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Abstract 

In real applications, data provided to a learning system usually contain linguistic information which greatly influences 
concept descriptions derived by conventional inductive learning methods. The design of learning methods to learn 
concept descriptions in working with vague data is thus very important. In this paper, we apply fuzzy set concepts to 
machine learning to solve this problem. A fuzzy learning algorithm based on the maximum information gain is proposed to 
manage linguistic information. The proposed learning algorithm generates fuzzy rules from "soft" instances, which differ 
from conventional instances in that they have class membership values. Experiments on the Sports and the Iris Flower 
classification problems are presented to compare the accuracy of the proposed algorithm with those of some other 
learning algorithms. Experimental results show that the rules derived from our approach are simpler and yield higher 
accuracy than those from some other learning algorithms. © 1999 Elsevier Science B.V. All rights reserved. 

Keywords: Expert systems; Fuzzy machine learning; Fuzzy sets; Knowledge acquisition; Measure of fuzziness; Member- 
ship functions 

1. Introduction 

Various learning methods have been developed for inducing rules from collections of examples 
[6, 8, 17-21]. Among these learning approaches, inductive learning may be the most commonly used in 
real-world application domains. Inductive learning is basically a process of inferring concept descriptions 
that include positive instances and exclude negative instances. Traditional inductive learning methods are 
however inapplicable to some application domains, since data in the real world usually contain vagueness 
and ambiguity• 

Vagueness and ambiguity most commonly result from attributes insufficient to appropriately describe 
objects, or when experts, teachers, or users are not quite sure what classes given objects belong to. The 
boundaries of a piece of information used may not be clear-cut, and each object may be expressed as 
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a linguistic "input-output" relation. Each attribute that describes an object could thus be defined as a fuzzy 
set. As an example, the object dangerous dogs may be expressed as "Dog A has a large body and long hairs, 
and it is dangerous with 0.8 degree of certainty". "Large", "long", and "dangerous" are fuzzy linguistic terms. 
Since attributes and classifications used to express objects represent human perceptions and desires, they are 
vague by nature. A crisp classification that distinguishes between positive and negative instances is often 
artificial; instead, fuzzy or ambiguous classifications of instances are commonly seen in the real world. 

Vagueness in general greatly influences concept descriptions derived by conventional inductive learning 
methods [27]. Some kinds of learning problems arising in working with vague data were discussed in [2, 3, 5, 
10, 12, 23, 24]. The design of learning methods to work well with vague data is thus very important. Several 
successful learning strategies based on ID3 have been proposed ['7, 15, 20-22, 25, 27]; most of these use 
tree-pruning and fuzzy logic techniques. As for version-space-based learning strategies, Wang et al. proposed 
a fuzzy version space learning strategy for managing vague information [23]. In this paper, we propose 
a fuzzy inductive learning algorithm (FIL) based on maximum fuzzy information gain to induce a set of fuzzy 
modular rules from "soft" training instances, which differ from conventional instances in that they have class 
membership values [15, 24, 25]. This learning approach can solve some problems of inductive learning in 
vague learning environments. 

The remainder of this paper is organized as follows. Some related concepts and terms are reviewed in 
Section 2. A generalized inductive learning is introduced in Section 3. A fuzzy inductive learning algorithm 
(FIL) is proposed in Section 4. An example illustrating the learning process of the proposed algorithm is 
described in Section 5. The time complexity of the proposed learning algorithm is analyzed in Section 6. 
Experimental results from the Sports and the IRIS flower classification problems are reported in Section 7. 
Finally, conclusions are given in Section 8. 

2. Review of related concepts and terms 

In this section, we review concepts and terms important to this paper. 

2.1. Fuzzy set 

A fuzzy set is an extension of a crisp set. Crisp sets allow only full membership or no membership at all, 
whereas fuzzy sets allow partial membership. In other words, an element may belong to more than one set. In 
a crisp set, the membership or non-membership of an element x in set A is described by a characteristic 
function UA(X), where 

{~ if xeA,  
uA(x)= if xCA. 

