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Abstract. Current robot calibration schemes usually employ calibration models with constant error
parameters. Consequently, they are inevitably subject to a certain degree of locality, i.e., the cali-
brated error parameters (CEPs) will produce the desired accuracy only in certain regions of the robot
workspace. To deal with the locality phenomenon, CEPs that vary in different regions of the robot
workspace may be more appropriate. Hence, we propose a variable D-H (Denavit and Hartenberg)
parameter model to formulate variations of CEPs. An FCMAC (Fuzzy Cerebellar Model Articulation
Controller) learning algorithm is used to implement the proposed variable D-H parameter model.
Simulations and experiments that verify the effectiveness of the proposed calibration scheme based
on the variable D-H parameter model are described.
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1. Introduction

In research on the integration of CAD systems with robot manipulators, a well-
recognized problem is that a robot manipulator is inevitably subject to a certain
level of imprecision. In general, robot manipulators offer high repeatability, but
their accuracy is relatively low [24]. This high repeatability makes teach-and-
playback a feasible approach. However, the relatively low accuracy means that
a planned path from a CAD system cannot be sent directly for execution, because
the robot manipulator will be unable to locate the end-effector as accurately as
required by the CAD system. Therefore a proper calibration scheme is imperative
to provide the demanded accuracy, so that equivalence of coordinates between the
CAD system and robot system can be achieved. The error sources that result in
imprecision can be categorizedgeometric errorssuch as imprecise link lengths,
angular offsets due to axis misalignment, and imperfections in the machine axes
(i.e., the motions of prismatic and revolute joints are not exclusive from each
other), andnon-geometric errorssuch as varying joint compliance due to dif-
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fering payloads and configurations, backlash, gear transmission errors, base tilt,
feedback quantization errors, cross coupling of joint rotations, and temperature
variations [1, 4, 7, 18, 35]. To identify the error parameters, various calibration
schemes have been proposed [7, 11, 12, 14, 16, 18, 20, 27, 29-35, 37]. Among
them, Ahmad [1] proposed a mathematical model of the kinematic nonlinear drive
train error. Azadivar [4] evaluated the effect of joint position errors of industrial
robots using a stochastic model. Chen and Chao [7] examined error sources that
contribute to inaccuracy for robots with rotary joints. Everett et al. [11] exam-
ined various models proposed for robot kinematic calibration and discussed them
from the standpoints of completeness, equivalence, and proportionality. Judd and
Knasinski [18] developed models for inaccuracy resulting from errors in the link
and joint parameters, imperfections in the main spur and encoder pinion gears, and
structural deformations. Wu [35] presented a linear model to represent positioning
errors as a function of the errors in link parameters.

Once calibrated error parameters (CEPs) have been determined, they can be in-
corporated into the formulation, and the resulting Cartesian errors can be obtained
by computing the forward kinematics [34]. Compensation schemes can then be
applied to derive a modified set of joint solutions to compensate for the Cartesian
errors, so that the robot manipulator will move to the specified location accurately
[11, 13, 15, 30, 33, 36]. Thus, the compensation issue is basically that of tackling
the Jacobian relationship between the Cartesian errors and the equivalent joint vari-
able changes, and this Jacobian relationship has been dealt with in either Cartesian
space [33] or joint space [15], and by using various methods, such as the numerical
approach [13] and the approach involving the screw theory [36]. On the other hand,
Shamma and Whitney [30] proposed the approximation function method to find the
desired joint variables in a specific region, which avoids the complicated model-
ing process of identifying the parameter errors and the corresponding calibration
problem.

Intuitively, an appropriate calibration scheme should be capable of identifying
the CEPs for a given robot manipulator uniquely. This is because that the error
parameters, such as link lengths and angular offsets, should remain constant for rel-
atively long periods of time. However, existing calibration models fail to meet this
claim, because they are formulated on the basis of certain dominating factors that
affect robot accuracy. Consequently, the effects of minor factors, unformulated or
unknown factors, and measurement errors are incorporated into the identified CEPs
via imperfect models. In addition, CEPs are strongly affected by the selection of the
measured data used for calibration: CEPs are different when they are derived using
measured data from different parts of the workspace under different configurations,
dynamic effects, payloads, etc. This characteristic demonstrates that the single sets
of CEPs identified in current calibration schemes possess locality. Therefore, a
single set of CEPs may perform well in certain parts of the workspace, but may not
be appropriate for other paths that pass through different regions of the workspace.
An approach to resolve this problem might be to
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e formulate a complete calibration model that includes all error parameters;

e provide a huge amount of measured data distributed throughout the entire
workspace to use in identifying an appropriate set of CEPs;

e perform calibration by collecting measured data around planned paths;

e derive different sets of CEPs corresponding to different parts of the workspace
and different conditions by using current calibration schemes.

The first approach is by no means an easy task, considering the complexity of
formulating and identifying all possible error parameters in a calibration model.

In the second approach, the average accuracy may increase because of the large
amount of measured data at the expense of time; however, the demanded path
accuracy specified by a given task may still not be achieved. The main problem
with the third approach is that it requires that the calibration process be repeated
each time a new task is encountered. Last, the feasibility of the fourth approach
depends on whether the number of sets of CEPs is reasonable and whether these
sets of CEPs can be organized properly. Like the concept mentioned in the fourth
approach, in the next section, we propose a new parameter model and a correspond-
ing calibration scheme that provides appropriate sets of CEPs for various planned
paths needed in industrial applications.

2. Proposed Parameter Model and Calibration Scheme

From the preceding discussions, we may conclude that CEPs that vary in different
regions of the robot workspace are better able to deal with the locality phenomenon.
Accordingly, we propose a variable D-H (Denavit and Hartenberg [8]) parameter
model, that can properly describe the concepts of having different sets of CEPs
for different conditions and different regions in the robot workspace, along with a
calibration scheme based on it.

2.1. VARIABLE D-H PARAMETER MODEL

The variable D-H parameter model is intended to formulate variations of CEPs; the
characteristics of the CEPs are evaluated as follows:

e CEP derivation is influenced by data measurements obtained from various
locations and configurations in the workspace.

e CEP locality results from unmodeled factors and modeled factors that are
localized with respect to different kinematic and dynamic conditions.

e Two sets of CEPs are close in value if they are derived for neighboring areas
or similar conditions.

e Robot accuracy after compensation is determined by the selected CEPs.
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The local CEP characteristics described above imply that there should be a cer-
tain degree of continuity in CEP values among different regions in the workspace.
Thus a generalization to the entire workspace based on appropriate finite sets of
CEPs may be feasible. In other words, implementation of this variable D-H para-
meter model can be achieved by using functions capable of generalization, such as
learning algorithms, spline functions, and other appropriate methods.

