits. McIver (1985) considered the scattering of surface waves by a moored,
submerged, horizontal plate, using eigenfunction expansions within the finite domain.
Parson and Martin (1992) solved the problem of wave scattering by a submerged,
horizontal plate, using a hypersingular integral equation for the discontinuity in the
potential across the plate.

Wave propagation over various two-dimensional underwater permeable structures
has been widely studied. A model describing wave transformation over a submerged
breakwater or sill is a prerequisite in coastal design. Several investigators have
addressed this problem with different subsequent models. Wave transmission, reflec-
tion and energy dissipation have been experimentally studied by Dick and Brebner
(1968), Dattatri et al. (1978) and Seelig (1980). Sollitt and Cross (1972), Madsen
(1974) and Madsen (1983) considered the dissipation of wave energy inside rec-
tangular, emerged and porous structures under normal wave incidence. Sulisz (1985)
resolved the problem for an arbitrary cross-section and Dalrymple et al. (1991) util-
ized the eigenfunction method, demonstrating that for oblique waves incident upon a
vertical porous structure, the reflection and transmission coefficients are significantly
altered. Rojanakamthorn et al. (1989, 1990) presented a mathematical model based
on linear wave theory for a rectangular submerged breakwater and extended the
solution to derive a modified mild-slope equation, including wave breaking, to evalu-
ate wave transformation over a trapezoidal porous breakwater. Losada (1991) derived
a similar linear model to examine monochromatic wave transformation over and
through porous beds or on a submerged rectangular structure, including oblique inci-
dence. Losada et al. (1996a, b) developed a linear model based on the theory of
Sollitt and Cross (1972) for waves in porous media, in which the analysis focused
primarily on the hydrodynamics induced inside and outside a submerged porous
structure under oblique incoming regular wave trains.

In this study, we adopt the boundary element method (BEM) to treat the wave
scattering problem by a fixed, submerged, horizontal impermeable plate and a sub-
merged permeable breakwater under normal wave incidence. To increase the numeri-
cal solution’s accuracy, the linear element is used to perform computation. To con-
firm the numerical solution’s accuracy, the numerical solutions for the transmission
coefficient by a fixed, submerged, horizontal plate are compared with the experi-
mental results of Dick and Brebner (1968) and the numerical solutions of Patarapan-
ich (1984a, b). Moreover, the numerical solutions for the reflection coefficient by a
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submerged permeable breakwater are compared with the experimental results of Lee
and Huang (1996).

2. Theoretical formulation of the problem

Consider a horizontal impermeable plate located above a trapezoidal permeable
breakwater submerged in a water depth,h, as shown in Fig. 1. The distance isLt

between horizontal plate and permeable breakwater. The system is idealized as two-
dimensional. A Cartesian coordinate is chosen with the origin located at the still
water surface. The incident wave is specified propagating in the+ x direction with
a wave heightH and a periodT.

By separating the flow field into two regions, i.e. a plate-water region (F1) and
a porous structure region (F2), under the assumption of irrotational motion and an
incompressible fluid outside and inside the porous structure (Sollitt and Cross, 1972),
the Laplace equation must hold in every region.

=2Fj = 0; j = 1,2 (1)

Fig. 1. Definition sketch and coordinate system.
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The velocity potentialsFj(x,z,t) can be expressed as

Fj (x,z,t) = Real[fj (x,z)e−ivt] (2)

where i = √ − 1, v denotes the wave frequency. The frequencyv must satisfy the
dispersion relation

v2 = gktanh(kh) (3)

whereg represents the gravity acceleration, andk is the wave number. The velocity

V
→

j is defined as

V
→

j = − =Fj (4)

where= denotes the gradient operator. The velocity potential must satisfy the follow-
ing boundary conditions:

1. The free surface boundary condition (Dean and Dalrymple, 1984):

∂f1

∂z
=

v2

g
f1 on z = 0 (5)

2. The boundary condition at the water bottom:

∂fj

∂n→
= 0 on z = − h; j = 1,2 (6)

i.e. the bottom is impermeable. Wheren→ represents the unit normal vector point-
ing out of the computation domain.

3. The boundary condition on the horizontal plate:

∂f1

∂n→
= 0 onSm (7)

i.e. the normal velocity is zero on the solid boundary, whereSm is the submerged
surface of the horizontal plate.

4. The radiation conditions:This condition expresses the behaviour of an outgoing
wave atW̄ distance away from the porous structure.

