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Abstract: A fuzzy neural network (FNN) approach for estimating the two-dimensional (2-D) 
direction of a radiating source in coherent multipath environments via a 2-D passive sensor array 
is presented. Outputs of the array are preprocessed by a judiciously constructed reference-point 
preprocessing scheme to produce proper inputs for an FNN. The FNN then uses these 
preprocessed outputs to produce the estimate of the source direction. Since the preprocessed 
outputs preserve enough information about the source direction and the FNN maps the 
preprocessed outputs into the source direction with high accuracy, the FNN approach exhibits 
good estimation performance. By computer simulations, it is found that the FNN approach 
drastically outperforms the spatial smoothing 2-D MUSIC algorithm. 

1 Introduction 

Finding the direction of a radiating source is an important 
task in sensor array signal processing. Applications of such 
a technique are versatile, including radar, sonar, multiuser 
mobile communication systems, etc. Researchers have 
published some remarkable works in the past twenty 
years. Among these works, the MUSIC algorithm [I], 
ESPRIT algorithm [2], weighted subspace fitting [3], 
MODE algorithm [4], etc., have received a lot of attention. 
These algorithms are generally based on an eigen-decom- 
position of the array’s output covariance matrix. As a 
result, the computational cost is expensive when the 
array size is large. The high computational cost makes 
these algorithms difficult to implement for a real-time 
environment. Recently, some researchers have become 
interested in using a fuzzy system or neural network, or 
both, to deal with the direction finding problem. The 
advantages of using the fuzzy system and neural network 
include a low computational cost and the ability to deal 
with complex signal environments. In [5], fuzzy systems 
are applied to an automatic target detection and tracking 
sonar system from an application-oriented point of view. In 
[6], a fuzzy neural network (FNN) based near-field moving 
target tracking system was successfully developed. In [7], a 
neural network beamformer was shown be efficient in 
direction finding using phased arrays. In [8] and [9], a 
radial basis function neural network is used for direction 
finding in a multipath environment over the sea. All these 
works consider the one-dimensional direction finding 
problem. Herein, we extend the ‘fuzzy-neural’ approach 
to the two-dimensional 2-D direction finding problem. 

In this paper, an FNN approach is presented for estimat- 
ing the 2-D direction of a far field radiating source using a 
2-D sensor array in multipath environments. The multipath 

environment may be found in multiuser mobile commu- 
nication systems, underwater sonar systems, and low-angle 
radar tracking systems, etc. [ 10-121. The multipath 
severely degrades the performance of conventional adap- 
tive array processing. However, the proposed FNN 
approach performs very well and is superior to the well 
known spatial smoothing 2-D MUSIC algorithm, which is 
computationally expensive. The FNN approach prepro- 
cesses the array outputs and uses an FNN to construct a 
mapping that maps from the preprocessed outputs into the 
2-D direction estimates. Regarding the pre-processing, it 
should preserve information about the target direction as 
much as possible and remove all redundant factors, such as 
the power and phase of the signal and the power of the 
noise. Moreover, it should be simple to implement in real- 
time applications. With these guidelines in mind, we 
develop a so-called reference-point preprocessing 
scheme. We first choose some reference points in the 
space that the target may travel to. Then we calculate 
some judiciously defined ‘distances’ between array 
output covariance matrices of the reference points and 
the array output covariance matrix of the target. Since 
information about the target direction is hidden in the array 
output covariance matrix, it is also hidden in the distances. 
Consequently, there is a mapping from these distances to 
the target direction. The FNN is then used to construct 
such a mapping. Note that theoretically, many kinds of 
mapping mechanisms can be used for this mapping task. 
We use the FNN because it is a rule based network. The 
rules can be combined, eliminated, or added to reduce the 
size of the network, to increase the mapping accuracy, or to 
implement an expert’s experience [ 13-1 51. Simulation 
results show that the FNN maps these distances to the 
target direction with high accuracy. Simulations also show 
that the FNN approach drastically outperforms the well 
known spatial smoothing 2-D MUSIC algorithm [16]. 
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2 Problem formulation 