2.2. PROPOSED CALIBRATION SCHEME

In the proposed calibration scheme, we use an FCMAC (Fuzzy CMAC) learning
algorithm to implement the variable D-H parameter model. The FCMAC learn-
ing algorithm is based on the Cerebellar Model Articulation Controller (CMAC)
proposed by Albus [2, 3] and on fuzzy logic. Because the purpose of the learning
algorithm is for generalization, obviously other neural networks or spline functions
are also potential candidates for use in our scheme. One reason we have chosen
to use a CMAC-type neural network is based on measurement considerations.
Because of the structure and kinematic constraints on robot manipulators and mea-
surement devices, certain locations in the robot workspace may not be accessible
for measurement. Consequently, data needed for generalization may be sparse or
even missing altogether in some regions. The CMAC-type neural network is con-
sidered less sensitive to data paucity, i.e., the data used for training in certain parts
of the network does not affect the neighboring regions too much. This property of
the CMAC-type neural network makes it well-suited to our needs; in addition, this
type of network has a strong generalization capability and a simple structure.

The proposed calibration scheme includes a measurement space analysis mod-
ule, conventional calibration and compensation schemes, and an FCMAC learning
algorithm, as shown in Figure 1. In addition, we also include an automatic measure-
ment process to collect the measurement data needed for calibration. In Figure 1,
the workspace is first divided into a finite number of local regions by the mea-
surement space analysis module. Two main issues are considered in dividing the
workspace:

(1) how to divide it into appropriate local regions, and
(2) how to choose proper measurement locations in each local region to identify a
representative set of CEPs.

We refer to the resolution of these issues as measurement space analysis, and
discuss it in Section 4. For each local region, a conventional calibration scheme
is employed to derive a set of CEPs using the measurement locations specified by
the measurement space analysis module. This scheme is discussed in Section 3.
The FCMAC learning algorithm generates appropriate sets of CEPs for the entire
workspace based on the finite sets of CEPs derived from the processes described
above. The FCMAC learning algorithm is discussed in Section 5. The learning
process in this calibration scheme needs to be performed just once; the accu-
racy achieved is on the order of robot repeatability. After the FCMAC learning
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Figure 1. The proposed robot calibration scheme.

algorithm is set up, sets of variable CEPs corresponding to designed paths can

be generated. A compensation scheme using the sets of variable CEPs can then
be employed to determine corrected sets of joint variables that compensate for

inaccuracies. This scheme is discussed in Section 3.

By using the proposed calibration scheme, the generated variable CEPs will be
appropriate for achieving the demanded accuracy in each local region. By contrast,
conventional calibration schemes in general identify only one set of CEPs from
measured data. Consequently, CEPs derived by conventional calibration schemes
improve accuracy on average, but are not necessarily appropriate for each local
region. The excellence of the proposed calibration scheme is due to its exploita-
tion of the measured data in deriving appropriate sets of CEPs. To demonstrate
the feasibility of our scheme, in Sections 6 and 7, simulations and experiments
are conducted based on using a Mitsubishi RV-M2 type five-axis industrial robot
manipulator. Also in Section 7, the design of an automatic measurement process to
collect the measurement data needed for calibration is introduced. Discussion and
conclusion are given in Sections 8 and 9, respectively.
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3. Conventional Calibration and Compensation

We first discuss how to use a conventional calibration scheme to identify the rep-
resentative set of CEPs for each local region specified by measurement space
analysis. As mentioned in the introduction, Cartesian errors result from both geo-
metric and non-geometric errors. Although some of these errors may not be well
modeled or properly identified, their effects are all incorporated into the represen-
tative set of CEPs. Thus, this set of CEPs is localized to a certain degree and is
appropriate for use in compensating for imprecisions in the corresponding local
region. Hence, the sets of CEPs for all local regions can serve as local repre-
sentatives that the learning algorithm can generalize over the entire workspace. A
compensation scheme can then be developed to compute the corrected set of joint
variables based on the CEPs. The compensation scheme should be independent of
the calibration scheme; thus the locality reflected in the set of CEPs for each region
will not be affected. The system block diagram of the conventional calibration
and compensation schemes is shown in Figure 2 and discussed in the following
sections.

3.1. CALIBRATION

A calibration model dealing with kinematic error parameters is described by the
following equation [33]:

POS=BASE: A; - --- - Ay - FLANGE: TOOL (1)

In the equation aboveBASErepresents the relationship between the world and
base coordinates fixed for the robot manipulatéy;represents the relationship
between joint coordinate framie- 1 on the jointi axis and joint coordinate frame
i on the jointi 4+ 1 axis; andFLANGErepresents a transformation from tNeh
joint coordinates to a coordinate frame located on the manipulator’s flange used for
mounting tools.TOOL is the transformation from the mounting point defined by
FLANGEto the end point of a calibrated mounting tool. To describe the kinematic
errors inBASEA; andFLANGE, a well-known representation is the homogeneous
transformation matrix defined by Denavit and Hartenberg [8]. Their representation
uses four kinematic parametérsd, a, anda to formulate the relationship between
two consecutive link coordinate frames. In the case of two consecutive parallel
joints, in addition to these four Denavit and Hartenberg link parameters, another
rotational kinematic errog is introduced to align the two near-parallel joints [33].
Based on the relationship between the correct posRiOE of some reference
point on the manipulator’s tool in the presence of parameter errors and the nominal
position POSof that reference point assuming nominal parameter values, we can
formulate the equation for calibration as follows:

dx = [M]CEP, (2)
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Figure 2. The system block diagram of the conventional calibration and compensation
schemes.

where & is the error vector betwedPOSandPOS’, CEP stands for the kinematic
error parameters, and{] is the matrix of the partial derivatives related to @nd

the CEP. A certain amount of measurement datam collected from the robot
workspace to make the columns 84T independent. A set of CEPs is then uniquely
determined by means of the least-square-error approach or other numerical method
[33].
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3.2. COMPENSATION