Fuzzy set theory extends this concept by defining partial membership, which can take values ranging from 
0 to  1: 

uA:X~[O,I ] ,  

where X refers to the universal set defined for a specific problem. 
Assuming that A and B are two fuzzy sets with membership functions of uA(x) and uB(x), then the following 

fuzzy operators can be defined. 
(1) The intersection operator: 

uA~,~ (x) = uA(x) ~ uB(x), 
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where z : [0, 1] • [0, 1] ~ [0, 1] is a t-norm operator satisfying the following conditions [26]: 
for each a,b, c e  [0, 1]: 

(i) a z 1 = a; 
(ii) a z b  = bza ;  

(iii) a z b >1 c z d i f a  >I c, b >>, d; 
(iv) a z b z c  = a z ( b z c )  = (aTb) zc. 

Some instances of a t-norm operator a z b are min(a, b) and a * b. 
(2) The union operator: 

uA~.(x) = uAx) p u~,(x), 

where p : [0, 1] • [0, 1] ~ [0, 1] is an s-norm operator satisfying the following conditions [26]: 
for each a,b, ce[O,  1]: 

(i) a p 0 = a; 
(ii) a p b  = bpa;  

(iii) a p b t > c p d i f a > l c ,  b~>d; 
(iv) a p b p c  = a p ( b p c )  = ( a p b ) p c .  

Some instances of an s-norm operator a p b are max(a, b) and a + b - a  * b. 
(3) The a-cut operator: 

A~(x) = {xe  XluA(x) >1 ~}, 

where A, is an a-cut of a fuzzy set A. A, contains all elements in the universal set X that have a membership 
grade in A greater than or equal to the specified value of ~. 

These fuzzy operators will be used in our learning algorithm to derive fuzzy if-then rules. 

2.2. Inductive learning 

Conventional inductive learning is aimed at finding a concept description R that correctly describes all 
instances in the training set [6, 8, 17-21]. If E is a training set divided into two subsets: P (the set of positive 
instances) and N (the set of negative instances), then conventional inductive learning attempts to find 
a concept description R such that the following conditions are met: 

V e + e P ~ e + c R  and V e - e N ~ e - c / = R ,  

where e + is a positive instance and e-  is a negative one, c and ¢ are relationship descriptors that mean 
"covered by" and "'not covered by", respectively. The concepts derived from traditional inductive learning 
methods are usually represented in the following grammar: 

If (cover )  then predict (class) ,  where 
(cover)  = (complex1)  or ... or (complex~),  
( comp lex )  = (selector1) and ... and (selectory), 
(se lector)  = (attribute relationship value). 

A selector relates a variable to a value. For  example, "color -- red", "height = tall", and "weight > 60 kg" 
are all selectors. A conjunction of selectors forms a complex. A cover is a disjunction of complexes describing 
all positive instances and no negative instances of the concept. 

Generally, conventional inductive learning methods only work well in ideal domains that contain 
no vague data. In order to handle linguistic information, the conventional inductive learning must be 
generalized. 
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3. Generalized inductive learning 

Since data in real-world applications usually contain linguistic information, conventional inductive 
learning procedures may be inapplicable to some application domains. Fuzzy concepts can then be applied 
to such conventional inductive learning approaches. The generalized inductive learning task is one of finding 
a concept description/~ such that the following conditions are met: 

V ~ e ~ P = ~ 3 ~ / ~  and ~3~N=* ,3q :~ /~ ,  

where/~ is a fuzzy concept description, V is a linguistic quantifier of type "almost all", "most", etc. [16], 
P denotes a set of "soft" positive instances and .g denotes a set of "soft" negative instances, ~ and ~: ~ are 
fuzzy relationship descriptors that mean "e-covered by" and "e-not covered by", respectively. Each instance 

can be considered a soft instance. Soft instances differ from conventional instances in that they have class 
membership values. The membership value up(3) specifies the degree to which instance 3 belongs to the 
positive class P, and the membership value u8(3) specifies the degree to which instance 3 belongs to the 
negative class/V. When the value of uv(3) is greater than or equal to a predefined significant level e, instance 

is then said to e-belong to the class/~ (3e~ P). The inductive learning is thus generalized to find a concept 
description, /~, that includes almost all "soft" positive instances and excludes almost all "soft" negative 
instances. 