Consider a far-field narrowband stationary radiating source 
observed by a 2-D planar array in a multipath environment, 
as shown in Fig. 1. In order to simplify the complexity of 
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where rJ2 is the noise power at each sensor, and I is an 
identity matrix. Thus we have 

(5) 

= P 2 W H  + llPl 112A,AY + llP2ll2A2A; + 2Re[Ap?A?l 

A R = E [ x ( ~ ) x ( ~ ) ~ ]  

+ 2Re[ApfAF] + 2Re[Alplp~AFll + 021 (6) 

where E b ]  is the mean of y, and ( . ) H  denotes a conjugate 
transpose. Instead of being given the exact ensemble 
covariance matrix R, we are given a series of samples 
from x(t), say {x(tl), x(t2), . . . , x(tN)}. The 2-D direction 
finding problem is to estimate (&, is) using the samples. 

Fig. 1 Multipath environment 

the problem without loss of generality, we consider two 
reflectors. The radiated signal travels to the array along 
three paths. One is the direct path, which is denoted as 
rays. The others are reflected paths, which are denoted as 
ray' and ray2. The signal that comes from ray' can be 
treated as having been radiated by image 1. Similarly, the 
signal that comes from ray2 can be treated as having been 
radiated by image2. 

The data observed at the array can be expressed as 

x(t) = A .  s(t) + AI . s(t) . p1 + A, . s(t) . p2 + n(t) (1) 

where x(t) E C p  ' is the data vector, n(t) E C p  ' is the 
noise vector, A E C p  ', Al E C p  ' and A2 E C p  ' are 
the array steering vectors at the source direction, the 
direction of image', and the direction of image2, respec- 
tively. Moreover, s(t) is a complex scalar denoting the 
signal radiated by the source, and p1 and p2 are complex 
scalars representing the reflection coefficients of reflector' 
and reflectop, respectively. So, A .  s(t) is the array response 
due to the direct path, Al . s(t). p1 is the array response due 
to the reflected path ray', and A2.s( t ) .p2  is the array 
response due to the reflected path ray2. The array steering 
vectors A, A,, and A2 can be expressed as vectors whose 
ith elements are 

and 

(4) 

respectively, where A is the wavelength, (xi, yi) is the 
coordinate of the ith sensor, and (l,, [,)=(cos E, cos p). 
a and f i  are the angles against the x- and y-axes, respec- 
tively (see Fig. 1). (51, t ~ ) ,  (t2, 12) are defined as (ts, t,) in 
the same way to represent the directions of image' and 
image2. 

It is assumed that s(t) and n(t) are uncorrelated and that 
they are stationary, ergodic and complex-valued random 
processes with zero mean. Let p2 denote the covariance or 
power) of s(t). Let the covariance matrix of n(t) be r~ I, 1 
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3 Fuzzy neural networks 

The 2-D direction finding problem can be solved by the 
well known spatial smoothing 2-D MUSIC algorithm [16]. 
In the multipath environment, as described in Section 2, 
the MUSIC algorithm has to estimate three 2-D directions, 
and choose one of them as the estimate of the source 
direction. Actually, our purpose is to estimate only one 2-D 
direction. The signal radiated from image' and image2 is 
helpful for estimating the source direction. In other words, 
when estimating the source direction, the reflected signal 
can be taken into account to improve the estimation 
performance. One way to implement this idea is by using 
the fuzzy neural networks to map the array output to the 
source direction. In this Section we describe a 4-layer 
fuzzy neural network, which will be adopted to estimate 
the (&, is) in the next Section. The fuzzy neural network 
has two outputs. One of the outputs is for estimating t,, the 
other is for estimating is. 