After the calibration process, a compensation scheme is developed to compute a
corrected set of joint variables based on a set of CEPs so as to compensate for
inaccuracy in the tool location. As the control of industrial robot manipulators is
based on exact simplified kinematic equations, the presence of errors will cause
the parameter values to deviate from the ideal ones [26]. As a result, the robot
manipulator becomes a non-simplified type. Since the inverse solutions for the non-
simplified robot manipulator are very complicated to obtain, a feasible approach
for finding the desired joint solutions is to continue using the simplified kinematic
equations to find the equivalent joint variable changes needed to compensate for
the resulting Cartesian errors. The desired joint variables are then derived from the
following equation [15, 33]:

qQ°=0q" —dg‘, ®3)

where @ represents the equivalent joint variable changgsthe nominal so-
lutions derived from the simplified kinematic equations, ajidthe joint vari-

ables needed to drive the robot manipulator to the desired location. A successful
compensation scheme should provide absolute robot accuracy that approaches the
repeatability provided by the robot controller [24].

4. Measurement Space Analysis

The measurement space analysis module performs two main functions: (1) It di-
vides the workspace into an appropriate number of local regions, and (2) it chooses
suitable measurement locations from which to identify representative sets of CEPs
for local regions. Because the division of the workspace affects the selection of the
measurement locations, these two factors are in fact interrelated.

4.1. SELECTION OF MEASUREMENT LOCATIONS

First we deal with the second function in the module: the selection of measurement
locations. To accomplish this function, the module needs to find unique CEPs in
Equation (2) by choosing finite measurement locations within each local region.
For a manipulator wittv degrees of freedom, the problem becomes that of finding
a matrix[M] in Equation (2) with independent columns by moving th&spints
to different locations in a certain region. In addition, the columns of the matrix
[M] are not only expected to be independent, but also to form a well-conditioned
matrix for the sake of matrix inverse computation. Another important constraint on
choosing measurement locations is that they must be accessible for measurement.
This is because due to measurement device limitations not all configurations of a
robot manipulator are necessarily measurable.

Several researchers have proposed choosing measurement locations with large
observability measure for parameter identification, so that fewer measurement lo-
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cations will be required and the CEPs identified will be less affected by measure-
ment noise [5, 6, 9, 12, 19]. Borm and Meng [6] defined an observability index in
terms of the singular values of the error propagation matrix, which can be related
to the matrix{M] in Equation (2). They found that as the observability measure of
a set of measurement configurations increases, attribution of the Cartesian errors
to CEPs becomes dominant, and consequently better estimation of CEPs becomes
possible. In addition, they concluded that good selection of points is more impor-
tant than the number of points in obtaining good identification results. Khalil et al.
[19] suggested checking the condition number for observability, which is an index
also related to the singular values of the error propagation matrix. Bay [5] proposed
an autonomous algorithm for finding a sequence of optimal configurations during
calibration so that the estimated error parameters will converge as fast as possible.
A cost function based on the Kalman filter is used in searching the configuration
space and the direction of steepest descent over all possible directions is chosen.
We also choose measurement locations with large observability for parameter
identification. However, instead of the entire workspace, we will select measure-
ment locations within each local region. In choosing appropriate measurement
locations for the identification of CEPs, we will adopt the condition nursiggv/])
as the index, defined as in [19]:

e(11) = [[ (e aan) | - | (raar T~ )

where||[M]|| indicates a norm dfM]. In Equation (4)« ([M]) involves the pseudo-
inverse, because the equation for calibration in Equation (2) is over-determined.
This condition number quantifies the sensitivity of the solution to the noise re-
sulting from measurement and unmodeled errors. A number of measurement data
dx are then collected from the robot workspace to make the colump& pin-
dependent and make Equation (4) yield a small condition number, indicating that
the parameter identified is less influenced by measurement and unmodeled errors.
One thing to note is that because some parameters can be identified accurately
only by excursions of certain distances in the workspace, local regions cannot
be too small for measurement location selection: when the local regions are too
small, the conditioning of the matrii/] in Equation (2) may degrade and make
Equation (4) generate large condition numbers, such that accurate identification of
some parameters cannot be achieved.

4.2. WORKSPACE DIVISION

Another function to be dealt with in this module is workspace division. Because
it is difficult to determine the distributions of the measurement, modeled, and un-
modeled errors in the robot workspace, there is no a priori information available
for optimal workspace division. Thus, we propose performing workspace division
adaptively by evaluating the compensation effect in each local region. The basic
concept behind this is that if the derived representative set of CEPs is satisfactory
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in achieving the demanded accuracy for the local region, then no further divi-
sion is needed; otherwise, the local region will be divided further. Intuitively, the
dividing procedure should be performed recursively until the representative sets
of CEPs for all local regions in the entire workspace are satisfactory. However,
as aforementioned in Section 4.1, some parameters can be identified accurately
only by excursions of certain distances in the workspace; thus, subdivision cannot
be executed without limit. In addition, when there were error sources that varied
with high spatial frequencies, a minute subdivision of the workspace might occur.
Therefore, the total number of local regions may be set to a pre-determined value
to avoid too many subdivisions at the expense of accuracy.

The proposed workspace division strategy will be performed based on mainly
the major joints. In general, the length of the tool in a robot manipulator is small
compared with those of the links governed by the major joints; consequently, the
area swung by the tool, which is governed by the minor joints, is also small. There-
fore, the effect of workspace division based on the minor joints is insignificant, and
for most cases this division is in fact unnecessary. Simulations have been conducted
on this issue and the results verified the statement above. By employing the pro-
posed strategy, for workspace division in the joint space, the complexity in dealing
with general non-redundant robot manipulators will be similar to that of a robot
manipulator with three degrees of freedom; for workspace division in Cartesian
space, the complexity involved is also alike, when only the position, but not the
orientation, is of concern. Thus, the proposed calibration scheme can be applied to
general multi-joint robot manipulators without excessive workspace division.

One point remains to be discussed is the configuration consideration for work-
space division in Cartesian space. When the robot manipulator is with degrees of
freedom more than three, it may reach the same 3-dimensional Cartesian posi-
tion with different configurations. According to the experimental results in [33],
it shows that the CEPs derived varied significantly when different configurations
were used for calibration. Our experimental results also lead to the same conclu-
sion. Thus, we consider that the configuration should be taken as another parameter
for calibration performed in Cartesian space. Therefore, for workspace division in
Cartesian space, we propose that one specific configuration be chosen first, and
then the calibration be performed based on the same configuration.