A "soft" training instance is represented here by selectors with a class membership value. Each selector is 
represented as [Ar 'v'], where A is an attribute, r is a crisp or fuzzy relationship, and v is a crisp or fuzzy value. 
An example of a "soft" training instance is shown below: 

3: [height = 190 cm] and [weight = 80 kg], he is a basketball player, 

with class membership value Ubasketball_player(e~ = 0.8, 

where both [height = 190 cm] and [weight = 80 kg] are crisp selectors, and gbasketballplayer(3) is a class 
membership value that specifies the degree to which 3 belongs to the class basketball_player. 

The selectors used to describe derived concepts may, however, be different from those used to describe 
training instances since some derived concept selectors may be expressed in fuzzy terms. For example, a fuzzy 
concept may be represented as 

IF [-height = "tall"] and [weight = "heavy"] T H E N  he is a basketball_player, 

with membership value u = 0.8, 

where [height = "tall"] and [weight = "heavy"] are fuzzy selectors, and u represents the strength of the rule. 
Selectors used in the instance space must therefore be transformed into representations in the hypothesis 

space for fuzzy matching. Let us,(3) represent the degree of matching between selector si in the hypothesis 
space and the corresponding selector in the instance 3. The value of u,,(3) ranges between 0 and 1, and is used 
to represent the degree to which instance 3 is covered by s~; 0 indicates complete exclusion and 1 indicates 
complete inclusion. When the value of u~,(e) is greater than or equal to a predefined significant level e, selector 
s~ is said to e-cover instance ~. 

Assume that we have an instance 3 and a complex Cj = s j, A s~, A --. A s j .  The degree of instance 
3 covered by complex Cj is evaluated as 

uc~(3) = u~,,(3) A u%(3) A . . .  A u~,(3) 
or, more generally, 

uc,(3) = u~,,(3) Tus,~(3) ~ . . .  ~ u~ (~), 

where z is a t-norm operator. 
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The value of uc~(Y) is thus used to represent the fuzzy degree of instance ~ covered by complex C~. When the 
value of Ucj(~) is greater than or equal to a predefined significant level ct, complex Cj is then said to e-cover 
instance ~. 

The concept description/~ indicates the disjunction of complexes, say, C1, C2, . . . ,  Cx, and is denoted as 
/~ = C1 V C2.-- V Cx. The degree of instance g covered by the concept description/~ is thus evaluated as 

ur~(~) = ucl(~) V uc2(~) V ... V ucx(~) 

or, more generally, 

u~(~) = uc,(e)puc~(e)p ... pUcx(e), 

where p is an s-norm operator. 
The concept of fuzzy matching is used in the following proposed learning algorithm to handle vagueness. 

4. A fuzzy inductive strategy for learning modular rules 

Various fuzzy inductive learning strategies have been developed for handling noise, uncertainty and 
vagueness [16, 22, 23, 24, 27]. Among these learning methods, fuzzy decision trees [22, 25, 27] and their 
various learning approaches are commonly used in real-world applications. They are concerned with finding 
the most relevant overall attributes. The heuristics of minimizing "entropy" is used to determine which 
attribute should be selected next in the decision tree. However, this may cause derived rules to be too specific, 
entailing irrelevant tests in the conditions of rules. 

Here, a fuzzy inductive learning algorithm based on the PRISM learning strategy [6] is proposed to 
handle vagueness and eliminate irrelevant tests occurring in the rule. The proposed learning algorithm 
maximizes fuzzy  information gain instead of minimizing entropy in inducing modular rules [15, 24,25]. It 
concentrates on finding relevant attribute-value pairs, rather than just attributes. During induction, the 
actual amount of information contributed by each attribute-value pair (selector) is evaluated for a specific 
classification, and the one with the maximum fuzzy information gain is then selected and added to the 
induced rule. Each attribute-value pair (selector) can be thought of as a message, and the classification 6k can 
be similarly thought of as an initial event. Given a message si, the amount of fuzzy information gain about an 
event 6k is defined as 

(H(6k[Si)~ = log2 (H(6klSD) -- log2 (H(6k)), I(iJklSi) = log2 \-H--(-t~k') ] 

where H(OklSi) and H((~k) are, respectively, the subsequent and antecedent fuzzy information, and are defined 
as follows: 

z" H((~k[Si)= l=lU*'(ej)zu~'(eJ) H(6k) --- -- u~(ej), 
X~=lUs,(ej ) ' n j=l 

where n is the size of the training set, ej is thejth instance in the training set, and u~(ej) is a class membership 
value specifying the degree to which instance e~ belongs to event 6k. 