5. The matching boundary conditions:Since the solutions in adjacent regions must
be continuous at each interface, continuity of mass flux and pressure must be
satisfied at the interfaces. In terms of the velocity potentials these conditions can
be expressed as

∂f1

∂x
= e

∂f2

∂x
(8)
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f1 = (S − if)f2 (9)

wheree denotes the porosity of the permeable material,S represents the virtual
mass coefficient andf is the linearized friction coefficient (Sollitt and Cross,
1972).

Furthermore, the solution of the system of equations requires a known value for
the linearized friction coefficientf. To evaluatef an additional condition is necessary.
In line with Sollitt and Cross (1972), the Lorentz’s (1926) hypothesis of equivalent
work can be assumed. In doing so,f can be evaluated from the following equation,

f =
1
v Hen

Kp

+
e2Cf

√Kp

E
∀

E
t + T

t

uqu3dtd∀

E
∀

E
t + T

t

uqu2dtd∀

J (10)

wheren denotes the kinematic fluid viscosity,Cf represents the turbulence drag coef-
ficient, Kp is the intrinsic permeability of the porous medium andq denotes the real
part of the seepage velocity. In addition,Kp andCf are related to the type of porous
structure considered and are taken as given. Above parameters can be evaluated a
priori experimentally andf is calculated by iterations.

The reflection and transmission coefficients of the linear water wave are defined as

Kr =
Hr

H
Kt =

Ht

H
(11)

whereHr andHt represent the reflected and transmitted wave heights respectively.

3. BEM formulation

The boundary element method (BEM) has been used to solve a variety of problems
in theoretical hydrodynamics and elasticity theory (Brebbia and Dominguez, 1989).
For a boundary value problem in which the free space Green’s function, i.e. funda-
mental solution, is known, the BEM can be used to perform computations only on
the boundary of the domain. The effective dimensionality of the problem is reduced
by one. Averting detailed computations inside the domain allows the BEM method
to be more efficient than the domain type methods.

To utilize the BEM, the boundary value problems must be initially converted into
an integral equation representation. Using Green’s second identity

E
G

(f
∂Q

∂n→
− Q

∂f

∂n→
)dG = E

V

(f=2Q − Q=2f)dV (12)
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whereQ denotes fundamental solution of the governing equation,G represents the
boundary of the solution domain,V is the solution domain, andf denotes the velo-
city potential at a selected point of the boundary.

Because the governing equation of the fluid domain is Laplace equation, the funda-
mental solution is (Greenberg, 1971)

Q =
1

2p
lnS1

rD (13)

in which r represents the distance from the source point to the field point. From Eq.
(12) any velocity potentialf̂m of the boundary is given by

−
b

2p
f̂m = E

G

Sf
∂Q

∂n→
− Q

∂f

∂n→
DdG (14)

in which m is the source point, andb denotes the internal angle of the source point
m. The integration of Eq. (14) is then carried out numerically, using Gaussian quadra-
ture.

The numerical procedure of the BEM involves dividing the boundary intoN seg-
ments or elements. To increase the numerical result’s accuracy, the linear element
is used to perform computation on the boundary of the domain. Therefore the values

of f and ∂f/∂n→ at any point on the element can be defined in terms of their nodal
values and two linear interpolation functions.

For a well-posed boundary value problem, eitherf or fn or a relation between
them is known at all points of the boundaries. Since bothf andfn at the radiation
boundaries are unknowns, the relation betweenf and fn can be constructed by
using the matching conditions of velocity and pressure, at interfaceAB (Fig. 1) (Wu,
1987), i.e.

f1 = f r =
gH
2v

cosh[k(h + z)]
coshkh

eik(x + W̄ + bt) +
gHr

2v

cosh[k(h + z)]
coshkh

e−ik(x + W̄ + bt)

+ O`
m = 1

Am

g
v

coskm(h + z)
coskmh

ekm(x + W̄ + bt) (15)

f1n = − f r
x =

− igkH
2v

cosh[k(h + z)]
coshkh

eik(x + W̄ + bt)

+
igkHr

2v

cosh[k(h + z)]
coshkh

e−ik(x + W̄ + bt)

− O`
m = 1

Am

gkm

v

coskm(h + z)
coskmh

ekm(x + W̄ + bt) (16)
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The subscript off1 denotes flow region.Hr represents the wave height of reflection
wave.km and v must satisfy the following relation.

v2 = − gkmtan(kmh) m = 1,2,…,` (17)