Note that in applying the proposed division strategy, the entire workspace is
treated as a local region in the beginning. Consequently, like conventional calibra-
tion schemes, only one representative set of CEPs is derived, when this representa-
tive set of CEPs is satisfactory for the first local region (i.e., the entire workspace).
In other words, the conventional constant parameter model can be viewed as a
special case of the proposed variable parameter model when no workspace division
is conducted. Thus, the performance of the proposed calibration scheme is guaran-
teed to be better than that of the conventional one. The famous cell decomposition
approach is adopted for workspace partitioning [21]. In the cell decomposition
approach, the workspace is represented as a collection of cells with a simple pre-
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specified shape, e.g., rectangloid shape; these cells can then be organized into a
tree-like structure. The algorithm for recursive workspace division is formulated as
follows:

Recursive Workspace Division Algorithm. Recursively divide the workspace to
obtain satisfactory representative sets of CEPs for all local regions in the entire
workspace under the constraint of a limited number of local regions.

Step 1: Take the entire workspace as a local region.

Step 2: Derive the representative set of CEPs for each local region by using the
conventional calibration scheme described in Section 3.1 and choosing suitable
measurement locations following the procedure described in Section 4.1. When
small condition numbers are very difficult to find in identifying a representative set
of CEPs for a local region, the division for that local region will terminate.

Step 3: Randomly select a number of test points for each local region. For each
test point, compute the error betweB@Sin Equation (1) using the model with
nominal D-H parameters and the estimalR@S using the model with nominal

D-H parameters plus the representative set of CEPs. Then apply the compensation
scheme described in Section 3.2 to compensate for the error.

Step 4:1f the demanded accuracy for all test points in the local region is achieved
after compensation or the preset total number of local regions is reached, no further
division is performed; otherwise, divide the local region into two equal regions,
then go to Step 2.

In general, after the recursive division process is completed, the entire work-
space will be divided into a number of local regions of different dimensions accord-
ing to variations in CEPs and the demanded accuracy. Figure 3 shows an example
of recursive waorkspace division. In Figure 3, a tree-like structure is used to organize
local regions of different dimensions. A node in the tree stands for a local region
and the fraction inside indicates the proportion of its volume compared with that
of the entire workspace. A child node is a portion of a parent node and they are
connected by a link. A leaf stands for a local region whose representative set of
CEPs are satisfactory in achieving the demanded accuracy. For instance, in Figure 3
eight leaves, A-H, were generated in workspace division.

This recursive workspace division algorithm can be applied to both Cartesian
and joint spaces. Let us take the Mitsubishi RV-M2 type five-axis robot manipulator
shown in Figure 4(a), for example. This robot manipulator is with all revolute
joints and its kinematic data are listed in Table I. Figure 4(b) shows an example
of workspace division in the joint space, and the division is based on the major
joints only, i.e., the first three joints. This example also corresponds to the re-
cursive division illustrated in Figure 3, and the rectangloids of different sizes in
Figure 4(b) correspond to the eight leaves in Figure 3. Figure 4(c) shows an ex-
ample of workspace division in Cartesian space, and the division is imposed upon
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The workspace

Figure 4(a). A Mitsubishi RV-M2 type five-axis robot manipulator.

the position only, but not the orientation. Considering that all the manipulator’'s
joints are revolute, in Figure 4(c) the workspace is described using a spherical co-
ordinate system and indexed by the spherical coordin@e&00 mm~ 805 mm,
0: —45 ~ 45, ¢: —150° ~ 150). Obviously, other coordinate systems can also
be applied, such as Cartesian and cylindrical coordinate systems. The example
shown in Figure 4(c) also corresponds to that in Figure 3, and only region A is
depicted as an illustration.

The representative set of CEPs should be satisfactory in achieving the demanded
accuracy, if the recursive workspace division algorithm is not terminated due to
the preset total number of local regions is reached or due to the local regions are
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Table |. Kinematic table for the Mitsubishi RV-M2 type
five-axis robot manipulator

0; d; a; o Bi

World-J1 90 400mm -80mm 180 O0°
J1-32 01 0mm 120 mm —-90° 0°
J2-J3 02 0mm 250 mm 0 o°
J3-J4 03 0mm 265mm —-90° 0°
J4-35 04 0 mm 0 mm 20 0°

J5Flange 65 0mm 0mm (V] 0°

Flange-Tool 0° 0mm 170 mm 0 0°

01 : —150° ~ 150°
0y : —30° ~ 100°
03: —120° ~ O°
04 —110° ~ 11C°
05 : —180° ~ 180°

too small for accurate parameter identification, and if the set of test points chosen
to ensure accuracy in the local region is adequate. In the meantime, because the
representative set of CEPs are constant over the entire local region, it is possible
that discontinuities are present between neighboring regions. Consequently, the
accuracy after compensation may vary evidently around boundary areas. This is
due to that different levels of accuracy are reached in adjacent local regions, when
their representative sets of CEPs are all satisfactory in achieving the demanded ac-
curacy. Because continuity of CEPs between neighboring local regions is expected
as discussed in Section 2.1, we suggest that discontinuities in representative sets of
CEPs between neighboring local regions should be smoothed out. This is another
reason why we use the FCMAC learning algorithm to implement the variable D-H
parameter model. Later, in Sections 6 and 7, simulation and experimental results
show that continuous CEPs generated by the FCMAC learning algorithm perform
better than discontinuous CEPs when a path crosses a boundary area.