3.1 Structure of the FNN 
As shown in Fig. 2, the fuzzy neural network adopted in 
this paper is an n-input, 2-output, and m-rule fuzzy neural 
network that maps { u ~ } ; = ~  into y l  and y2. It constructs 
fuzzy rules one by one and adds all rules together. Suppose 
that thejth fuzzy rule reads 

IF ~1 IS A l j ,  ~2 IS A z j , .  . . , U, IS A n j ,  THEN 

y1 IS wl j  and y2 IS w2] 

Fig. 3 shows the implementation of this rule. Putting all of 
the fuzzy rules together, we get, the whole fuzzy neural 

Fig. 2 Structure of a fuzzy neural network 
X =weighted sum 
Il =product operation 
A,,, = fuzzy membership function (Gaussian) 
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Fig. 3 Implementation of a f izzy rule 

network as shown in Fig. 2. Layer 1 of such a network is 
the input layer. It propagates the crisp input ui to layer 2. 
Layer 2 is the singleton fuzzification layer, which maps a 
crisp input value U ;  into the fuzzy set Aq with membership 
degree pAv (ui). In this paper, p A y ( .  ) is a Gaussian function, 
i.e. 

where ai,; is the mean (or centre) and ( o ~ ) ~  is the variance 
(or width) of the Gaussian function. The membership 
degree p A , ,  (ui) is then propagated to layer 3. Layer 3, 
the fuzzy reasoning layer, performs IF-condition reasoning 
by a product operation and generates the firing strength U; 
of the jth fuzzy rule by 

After the firing strength, ai, of each rule is computed, the 
network multiplies olj by the consequence weight w l j  (or 
w2,) to obtain the contribution of the jth rule to the output 
y1 (or y2). Finally, at layer 4, all the contributions of the m 
fuzzy rules are summed to produce the output of the FNN, 
say 

m 

j= 1 
y k = c W k j o l j ,  k =  1 , 2  (9) 

We refer to the defuzzification process in eqn. 9 as a 
'weighted sum defuzzifer'. It is a universal approximator 
which is capable of approximating any real continuous 
function with satisfactory accuracy, provided that sufficient 
fuzzy rules are used [14]. Note that the FNN proposed 
herein and the FNN proposed in [ 131 are different, in that 
one uses a weighted sum defuzzifer and the other uses an 
averaged sum defuzzifer. 

3.2 Designing an FNN 
Although the FNN is considered as a universal approx- 
imator to any real continuous function, the determination 
of the membership function pA,,, (.) and consequence 
weight wj in eqns. 8 and 9 plays a crucial role when 
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designing the fuzzy neural network. The advantage of the 
FNN is that we are able to adjust all the col,, w2,, and pA,J 
( . ) using the back propagation algorithm, provided that a 
lot of input-output training pairs are available. The back- 
propagation algorithm performs the supervised gradient 
descent learning. Interested readers may find the details of 
the learning processes in [6, 151. In the following we 
summarise the design procedure. 

Step 1 :  Computer a lot of input-output pairs of the desired 
mapping. 
Step 2: Construct an initial FNN according to expert 
knowledge or any other initialisation procedure, e.g., the 
on-line initialisation procedure proposed in [ 131. 
Step 3: Train the FNN (i.e., adjust wl,, w2, and PA,,  (.)) by 
using the back propagation algorithm to make the FNN fit 
the input-output pairs obtained in step 1. 
Step 4: Eliminate redundant rules, which consist of fuzzy 
sets which look like impulsive functions. 

4 FNN direction estimator using reference-point 
preprocessing scheme 

The universal function approximation capability of an 
FNN is suitable for creating an estimator for the two- 
dimensional direction of a radiating source. As shown in 
Fig. 4, the FNN-estimator includes two main parts: the 
preprocessing scheme and the FNN mapping network. It 
also includes simple postprocessing units. The postproces- 
sing merely scales and shifts the outputs y1 and y2 .  
According to our experience, this will make the FNN 
have a faster learning speed. Regarding the preprocessing 
scheme, we keep in mind the following two guidelines: 

(i) At the array output, the power of the source signal s(t) 
and the power of the noise are unrelated to the direction, 
which should be removed before being fed into an FNN. 
(ii) We should use the array output covariance matrix 
instead of the array outputs to make the FNN-estimator 
robust to noise. 

Based on these two guidelines, we develop a so-called 
reference-point preprocessing scheme. 