The relation between velocity,f1, and normal velocity,f1n, on the vertical inter-
face AB is derived in Appendix A, Eq. A(3) and, in the present context, can be
written as:

f1 = H
g
v

coshk(h + z)
coshkh

+
coshk(h + z)

ikQ0
E
0

− h

∂f1

∂n
coshk(h + z)dz (18)

− O`
m = 1

coskm(h + z)
kmQm

E
0

− h

∂f1

∂n
coskm(h + z)dz

Similarly, on the vertical interfaceCD(x = (W̄ + bt)), one can obtain

f1 = f t =
gHt

2v

cosh[k(h + z)]
coshkh

eik(x − W̄ − bt)

+ O`
m = 1

Cm

g
v

coskm(h + z)
coskmh

e−km(x − W̄ − bt) (19)

f1n = f t
x =

igkHt

2v

cosh[k(h + z)]
coshkh

eik(x − W̄ − bt)

− O`
m = 1

Cm

gkm

v

coskm(h + z)
coskmh

e−km(x − W̄ − bt) (20)

whereHt is the wave height of transmission wave. Therefore the relation between
f1 and f1n on the interfaceCD can be established as (see Appendix A)

f1 =
coshk(h + z)

ikQ0
E
0

− h

∂f1

∂n
coshk(h + z)dz

− O`
m = 1

coskm(h + z)
kmQm

E
0

− h

∂f1

∂n
coskm(h + z)dz (21)

The discretized forms of the radiation boundaries are established on the basis of
the linear element. Rearranging in such a manner that all unknowns are taken to the
left hand side and all the knowns are move to the right side leads to
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[A][X] = [B] (22)

where [X] denotes the vector of unknownf and ∂f/∂n, [B] represents the known
vector, and [A] is the matrix of coefficients. The fact that a sufficient number of
equations are available to solve unknown quantities accounts for why Eq. (22) can
be solved by using the Gauss elimination method.

At corners the flux at both sides may not be unique (so called corner point). To
consider the possibility that the flux at a point before a corner (not necessarily a
corner point) may be different from the flux at a point after a corner, two nodes are
taken at every corner in the proposed model. That is the corner node is replaced by
two different nodes inside each of the two adjacent elements.

4. Numerical results and discussion

This study has developed the boundary element method (BEM) to examine the
problem of scattering by a fixed, submerged, horizontal impermeable plate and a
submerged permeable breakwater in water of constant depth. To our knowledge, no
analytical or numerical method has been able to resolve this problem, and no experi-
mental data in previous literature are available either. To ensure the current compu-

Fig. 2. Comparison of transmission coefficient obtained by FEM and experiments. (d/h = 0.2, t̄/h = 0.1,
h/L = 0.2, h = 0.3 m).



333H.-H. Hsu, Y.-C. Wu/Ocean Engineering 26 (1999) 325–341

tation’s accuracy, the numerical solutions for the transmission coefficient by a fixed,
submerged, horizontal impermeable plate, are compared with the experimental results
of Dick and Brebner (1968) and the numerical solutions of Patarapanich (1984a);
Patarapanich, (1984b)). Fig. 2 plots those results. According to this figure,L9 denotes
the wave length above the submerged plate. The comparisons indicate that the current
numerical results of linear BEM have the same trend as other scholars’ results. There-
fore, the numerical solutions for the reflection coefficient by a submerged permeable
breakwater are compared with the experimental results of Lee and Huang (1996),
as plotted in Fig. 3. As this figure reveals, the numerical of the present for normal
wave incidence correlate reasonably well with the experimental data of Lee and
Huang (1996). In this case, the submerged breakwater is a homogeneous, isotropic
and rectangular structure (i.e.S0 = 0, b/h = 1.268,h̄/h = 0.505). The medium proper-
ties aree = 0.678,Kp = 3.37 × 10−9 m2, Cf = 0.047 andS = 1.015. The kinematic
fluid viscosity (n) is 1.12× 10−6 m2/s.