5. The FCMAC Learning Algorithm

The FCMAC learning algorithm module is developed to generate appropriate sets
of CEPs for the entire workspace based on the finite sets of CEPs for the local
regions derived by the measurement space analysis module. In addition, it can also
smooth out CEP discontinuities between neighboring local regions resulting from
the recursive workspace division described above. As mentioned in Section 2.2, the
FCMAC is not the only possible choice for this purpose. The reasons for adopting
this algorithm are its simple structure, ability to generalize, and insensitivity to
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sparse data or missing data. The FCMAC is basically a CMAC-type neural network
in which fuzzy sets are stored and manipulated using fuzzy logic. The inputs and
outputs of the CMAC are basically discrete, because continuous data are quan-
tized in the sensor layer; by contrast, the inputs and outputs of the FCMAC are
continuous, because of fuzzy representation and manipulation. This feature makes
the FCMAC more suitable than the CMAC for storing continuous CEPs [17, 25].
The basic mappings in the FCMAC are as shown in Figure 5. Details of the FC-
MAC learning algorithm can be found in the appendix, and a brief summary of the
operations in the FCMAC learning algorithm is described below [2, 3, 23]:

Step 1:Index the input vectos in fuzzy representation.
Step 2: Map it into the corresponding association cell vecisrs

Step 3: Update the fuzzy weights according to the differenbé() between the
actual and desired outputs.

Step 4: If the DIF in Step 3 is within the tolerance, set up the response output
vectorP; otherwise, go to Step 3.

To demonstrate how the sets of CEPs for each local region are stored in the
FCMAC, let us again take the Mitsubishi RV-M2 type robot manipulator in Fig-
ure 4(a) as an example and use the Cartesian space division in Figure 4(c). The
input vectorS, in Swill contain three element&R, 6, ¢) (indicated in Figure 4(c))
for indexing various locations in the workspace:

Sk = (Rvg’ ¢) (5)
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(R, 6, ¢) will then be described by fuzzy sensor vectors. Via the network map-
pings, the fuzzy sensor vectors should correspond to output responses of desired
sets of CEPs, when appropriate weights for the active association cAllarmas-
signed. Thus, after successful learning by utilizing the representative sets of CEPs
as training patterns, the FCMAC learning algorithm module will generate sets of
CEPs inP for input vectors indexing arbitrary locations in the workspace. The
module can then generate appropriate sets of CEPs to provide high accuracy for
different paths corresponding to various robot tasks. The accuracy that the learning
algorithm can provide will depend on the resolution of input vectrswhich
results from the workspace division and the selection of measurement locations in
the measurement space analysis module. Since this FCMAC learning algorithm
involves mainly summations of weights after an off-line learning process, it is
computationally efficient and can be used for on-line implementation.

6. Simulation

To verify the proposed calibration scheme, simulations were performed for cases
involving geometric errors, non-geometric errors, and random measurement er-
rors using a Mitsubishi RV-M2 type five-axis robot manipulator, as shown in Fig-
ure 4(a). The kinematic data for this robot manipulator are listed in Table I. The
workspace division was based on the major joints, i.e., the first three joints. Thus, to
simplify the analysis, the angles of joints four and five were fixed at zero. Fifteen er-
ror parameters[(@o, Aag, Aag, ABo, Ab1, Adi, Aai, Aaq, A6y, Aaz, Aoy, ABo,

A6z, Adz, Aaz) out of the twenty-five (five error parameterAd, Ad, Aa, A«,

ApB) for each of the five transformationrBase A,1—Az, andFlangein Equation (1))

were found to be observable. Therefore, we need at least five measurement loca-
tions to make the columns of thex315 matrix [M] in Equation (2) independent.
Considering that non-geometric errors and other uncertainties may affect measure-
ment data, we chose twenty measurement locations in each local region to average
out their influences. The selection criteria were that the twenty measurement lo-
cations had to be accessible for measurement and their corresponding condition
number had to be smaller than a certain value [19]. The use of twenty measurement
locations was found to be adequate for identifying the representative set of CEPs
for each local region in our simulations.

In the first set of simulations, the workspace was divided into local regions in
the joint space. By applying the recursive workspace division algorithm described
in Section 4.2, the workspace was divided into 110 local regions of differing di-
mensions. For each local region, the demanded accuracy after compensation was
within 0.1 mm for the Cartesian position error. After the division and calibration
processes, the representative set of CEPs was derived for each local region and the
CEPs were constant over the entire local region. The representative sets of CEPs
for these local regions were then used as training patterns to set up the FCMAC
to generate smooth CEPs between neighboring local regions and for unmeasurable
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regions. During the training of the representative sets of CEPs for the local regions,
several locations within one local region were chosen along with the corresponding
representative set of CEPs to serve as the input-output pairs. In the FCMAC, the
sensory layer for input vectors and the association layer for association cell vectors
included 39 and 2057 cells, respectively. The number of units of the fuzzy sensors
with the largest membership grades used for representing the input vector was
chosen to be = (3, 3, 3) for (64, 6>, 03). Thus each output vector in the response
layer connected 2% 3 x 3 x 3 cells. The hash-coding technique was not used in
the mapping.

The robot manipulator was simulated to follow a straight-line path in the joint
space from (69 60°, —35°) to (125, 9¢°, —10°), which passed through several
local regions. Kinematic errors were assigned to be 0.04 cm or 0.05 degree for
each of the fifteen observable error parameters. The non-geometric errors were
formulated based on a model similar to that in [18], which describes non-geometric
errorse,, as combinations of sin and cos functions:

e, = f1(C0SHq, SiNBy) + f2(COSHy, SiNG,) + f3(COSH3, SiNB3), (6)

wherefi, f> and f3 are linear functions. The hon-geometric errors were assigned to
contribute about 8-10% of the total error. In this set of simulations, we did not in-
clude random measurement errors. Figure 6(a) shows the Cartesian position errors
without calibration. The errors ranged between 0.4 and 1.2 mm. For comparison,
three kinds of calibration were performed to compensate for the errors:

(i) the conventional calibration scheme,

(i) the proposed calibration scheme without the FCMAC, and
(iii) the proposed calibration scheme with the FCMAC.