The proposed fuzzy learning algorithm then uses the fuzzy information gain function to determine which 
selector is chosen and when the specialization process is performed. The specialization operation decides 
whether a chosen selector should be added to the condition part of an induced rule. Since fuzzy information 
exists in the training set, the induced rule will not be absolutely true, but will be only partially true. The fuzzy 
strength of an induced rule "IF ~ THEN 6k" can thus be determined using the fuzzy Bayes measurement 
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function, B(rklC), which is defined as follows [27]: 

B(cS, I ~) = Y,7= lue(ei) z u~.(ej) 
YT=,ue(ei) ' 

where ~ and 5k are, respectively, the condition and conclusion of the induced rule. 
When the accuracy of the induced rule is above a predefined truth level fl, i.e. B(rRI~) t> fl, then the 

specialization process is terminated indicating that an induced rule has been obtained. After a rule has been 
induced, instances a-covered by this rule are removed from the original training set. The above operations are 
then repeated until all instances a-belonging to class 6k have been removed. The fuzzy learning algorithm is 
stated below. 

Fuzzy inductive algorithm for learning modular rules 
IF the training set contains instances of more than one classification, then for each classification, ~k, in 

turn: 
STEP 
STEP 

STEP 
STEP 
STEP 

STEP 
STEP 
STEP 

1. Initiate a null complex (7. 
2. Measure the fuzzy information gain, I(rklS~), of the classification 6k for each possible selector s~ 

from the training set. 
3. Choose a selector si for which I(6klSi) is maximum. 
4. Add selector s~to (~, i.e., 1~ = ~ A si, and calculate B(rklC). 
5. If B(rkl C) is above a predefined truth level fl, then execute STEP 6; otherwise, create a new 

training set in which each instance is a-covered by the selector si, and go to STEP 2. 
6. Form the rule "IF C T H E N  6k". 
7. Remove all instances a-covered by the rule "IF ~ T H E N  6k" from the original training set. 
8. Repeat STEP 1 to STEP 7 until all instances a-belonging to class 6k in the original training set 

have been removed. 

When the rules for one classification have been induced, the training set is restored to its initial state and 
the algorithm is applied again to induce a set of rules covering the next classification. Below, an example is 
used to illustrate this learning process. 

5. An example 

This is a simple domain for deciding what sport to play according to Sunday's weather. A small training set 
with fuzzy membership values is shown in Table 1 127]. Each instance is described by four fuzzy attributes 
(Outlook, Temperature, Humidity, Wind) and one fuzzy classification (Sport). Each attribute has the values 
shown below. 

Outlook = (Sunny, Cloudy, Rain), Humidity = (Humid, Normal}, 

Temperature = { Cool, Mild, Hot}, Wind = { Windy, Not_windy}. 

Classifications include the following sports: 

Sports = (Swimming, Volleyball, Weight_lifting}. 

The proposed learning procedure for inducing rules of the classification Swimming is demonstrated first. 
Let a be 0.5 and fl be 0.7. The information gain of each selector for classification Swimming is calculated from 
Table 1 and is shown in Table 2. 
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Table 1 
Set of training instances for sports to play depending on Sunday's weather 

97 

Case Outlook Temperature Humidity Wind Sports 

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not-windy Volleyball Swimming W-lifting 

1 0.9 0.1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0.6 0.0 0.8 0.2 
2 0.8 0.2 0.0 0.6 0.4 0.0 0.0 1.0 0.0 1.0 1.0 0.7 0.0 
3 0.0 0.7 0.3 0.8 0.2 0.0 0.1 0.9 0.2 0.8 0.3 0.6 0.1 
4 0.2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7 0.9 0.1 0.0 
5 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0 
6 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0.8 
7 0.0 0.3 0.7 0.0 0.0 1.0 0.0 1.0 0.1 0.9 0.0 0.0 1.0 
8 0.0 1.0 0.0 0.0 0.2 0.8 0.2 0.8 0.0 1.0 0.7 0.0 0.3 
9 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3 0.2 0.8 0.0 