By the term 'reference point', we mean some points we 
choose in the space of ( 5 ,  e), which will be used for 
reference when producing the inputs of the FNN. Let (tr, 
czl)r= denote the n reference points. ,Obviously, there are 
distances between reference points ( tr ,  cL)ly= and the true 
source direction (tS, e,). If the distances can be estimated, 
(&, e,) can be estimated too. This is something like the 
positioning technique used in the Global Positioning 
System (GPS). Herein, we attempt to use the same concept 

y y .... 
reference-point preprocessing scheme 

{d) i=l 

" n 

rn-rule fuzzy neural network 

postprocessing postprocessing 

Fig. 4 Diagram of an FNN-based 2-0 direction estimator 
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to 'position' the target direction. Although the distances 
are not known, we may define another kind of distance for 
our purpose. The reference-point preprocessing scheme 
defines and computes some novel distances, which can 
be used to position the source direction (ts, [J. Consider- 
ing guideline 2, the novel distances should come from the 
array sample covariance matrix instead of from the array 
outputs. In the following, we give the definition of the 
novel distance and show how to calculate them. 

Let xz be the array output when the source is located at 
the ith reference point (tz, r). Assume that ,U = 1 and CJ = 0. 
The covariance matrix of XI, R', becomes 

R' = AiAP + JIpl 1l2A;A$ + IIp211 2 i  A2A2 i" + 2Re[A'pyA$] 

+ 2Re[AipyAf] + 2Re[A',p1&Af] (10) 

where A', Ai1, and A2i, are the steering vectors of the direct 
path and reflected path with respect to the ith reference 
point. Eqn. 10 shows the covariance matrices associated 
with the reference points. The covariance matrix associated 
with the source direction, however, should be calculated 
from the array outputs. Let R be the array sample covar- 
iance matrix when the source direction is (ts, ls), which is 
calculated as 

We define vector r as follows: 

I 
r = r ' x -  

Ilr'II 
where rij is the element of R at the (i,j)'ll is the 2-~orm of 
r'. Since eqn. 12 does not include the diagonal of R, r has 
no strong relationship to the noise power 02. r is almost un- 
correlated to the signal power ,U', since it appears in both 
the numerator and denominator of eqn. 13. Therefore, r 
satisfies the first guideline. 

We now define vector {ri}F= in the same manner as we 
defined r, and calculate the distances between {ri}F= and 
r. The novel distances are then designated as 

(14) d' = Ilr - rill for i = 1 ,2 , .  . . , n 

We find that there is a mapping betyeen {d'} l= and (ts, 
CJ. This means that we can use to 'position' (ts, 
is) through a mapping. The FNN can establish such a 
mapping. Using { d ' } ~ = ,  as the inputs of the FNN, the 
FNN's outputs can b_e scaled and shifted to provide the 
direction estimates ( ts, [J, i.e. 

ui = d' for i = 1 , 2 , .  . . , n (15) 

where ui is the ith input of the FNN, and 

yl = shifted and scaled version of 5, 

y2 = shifted and scaled version of [, 

(16) 

(17) 

where y1 and y2 are the outputs of the FNN. The simple 
scaling and shifting give the FNN a faster learning speed. 
Note that { d '};= satisfies both the guidelines mentioned 
before and the FNN provides good mapping capability. As 
a result, the FNN approach is expected to estimate the 2-D 
direction with high accuracy. 
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5 Simulations 

In this Section, the estimation performance of the proposed 
FNN-based 2-D direction estimator is compared with the 
well known spatial smoothing 2-D MUSIC algorithm. In 
all simulations, the array is chosen to be a uniform 
rectangular planar array with 4 x 4 sensors and half-wave- 
length interelement spacing in both row and column 
directions. As shown in Fig. 1 in Section 2,  the centre of 
the array is located at the origin of the coordinate system, 
and the broadside of the array faces the z-axis. One unit 
length of the coordinate system is one half-wavelength. 
The reflector 1 is implemented by the plane x =  100. The 
reflector 2 is implemented by the plane y = - 100. The 
radiating source is 500 unit lengths away from the origin 
and is therefore considered to be in the far-field. Moreover, 
5 < 0.1 and [ > - 0.1. Herein we are going to develop an 
FNN-based estimator to estimate the source direction 
which may vary in the following region: 