The same set (consequently the same number: 22P0 measurementg110
(regions)) of measurement data were used to derive the CEPs for these three kinds
of calibration. Thus, the comparison was made on an equal basis. Simulation results
are shown in Figures 6(b)—(d), and the corresponding CARSAd1, Aay, Aas
for these three cases in Figures 6(e)—(g), respectively. In Figure 6(b), the conven-
tional calibration scheme reduced the errors to less than 0.2 mm. The correspond-
ing CEPs were constant along the simulated path, as shown in Figure 6(e). The
CEPs values deviated from the assigned kinematic errors due to the presence of
non-geometric errors. Figures 6(c)—(d) show that the proposed calibration scheme,
with and without, the FCMAC yielded better results than the conventional one
(below 0.1 mm); but the residual errors after compensation varied evidently around
boundary areas using the proposed calibration scheme without the FCMAC. Fig-
ures 6(f)—(g) show the corresponding CEPs for the calibration schemes without
and with the FCMAC, respectively. Note that in Figure 6(f) each strip stands for
the portion of a local region that a path passed through, not necessarily equal to
the dimension of the entire local region. The CEPs are constant within each local
region in Figure 6(f); while in Figure 6(g) smooth curves across neighboring re-
gions replace abrupt jumps between straight lines in Figure 6(f). This indicates that
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Figure 6. Simulation results with workspace division in the joint space. Position errors:
(a) without calibration, (b) the conventional calibration scheme, (c) the proposed calibration
scheme without the FCMAC, and (d) the proposed calibration scheme with the FCMAC. Note
that thex axis: points on a straight-line joint path, ®®0°, —35°) to (125, 90°, —10°).

the FCMAC learning algorithm smoothed out the CEPs, and consequently more
homogeneous compensation effects were obtained across regional boundaries.
Another set of simulations was performed to investigate division in Cartesian
space. The workspace was divided into local regions in Cartesian space, and the
spherical coordinate system shown in Figure 4(c) was used. By applying the re-
cursive workspace division algorithm, the workspace was divided into 130 local
regions of differing dimensions. For each local region, the demanded accuracy after
compensation was within 0.1 mm for the Cartesian position error. The specifica-
tions for the FCMAC learning algorithm were similar to those used for division in
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Figure 6 (Continued).Corresponding CEPA6O1, Ady, Aai, Aaj: (e) for case (b), (f) for
case (c), and (g) for case (d).

the joint space. The robot manipulator was simulated to follow a straight-line path
described in the spherical coordinate system from (640 mf,@Pto (740 mm,

125, —20°), which passed through several local regions. Results similar to those
for division in the joint space were obtained, as shown in Figure 7. Note that for
the simulations shown in Figures 6 and 7, the CEPs derived by the conventional
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Figure 7. Simulation results with workspace division in Cartesian space. Position errors:
(a) without calibration, (b) the conventional calibration scheme, (c) the proposed calibration
scheme without the FCMAC, and (d) the proposed calibration scheme with the FCMAC. Note
that thex axis: points on a straight-line Cartesian path (spherical coordinates), (640 rim, 20
0°) to (740 mm, 128, —20°).

calibration scheme are different, because different sets of measurement data were
used. Different compensation effects were also observed. On the other hand, the
proposed calibration scheme demonstrated similar performances using these two
different sets of measurement data.

To test the ability of the proposed calibration scheme to generalize CEPs, simu-
lations were performed for cases in which measurement data were not available for
certain local regions. The same robot path as that shown in Figure 6 was simulated
and workspace division was in the joint space. We assumed that one of the local
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Figure 7 (Continued).Corresponding CEP&a61, Ady, Aaq, Aa1: () for case (b), (f) for
case (c), and (g) for case (d).

regions the path passed through was not measurable. We also used the three kinds
of calibration mentioned previously to generate CEPs for the unmeasurable local
region. The conventional calibration scheme used the same set of CEPs for both
the measurable and unmeasurable local regions. The proposed calibration scheme
without the FCMAC used average CEPs derived from CEPs for neighboring local
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regions. And the proposed calibration scheme with the FCMAC used generalized
CEPs generated by the FCMAC. Simulation results obtained using these three
kinds of CEPs for calibration are shown in Figures 8(a)—(c), and the corresponding
CEPsA6,, Ady, Aay, Aaq in Figures 8(d)—(f), respectively. In Figure 8, the region
without measurement data is bounded by two dotted straight lines. Satisfactory per-
formances were obtained using the proposed calibration scheme with and without
the FCMAC. This demonstrates that the proposed calibration scheme is capable of
generalizing CEPs from neighboring regions when regional measurement data are
not available.

Simulations were also performed for several different paths. It was found that
the proposed calibration scheme provided more homogeneous compensation, yield-
ing consistently good performance for different simulated paths. On the other hand,
the conventional calibration scheme demonstrated different compensation effects
for different paths. The results indicate that the FCMAC learning algorithm or-
ganizes the sets of CEPs properly, and consequently it effectively exploits the
measured data acquired from different regions for compensation. In addition, we
also performed simulations including random measurement errors (about 3% of
the total error). Results similar to those in Figures 6—-8 were obtained except that
small random variations were present in the error profile. Finally, simulations were
executed to compare the performances of the CMAC and FCMAC learning algo-
rithms in generating smooth CEPs. It was observed that the CEPs generated by the
CMAC learning algorithm varied more abruptly when the path crossed regional
boundaries. This phenomenon may occur because the data and mapping in the
CMAC are quantized. By contrast, the difference is smoothed out by the fuzzy
representation in the FCMAC. The results demonstrate that the FCMAC is more
suitable than the CMAC for generating smooth CEPs.

7. Experiment

Experiments were conducted also using the Mitsubishi RV-M2 type five-axis indus-
trial robot manipulator. Its repeatability is on the order of 0.1 millimeter. A three-
axis measurement device (any-z table) was used to provide accurate Cartesian
positions in thex, y andz directions. Thex-y-z table has three prismatic joints
driven by DC servo motors. The movements of these three joints are along the
x, y andz directions with measurement ranges of 800 mm, 560 mm, and 580 mm,
respectively. The accuracy for each direction is on the order of 0.02 mm. An ana-
log type touch panel is attached to the end of shexis arm of thex-y-z table.

The upper layer of the touch panel is covered by transparent electrodes and the
bottom layer is by electrode strips. Its function is to automatically record the coor-
dinates of the contact point with respect to the-z table, when the manipulator
touches the effective area on the touch panel. The effective area of the touch panel
is 133 mmx 80 mm with a resolution of 51% 256. With this resolution, the
accuracy provided by the touch panel is approximately 0.1 mm. Figure 9(a) shows
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the experimental setup with a Mitsubishi RV-M2 type robot manipulatox-ary

table, and a touch panel. Their corresponding coordinate frame systems are shown
in Figure 9(b). These three devices are all connected to a PC-486, which serves as
a control unit for coordination. This experimental setup was intended to measure
Cartesian position only and not for orientation.