Fig. 4 displays the transmission coefficient (Kt) of a horizontal submerged imper-
meable plate located above trapezoidal submerged porous breakwater forLt = 0 and
Lt = − 1.0h, as compared with the results of a submerged horizontal impermeable
plate and a submerged porous breakwater. The plate’s geometry isw = 2.0h, d =
0.2h, t̄ = 0.04h and the water depthh = 1.0 m. The porous breakwater’s geometry
is b = 0.2h, S0 = 1.5, h̄ = 0.4h and the water depthh = 1.0 m. The porous materials

Fig. 3. Comparison of reflection coefficient obtained by experiments. (b/h = 1.268, h̄/h = 0.505,Kp =
3.37 × 10−9 m2, Cf = 0.047,e = 0.678,S = 1.015,n = 1.12 × 10−6 m2/s, S0 = 0, h = 0.3 m).
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Fig. 4. Transmission coefficientKt versus relative depth,h/L. Influence of the distance,Lt. (b/h = 0.2,
h̄/h = 0.4, Kp = 1.0572× 10−7 m2, Cf = 0.295,e = 0.439,S = 1.0, n = 1.0126× 10−6 m2/s, S0 = 1.5, w/h
= 2.0, d/h = 0.2, t̄/h = 0.04, h = 1.0 m).

characteristics aree = 0.439,Kp = 1.0572× 10−7 m2, Cf = 0.295 andS= 1.0. Herein,
only this kind of porous material is considered. The kinematic fluid viscosity (n) is
1.0126× 10−6 m2/s. Comparing with the results of Fig. 4 reveals that a horizontally
submerged impermeable plate located above a trapezoidal submerged porous break-
water is improving inKt. In the following, the important effect of this distance (Lt)
on theKt is closely examined. Because the geometry is symmetrical, only the case
of Lt , 0 is considered herein. Fig. 5 displays the variation ofKt with relative depth
h/L for Lt = − 2.0h, Lt = − 3.0h, Lt = − 4.0h and Lt = − 5.0h (w = 2.0h, d = 0.2h,
t̄ = 0.04h, b = 0.2h, h̄ = 0.4h, S0 = 1.5, h = 1.0 m). According to this figure,Kt

markedly decreases with an increasing distance (Lt). As Fig. 5 reveals, increasing
distance (Lt) denotes a reduction in wave transmission taking a minimum value in
Lt < − 4.0h. Fig. 6 depicts the variation of the transmission coefficient,Kt with
relative depthh/L for given geometry (w = 2.0h, d = 0.2h, t̄ = 0.04h, b = 0.2h,
h̄ = 0.5h, S0 = 1.5, h = 1.0 m) and the same porous material parameters (e = 0.439,
Kp = 1.0572× 10−7 m2, Cf = 0.295,S = 1.0). As this figure reveals,Kt gradually
decreases with an increasing distance (Lt). The minimumKt is in Lt < − 4.0h.

Fig. 7 presents the transmission coefficients, for given geometry (w = 2.0h, d =
0.3h, t̄ = 0.04h, b = 0.2h, h̄ = 0.4h, S0 = 1.5, h = 1.0 m), as a function of relative
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Fig. 5. Transmission coefficientKt versus relative depth,h/L. Influence of the distance,Lt. (b/h = 0.2,
h̄/h = 0.4, Kp = 1.0572× 10−7 m2, Cf = 0.295,e = 0.439,S = 1.0, n = 1.0126× 10−6 m2/s, S0 = 1.5, w/h
= 2.0, d/h = 0.2, t̄/h = 0.04, h = 1.0 m).

depth,h/L. Fig. 8 displays the variation of the transmission coefficient,Kt for given
geometry (w = 2.0h, d = 3.0h, t̄ = 0.04h, b = 0.2h, h̄ = 0.5h, S0 = 1.5, h = 1.0 m).
Therefore, according to Figs. 7 and 8, the oscillation of the transmission coefficient,
Kt with relative depthh/L for Lt = − 5.0h. Those figures also indicate that increasing
distance (Lt) denotes a reduction in wave transmission taking a minimum value in
Lt < − 4.0h. Fig. 9 depicts the variation of the transmission coefficients withLt/h
for given geometry (w = 2.0h, t̄ = 0.04h, b = 0.2h, h̄ = 0.4h, S0 = 1.5, h = 1.0 m)
and two different computational conditions (d/h = 0.2, h/L = 0.14 andd/h = 0.3,h/L
= 0.17). From Fig. 9, we can infer that the transmission coefficient is minimum for
the distance approximately equal to four times water depth (Lt < 4.0h).