10 0.9 0.1 0.0 0.0 0.3 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7 
11 0.7 0.3 0.0 1.0 0.0 0.0 1.0 0.0 0.2 0.8 0.4 0.7 0.0 
12 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1 
13 0.9 0.1 0.0 0.2 0.8 0.0 0.1 0.9 1.0 0.0 0.0 0.0 1.0 
14 0.0 0.9 0.1 0.0 0.9 0.1 0.1 0.9 0.7 0.3 0.0 0.0 1.0 
15 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0 
16 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1,0 0.0 1.0 0.8 0.6 0.0 

Table 2 
The information gain of each selector for classification Swimming 

Outlook Humidity Temperature Wind 

Sunny Cloudy Rain Humid Normal Hot Mild Cool Windy Not-windy 

1 .093 -0.0995 -0.819 0.58 0 1.1593 0 -2.09 0.093 0.45 

A m o n g  t h e s e  se lec to r s ,  s e l e c t o r  "Temperature is Hot" h a s  t h e  m a x i m u m  fuzzy  i n f o r m a t i o n  g a i n  e v a l u a t e d  

as  fo l lows:  

I(SwimminglHot) 

• / ' ( 1 . 0 + 0 . 6 + 0 . 8 + 0 . 3 + 0 . 7 + 1 . 0 + 1 . 0 + 0 . 2 + 0 . 5 ) / ( 0 . 8 + 0 . 6 + 0 . 6 + 0 . 1 + 0 . 8 + 0 . 7 + 0 . 5 ) )  
----- lOg 2  8-70  

log ( ) 
T h e  s e l e c t o r  "Temperature is Hot" is a d d e d  to  t h e  i n d u c e d  rule ,  a n d  t h e  ru le  " I F  Temperature is Hot 

T H E N  Swimming" is t h u s  g e n e r a t e d .  T h e  fuzzy  s t r e n g t h  o f  th i s  ru le  is t h e n  c a l c u l a t e d  as  fo l lows:  

0 . 8 + 0 . 6 + 0 . 6 + 0 . 1  + 0 . 8 + 0 . 7 + 0 . 5  4.1 

1 . 0 + 0 . 6 + 0 . 8 + 0 . 3 + 0 . 7 + 1 . 0 + 1 . 0 + 0 . 2 + 0 . 5  6.1 
B(SwimminglHot) = - 0.67. 
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Since  the  rule  s t rength ,  B(SwimminglHot)= 0.67, is l o w e r  t h a n  the  p r ede f ined  t r u t h  level  /~ (0.7), the  

spec i a l i za t ion  p roces s  by  r e p e a t i n g  S T E P  2 - 4  is t h e n  p e r f o r m e d .  Also ,  a n e w  t r a in ing  set w h i c h  is a-covered 
by  the  se lec to r  "'Temperature is Hot" is g e n e r a t e d  a n d  s h o w n  in T a b l e  3. 

I n f o r m a t i o n  ga ins  for  o t h e r  se lec tors  excep t  the  se lec to r  "Temperature is Hot" are  then  r e - ca l cu l a t ed  f r o m  

T a b l e  3. T h e  se lec to r  "Outlook is Cloudy" t hen  has  the  m a x i m u m  i n f o r m a t i o n  ga in  e v a l u a t e d  as fol lows:  

, /'(0.1 + 0 . 2  + 0.6 +0 .3) / (0 .1  + 0 . 2  + 0 . 7  + 0.1 + 0 .3))  ( 0 . 8 + 0 . 7 + 0 . 6 + 0 . 8 + 0 . 7 + 0 . 6 ) / 7  (~.866) I(Swimmingnot I Cloudy) = logz  ~ . . . . .  log2 = 0.519. 

T h e  se lec to r  "Outlook is Cloudy" is a d d e d  to the  i n d u c e d  rule,  a n d  the  rule  " I F  Temperature is Hot a n d  

Outlook is Cloudy, T H E N  Swimming" is t hus  gene ra t ed .  T h e  fuzzy s t r eng th  o f  this rule  is c a l c u a t e d  as fol lows:  

0.1 + 0 . 2 + 0 . 6 + 0 . 1  + 0 . 3  1.3 
B(Swimmingl Hot A Cloudy) = 0.1 + 0.2 + 0.7 + 0.3 + 0.1 + 0.3 + 0.1 - 1.8 - 0.72. 