- 0.1 < 5 < 0.1 

-0.1 < [ < 0.1 

(18) 

(19) 

We start by choosing some reference points, and calcu- 
lating {d'}:= using the equations mentioned in previous 
Section. The {d ' } r=,  will be the inputs of an FNN. The 
FN"s outputs are shifted and scaled to produce the 
estimate of (tS, ls). By changing the target direction (ts, 
[J, w; ;et a lot of training data for the FNN, i.e., the pair 
of { d  } i = l  and (tS, [J. Using the training data and the 
training method presented in Section 3, we can develop an 
FNN-based direction estimator. In this example, we find 
that only three (i.e. n = 3) reference points are enough to 
build an accurate FNN direction estimator in a noise free 
environment. Since a large number of reference points 
increases the complexity of the FNN, we choose a mini- 
mum, but sufficient, number of reference points. Note that 
the sufficient number of reference points may be greater 
than three in other cases. Now, 25 source directions are 
generated randomly in order to examine the accuracy of the 
FNN-based direction estimator. For each direction, 100 
array outputs are used to calculate the, R. Using the R, we 
are able to calculate {d'}?, 1 .  These d' are then fed into the 
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Root mean squares error against SNR 

FNN to produce the estimates of the source direction. 
Meanwhile, the source direction is also estimated by the 
spatial smoothing 2-D MUSIC algorithm for comparison. 
The results are plotted in Fig. 5. We observe that the 
estimation error of the FNN-based estimator is satisfacto- 
rily small. This accuracy is a result of the universal 
function approximation capability of the FNNs. We also 
observe that the spatial smoothing 2-D MUSIC algorithm 
provides error-free estimates in the noise-free environment. 

We proceed to examine the estimation performance of 
these two algorithms in a noisy environment. Figs. 6 and 7 
show the results when SNR=20dB, and lOdB, respec- 
tively. Clearly, the FNN is more robust to noise than the 
MUSIC algorithm. 

To further investigate these two algorithms, we set the 
source direction at (0, 0) and make 100 independent Monte 
Carlo trials for various SNR values. The root mean square 
errors of these two algorithms are plotted in Fig. 8 as a 
function of SNR. We see that the FNN approach drastically 
outperforms the MUSIC algorithm for most SNR values. 
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When SNR is higher than 34dB, the MUSIC algorithm 
performs better. This is a result of the limited approxima- 
tion capability of the FNN. The limited approximation 
capability, however, is accurate enough. Figs. 9 and 10, are 
the results of all these 100 estimates when SNR= 12dB 
and 4dB, respectively. These figures tell us more about the 
performance improvement of the FNN approach over the 
spatial smoothing MUSIC approach. 

6 Conclusions 

The two dimensional direction finding problem in a multi- 
path environment is studied and solved by a fuzzy neural 
network with an efficient reference-point preprocessing 
scheme. By computer simulations, we find that a small 
number of reference points is enough. The distances, 
calculated based on these reference points, possess 
enough information for estimating the direction of the 
radiating source. In the multipath environment, the FNN- 
based 2-D direction estimator substantially outperforms the 
spatial smoothing 2-D MUSIC algorithm, which is a high- 
resolution direction estimator. This may result from the 
poor decorrelation capability of the spatial smoothing 
scheme for close spacing signals. It may also result from 
the fact that the FNN-based estimator estimates only one 
direction while the MUSIC based algorithm has to estimate 
three directions using the same information. To sum up, for 
some complicated array signal processing problems, the 
artificial intelligence approach may be very helpful. In this 
paper, we have set up an example for this problem. 
Preprocessing is important when designing an artificial 
intelligence approach. Proper preprocessing reduces the 
complexity that the artificial intelligence mechanism 
should cope with, and preserves useful information as 
much as possible. The reference-point preprocessing 

scheme proposed herein does this job very well for the 
2-D direction finding problem. 
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