To avoid the tedious and time-consuming procedures involved in collecting
a large number of measurement data for calibration, an automatic measurement
process was designed. In this design, we first needed to find a feasible and time-
efficient measurement sequence. In Figure 9, to avoid contact between the links
of the robot manipulator and the arms of the-z table from the side, the axis
arm of thex-y-z table should move from a position far from the pin mounted on
the robot manipulator, and then approach the robot manipulator gradually. There-
fore, for those measurement locations specified by the measurement space analysis
module, the measurement sequence was initially arranged in an ascending order
of z coordinates. Then, to reduce the time needed to reach all the locations in
the measurement sequence, the measurement locations were further ordered ac-
cording to theirx and y coordinates. In the process of automatic measurement,
both thex-y-z table and the robot manipulator executed the measurement sequence
simultaneously via coordination by the PC-486. Because inconsistency was present
between the coordinate systems of the-z table and the robot manipulator before
calibration, the robot manipulator could not reach the precise measurement location
specified by the-y-z table. That is why we needed a touch panel, that provided a
small area for deviation. Note that the angle between the touch panel and the pin
on the manipulator when in contact had to be greater than a certain figurin (15
this experiment) for an effective measurement by the touch panel. Consequently,
this constraint limited the configurations of the robot manipulator in reaching a
specified measurement location.

It can be seen that for the experimental setup in Figure 9, some locations in
the robot workspace were not accessible for measurement, i.e., the measurement
space was limited due to the structures and kinematic constraints on the robot
manipulator and the-y-z table. This is why we adopted the FCMAC-type learn-
ing algorithm: because it provided proper sets of CEPs for those regions without
appropriate measurable locations by using data from neighboring regions. One
possible resolution of this measurement problem would be to use laser, infrared
rays, ultrasound, or visible-light measuring devices, and place them at locations far
from the robot manipulator [28]. The loss of measurement space due to possible
collision with the robot manipulator would then be avoided. However, in general it
is not easy to design a feasible experimental setup using this type of measurement
device for technical and economic reasons, when the demanded accuracy is on the
order of 0.1 mm and the measurement space is three-dimensional [10, 27]. We
considered that the proposed experimental setup to be simple, inexpensive, and
appropriate to this study, although it may not be suitable for general calibration
purposes. By using this setup, the measurement data needed for the experiments
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Figure 9. (a) The experimental setup with a Mitsubishi RV-M2 type robot manipulator, an

x-y-z table, and a touch panel. (b) Corresponding coordinate frame systems for the Mitsubishi
RV-M2 type robot manipulator and they-z table.
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were collected in about a couple of hours (approximately five seconds for one
accurate measurement).

As in the simulations in Section 6, the angles of joints four and five were fixed
at zero. The workspace was divided into 85 local regions of differing dimensions in
Cartesian space using the recursive workspace division algorithm. The demanded
accuracy after compensation for each local region was within 0.5 mm for the
Cartesian position error. As described in Section 6, there were fifteen independent
CEPs for calibration from the base to the end-effector. Before execution of the
automatic measurement process, the relative distance and orientation between the
base coordinate frames of they-z table and the robot manipulator had to be
identified. Because the robot manipulator was fastened to a fixture, it was very
difficult to locate the origin of its base coordinate frame precisely. Therefore, we
estimated the relationship between the-z table and the robot manipulator by
moving them to a number of randomly chosen locations for measurement. The
residual imprecision after estimation was then taken as another error source and
would be incorporated into the representative set of CEPs after calibration. Twenty
measurement locations in each local region were chosen to identify the represen-
tative set of CEPs. The specifications for the FCMAC learning algorithm were
similar to those for the simulations in Section 6.

The robot manipulator was commanded to follow a straight-line path from
(=300 mm, 520 mm, 150 mm) to (350 mm, 690 mm, 600 mm) in Cartesian
space. Figure 10(a) shows the position errors without calibration. The errors ranged
between 0.3 and 2.5 mm. The three kinds of calibration for the simulations in Sec-
tion 6 were performed to compensate for the errors. The same set of measurement
data were used to derive the CEPs in these calibrations. Experimental results are
shown in Figures 10(b)—(d), and the corresponding CERS Ad1, Aa;y, Aa; for
these three cases in Figures 10(e)—(g), respectively. In Figure 10(b), the conven-
tional calibration scheme reduced the errors to less than 1.2 mm. Figures 10(c)—(d)
show that the proposed calibration scheme, with and without, the FCMAC reduced
the errors approximately 50% more than those by the conventional one (below
0.5 mm). Similar to the simulation results in Section 6, the residual errors after
compensation varied more evidently around boundary areas using the proposed
calibration scheme without the FCMAC. Experiments were also performed for
several different paths. The proposed calibration scheme, but not the conventional
one, demonstrates consistently good performance.

To summarize, simulation and experimental results under different conditions
are listed below.

e The proposed calibration scheme using a variable parameter model performs
better than conventional calibration schemes with constant parameter models.
Especially the latter can be viewed as a special case of the former, when the
entire workspace is taken as a local region.

e The performances of the proposed calibration schemes with and without the
FCMAC learning algorithm are similar, except that the FCMAC learning algo-
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Figure 10. Experimental results. Position errors: (a) without calibration, (b) the conventional
calibration scheme, (c) the proposed calibration scheme without the FCMAC, and (d) the
proposed calibration scheme with the FCMAC. Note thatdleis: points on a straight-line
Cartesian path,£300 mm, 520 mm, 150 mm) to (350 mm, 690 mm, 600 mm).

rithm can smooth out CEPs, consequently more homogeneous compensation
effects are obtained across regional boundaries.

When measurement data are not available for certain local regions, the pro-
posed calibration scheme can derive CEPs from CEPs for neighboring local
regions. Satisfactory performances are obtained using the generalized CEPs.

The proposed calibration scheme demonstrates similar performances for work-
space division in either Cartesian or joint space.
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Figure 10 (Continued) Corresponding CEPA61, Ady, Aag, Aaq: (e) for case (b), (f) for
case (c), and (g) for case (d).

e The proposed calibration scheme demonstrates consistently good performance
for different paths; by contrast, the conventional calibration scheme exhibits
different compensation effects for different paths.

e The FCMAC is more suitable than the CMAC for generating smooth CEPs
due to the smoothing effect of its fuzzy representation.
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8. Discussion

By employing the proposed calibration scheme in this paper, although the number
of local regions seems to be many in both simulations and experiments, the de-
manded accuracy is achieved in each local region; by contrast, when only one set
of CEPs is derived from the measurement data, accuracy is improved on average,
but not necessarily appropriate for each local region. It is because that the proposed
calibration scheme selects the measurement locations properly and exploits the
measurement data well. In some sense, dividing the workspace into local regions
can be viewed as a particular way for the arrangement of the measurement data.
Then, the number of measurement data and how the CEPs are derived from the
data and their effects may be more significant than the number of local regions.