Table 3 
New training set s-covered by selector "Temperature is Hot" 

Case Outlook Temperature Humidity Wind Sports 

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not-windy Volleyball Swimming W-lifting 

1 0.9 0.1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0.6 0.0 0.8 0.2 
2 0.8 0.2 0.0 0.6 0.4 0.0 0.0 1.0 0.0 1.0 1.0 0.7 0.0 
3 0.0 0.7 0.3 0.8 0.2 0.0 0.1 0.9 0.2 0.8 0.3 0.6 0.1 
5 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0 
9 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3 0.2 0.8 0.0 

11 0.7 0.3 0.0 1.0 0.0 0.0 1.0 0.0 0.2 0.8 0.4 0.7 0.0 
16 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 1.0 0.8 0.6 0.0 

Table 4 
New set of instances 

Case Outlook Temperature Humidity Wind Sports 

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not-windy Volleyball Swimming W-lifting 

1 0.9 0,1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0,6 0.0 0.8 0.2 
2 0.8 0.2 0.0 0,6 0.4 0.0 0.0 1.0 0.0 1,0 1.0 0,7 0.0 
4 0,2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7 0.9 0.1 0.0 
5 0.0 0.1 0.9 0,7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0 
6 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0.8 
7 0.0 0.3 0.7 0.0 0.0 1.0 0.0 1.0 0.1 0,9 0.0 0.0 1.0 
8 0.0 1.0 0,0 0,0 0.2 0.8 0.2 0.8 0.0 1,0 0.7 0,0 0.3 
9 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3 0,2 0.8 0.0 

10 0.9 0.1 0.0 0,0 0.3 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7 
11 0.7 0.3 0.0 1,0 0.0 0.0 1.0 0.0 0.2 0.8 0.4 0.7 0.0 
12 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1 
13 0.9 0.1 0.0 0.2 0.8 0.0 0,1 0.9 1.0 0,0 0.0 0.0 1.0 
14 0.0 0.9 0.1 0.0 0.9 0.1 0,1 0.9 0.7 0,3 0.0 0.0 1.0 
15 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0,0 0.0 1.0 
16 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 1.0 0.8 0.6 0.0 
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Table 5 
New set of instances 

Case Out look Temperature Humidity Wind Sports 

Sunny Cloudy Rain Hot  Mild Cool Humid Normal  Windy Not-windy Volleyball Swimming W-lifting 

4 0.2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7 0.9 0.1 0.0 
5 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0 
6 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0,8 
7 0.0 0.3 0.7 0.0 0.0 1.0 0.0 1.0 0.1 0.9 0.0 0.0 1,0 
8 0.0 1.0 0.0 0.0 0.2 0.8 0.2 0.8 0.0 1.0 0.7 0.0 0.3 

10 0.9 0.1 0.0 0.0 0.3 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7 
12 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1 
13 0.9 0.1 0.0 0.2 0.8 0,0 0.1 0.9 1.0 0.0 0.0 0.0 1.0 
14 0.0 0.9 0.1 0.0 0.9 0.1 0.1 0.9 0.7 0.3 0.0 0.0 t.0 
15 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0 

Rule 1: IF Teral~rature is Hot, Outlook is Cloudy, THEN Swimming (B=-0.72). 
Rule 2: IF Temperature is Hot, Outlook is Sunny, TItEN Swimming (B=0.85), 
Rule 3: IF Temperature is Mild, Wind is Not-windy, THEN Volleyball (B-0.78). 

Rule 4: IF Outlook is Rain, THEN Weight-tiffing(B=0.89). 
Rule 5: IF Temt~rature is Cool, THEN Weight-li.f~ng (B-~-0.88). 
Rule 6: IF Wind is Windy, THEN Weight-l~ng ( D~. 71). 

Fig. 1. Six rules induced by the proposed fuzzy learning algorithm for the sport  domain,  

Since the rule strength (0.72) is greater than the predefined truth level fl (0.7), the specialization process is 
terminated and the modular rule "IF Temperature is Hot and Outlook is Cloudy, THEN Swimming" is output. 
All instances e-covered by this rule are then removed from Table 1 to form the new set shown in Table 4. 