5. Conclusions

The BEM with linear element has been established to examine the problem of
scattering by a fixed, submerged, horizontal, impermeable plate above a submerged
permeable breakwater under normal wave incidence. Comparing numerical results
with previously published results and experimental results demonstrates the numeri-
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Fig. 6. Transmission coefficientKt versus relative depth,h/L. Influence of the distance,Lt. (b/h = 0.2,
h̄/h = 0.5, Kp = 1.0572× 10−7 m2, Cf = 0.295,e = 0.439,S = 1.0, n = 1.0126× 10−6 m2/s, S0 = 1.5, w/h
= 2.0, d/h = 0.2, t̄/h = 0.04, h = 1.0 m).

cal technique’s accuracy. The transmission coefficient,Kt, relies not only on the
submergence of the horizontal impermeable plate (d) and the height of the porous
breakwater (h̄), but also on the distance between horizontal plate and porous break-
water (Lt). Moreover, increasing distance (Lt) denotes a reduction in wave trans-
mission taking a minimum value inLt < − 4.0h.
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Appendix A

Accordingly, the matching conditions provide continuity of pressures and horizon-
tal velocities normal to the vertical interfaceAB we can establish
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Fig. 7. Transmission coefficientKt versus relative depth,h/L. Influence of the distance,Lt. (b/h = 0.2,
h̄/h = 0.4, Kp = 1.0572× 10−7 m2, Cf = 0.295,e = 0.439,S = 1.0, n = 1.0126× 10−6 m2/s, S0 = 1.5, w/h
= 2.0, d/h = 0.3, t̄/h = 0.04, h = 1.0 m).

f1 = f r =
gH
2v

cosh[k(h + z)]
coshkh

+
gHr

2v

cosh[k(h + z)]
coshkh

+ O`
m = 1

Am

g
v

coskm(h + z)
coskmh

(A1)

f1n = − f r
x =

− igkH
2v

cosh[k(h + z)]
coshkh

+
igkHr

2v

cosh[k(h + z)]
coshkh

− O`
m = 1

Am

gkm

v

coskm(h + z)
coskmh

(A2)

By using the orthogonal functions coshk(h + z) and cosKm(h + z), the relation
betweenf1 and f1n on the interfaceAB can be established as

f1 = H
g
v

coshk(h + z)
coshkh

+
coshk(h + z)

ikQ0
E
0

− h

∂f1

∂n
coshk(h + z)dz
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Fig. 8. Transmission coefficientKt versus depth,h/L. Influence of the distance,Lt. (b/h = 0.2, h̄/h = 0.5,
Kp = 1.0572× 10−7 m2, Cf = 0.295,e = 0.439,S = 1.0, n = 1.0126× 10−6 m2/s, S0 = 1.5, w/h = 2.0, d/h
= 0.3, t̄/h = 0.04,h = 1.0 m).

− O`
m = 1

coskm(h + z)
kmQm

E
0

− h

∂f1

∂n
coskm(h + z)dz (A3)

in which

Hr = H +
2v cosh(kh)

igkQ0
E
0

− h

∂f11

∂n
coshk(h + z)dz (A4)

Q0 = E
0

− h

cosh2 k(h + z)dz (A5)

Am = −
v coskmh

gkmQm
E
0

− h

∂f1

∂n
coskm(h + z)dz (A6)
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Fig. 9. Transmission coefficientKt versusLt/h. (b/h = 0.2, h̄/h = 0.4, Kp = 1.0572× 10−7 m2, Cf = 0.295,
e = 0.439,S = 1.0, n = 1.0126× 10−6 m2/s, S0 = 1.5, w/h = 2.0, t̄/h = 0.04,h = 1.0 m).

Qm = E
0

− h

cos2 km(h + z)dz (A7)

Similarly, on the vertical interfaceCD, we can establish

f1 = f t =
gHt

2v

cosh[k(h + z)]
coshkh

+ O`
m = 1

Cm

g
v

coskm(h + z)
coskmh

(A8)

f1n = f t
x =

igkHt

2v

cosh[k(h + z)]
coshkh

− O`
m = 1

Cm

gkm

v

coskm(h + z)
coskmh

(A9)

the relation betweenf1 and f1n on the interfaceCD can be established as

f1 =
coshk(h + z)

ikQ0
E
0

− h

∂f1

∂n
coshk(h + z)dz

− O`
m = 1

coskm(h + z)
kmQm

E
0

− h

∂f1

∂n
coskm(h + z)dz (A10)
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in which

Ht =
2v cosh (kh)

igkQ0
E
0

− h

∂f1

∂n
coshk(h + z)dz (A11)

Cm = −
v coskmh

gkmQm
E
0

− h

∂f1

∂n
coskm(h + z)dz (A12)
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