A point that also deserves discussion is the convergence and memory manage-
ment of the FCMAC network. We believe that the convergence of the FCMAC
network should not be a problem in implementing the variable D-H parameter
model, because the nonlinearity to be dealt with in learning CEPs is mainly kine-
matic and consequently not very complicated. Especially only CEP variations be-
tween adjacent regions and CEP generalization for unmeasurable regions are of
concern. The memory size of the network depends on both the degrees of freedom
of the robot manipulator and the measurement space division. Because the pro-
posed workspace division strategy is performed based on mainly the major joints,
for most cases the proposed calibration scheme can be applied to general multi-
joint robot manipulators without excessive workspace division. Nevertheless, if the
memory requirements become too large for some cases or for workspace division
including the minor joints when long tools are involved, the hash-coding technique
can then be employed at the expense of the network resolution [3]. Or the total
number of local regions can be set to a pre-determined value to avoid too many
subdivisions at the expense of accuracy.

It can be seen that a minute subdivision of the workspace would be induced
when there were error sources that varied very fast and no constraint was imposed
on the division. Under a limited number of subdivisions, it indicates that the pro-
posed calibration scheme is most effective for error sources that vary slowly. It is
because that the proposed calibration scheme intends to organize CEPs for different
local regions instead of organizing all the joint solutions over the entire workspace.
An analogy in daily life would be choosing political representatives from individual
states to attend a national assembly for policy-making instead of inviting all the
people in the country to attend. While the latter is almost impossible, the former
may result in the ignorance of some small local matters in policy-making. Thus,
the precise implementation of the variable D-H parameter model and the proper
division of the workspace stand as a tradeoff in applications.

In this paper, although only position was considered for workspace division
in Cartesian space, it is straightforward to apply the proposed calibration scheme
to deal with both position and orientation. It requires that orientation be properly
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parametrized. For example, the orientation can be described in the form of Euler
angles [21]. Consequently, three more parametrg,(y), representing the three
Euler angles, would have to be incorporated into the FCMAC network. The tradeoff
in incorporating orientation into the formulation is the expense of memory in the
network. In addition, a device for providing accurate orientation measurement of
the robot manipulator is demanded.

9. Conclusion

In this paper, a variable D-H parameter model and a robot calibration scheme based
on it have been proposed to resolve the coordinate equivalence problem in integrat-
ing CAD systems and robot manipulators by overcoming the locality exhibited by
current calibration schemes. The proposed calibration scheme can be implemented
on-line and can achieve high accuracy for arbitrarily planned paths while avoiding
direct formulations and identifications of all possible error sources resulting in im-
precision. Simulations and experiments, which are with complexity similar to that
demonstrated by general non-redundant robot manipulators, verify the feasibility
of the proposed calibration scheme. The locality problem is not unique to robot
calibration, but is also present in other areas, e.g., camera calibration. The pro-
posed variable parameter model and calibration scheme may provide an effective
framework for resolving this general phenomenon.

Appendix. The FCMAC Learning Algorithm

The basic concept behind the CMAC-type neural network can be represented by a
pair of mappings, as shown in Figure 5 [2, 3, 23]:

f: S— A, (A1)
g: A—>P, (A2)

whereS stands for the set of fuzzy sensor vectors representing the inputAdata,
stands for the set of association cell vectors, Bnstands for the set of fuzzy
response output vectors. The first mapping maps the input data onto a finite set
of intermediate states, called association cells. The mapping is generally a fixed
relation, since it is a process of indexing the input data. Each input$iataS

maps to a number of locations in thedimensionalA, as shown in the simplified
one-dimensional illustration in Figure 5. The number of the same excited units of
A for two different inputsS; andS; decreases monotonically as the similarity be-
tweens; andS; decreases. This arrangement will produce generalization between
nearby input vectors and no generalization between distant input vectors. In order
to reduce the memory size of association cells for a practical mapping, Albus [2, 3]
also proposed a procedure for hash-coding. The second mapping depends on the
values of weights assigned to every association cell, which will be modified during
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the training process. These weights can be adjusted according to the difference
between the desired output and the produced output. This mapping then sums up
the weights attached to the active association cells to produce the &utput

In Figure 5, the implementation of the CMAC neural network is in a fuzzy rep-
resentation. Each unit of the fuzzy sensor carries a continuous excitation between
zero and one, and a typical fuzzy sensor vector can be described using the Gaussian
function

(S = exp( — |S —m|?/20?), (A3)

where S, stands for an input variablgy stands for the excitation of the fuzzy
sensor, anagk ando are the mean and standard deviation, respectively. Since the
Gaussian function in Equation (A3) yields nonzero values expanding over an al-
most infinite range, an input variab will correspond to almost infinite units

of fuzzy sensors whose membership grades are nonzero. For the sake of com-
putational efficiency, we select the firstunits of fuzzy sensors with the largest
membership grades to represépt The max-min composition is adopted for the
fuzzy AND and OR operations used in the mappings specified by Equations (A1),
(A2) [22]. Finally, to produce a single numerical output, the centroid defuzzifica-
tion method is used for defuzzifying the fuzzy response oufh\s;), formulated

as follows:

Do Hw
P(S) = =——, A4
(Se) Yoou (A4)

wherew stands for the weight [22].
A training process is employed to modify the weights through an updating func-

tion using the difference between the set of desired CEPs and that generated by the
FCMAC for each training pattern. The updating function is as follows:

Wpp1 =W, +B- 1~ (CEP— CEP/), (A5)

wheren denotes the stage of the training procgss the learning ratey denotes

the strength of excitation, andEP and CEP’ are the desired and actual outputs

for the training pattern, respectively. The learning process will terminate when the
differences between the set of desired CEPs and that generated by the network are
within a pre-chosen toleranee
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