Since cases 1, 2, 9, 11, 16 in Table 4 still e-belong to the classification Swimming, the learning procedure 
must generate a new rule to cover these instances. The information gain of each selector for classification 
Swimming is calculated from Table 4. Among these selectors, selector "Temperature is Hot" has the maximum 
information gain (1.237), and is added to the new induced rule. The rule "IF Temperature is Hot THEN 
Swimming" is then generated. Since the fuzzy rule strength, B(SwimminglHot)= 0.67, is lower than the 
predefined truth level fl (0.7), the specialization process is then performed. Finally, a new modular rule "IF 
Temperature is Hot and Outlook is Sunny, THEN Swimming" is obtained. All instances e-covered by this rule 
are then removed from Table 4 to form the new training set shown in Table 5. In Table 5, there are no 
instances e-belonging to the classification "Swimming". The learning process for classification "Swimming" is 
thus finished. The same procedure is then performed to induce rules for the other classes. 

The six rules induced by the proposed fuzzy learning algorithm are listed in Fig. 1. 

6. Time complexity analysis 

The time complexity of the proposed learning algorithm is analyzed in this section using the following 
notation. 

1. s = the number of selectors; 
2. c = the number of classes; 
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Table 6 
Time complexity of the proposed learning algorithm 

Step no. Time complexity 

Step 1 O(1) 
Step 2 O(s)*O(n) 
Step 3 O(s) 
Step 4 (O(1) + O(n)) 
Step 5 t*(O(n) + (STEP 2-4)) 
Step 6 O(1) 
Step 7 O(n) 
Step 8 r* (STEP 1-7) 

3. n = the size of training set; 
4. t = the maximum number of selectors in an induced rule; 
5. r = the maximum number of induced rules for one classification. 
The processing time of the proposed algorithm includes evaluating the information gain and the 

specialization process. Let T(n) denote the time complexity of the proposed fuzzy learning algorithm in 
dealing with n training instances. The time complexity of each step is listed in Table 6. 

We have 

T(n) = c'1"O(1) + O(s)*O(n) + O(s) + (O(1) + O(n)) + t*(O(n) + (Step 2-Step 4)) 

+ O(1) + O(n) + r*(STEP 1-7)] 

= c'1"O(1) + O(s)*O(n) + O(s) + (O(1) + O(n)) + t*(O(n) + O(1) + O(s*n) + O(s) + O(n)) 

+ O(1) + O(n) + r* (STEP 1-7)] 

= c'1"O(1) + O(s*n) + O(s) + O(n) + O(t) + O(t*s*n) + O(t*s) + O(t*n) + r* (STEP 1-7)] 

= c*[O(1) + O(s*n) + O(s) + O(n) + O(t) + O(t*s*n) + O(t*s) + O(t*n) + O(r) + O(r*s*n) 

+ O(r*s) + O(r*n) + O(r*t) + O(r*t*s*n) + O(r*t*s) + O(r*t*n)] 

= O(c*r*t*s*n). 

7. Experiments 

To demonstrate the effectiveness of the proposed fuzzy inductive learning algorithm, we applied it to two 
application domains. One decides what sport to play according to the Sunday's weather, using the instances 
described in Table 1 127]. The other one classifies Fisher's Iris data, which contain 150 training instances 
1"11]. The fuzzy learning algorithm was implemented in C language on a SUN SPARC/20 workstation and 
run 100 times. The accuracy of the proposed method was compared with those of other learning algorithms 
on the same application domains to demonstrate performance. The experiments are described below. 

7.1. The sport domain 

Due to its simplicity, the sport classification problem is easily used to test and interpret the performance of 
the proposed approach. In this experiment, two induction methods were run on this problem: our proposed 
approach, and the Yuan and Shaw approach [27]. The Yuan and Shaw approach constructs a decision tree 
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b a s e d  o n  fuzzy  e n t r o p y .  T h e  dec i s ion  t ree  g e n e r a t e d  by  the  Y u a n  a n d  S h a w  a p p r o a c h  for  this  p r o b l e m  

d o m a i n  is s h o w n  in Fig .  2 [27-1. 

T h e  c o r r e s p o n d i n g  rules  were:  

Ru le  a: I F  Temperature is Mild, Wind is Not-windy, T H E N  Volleyball (B = 0.78). 

R u l e  b: I F  Temperature is Hot, Outlook is Cloudy, T H E N  Swimmin# (B = 0.72). 

R u l e  c: I F  Temperature is Hot, Outlook is Sunny, T H E N  Swimming (B = 0.85). 

R u l e  d: I F  Temperature is Hot, Outlook is Rain, T H E N  Weight-lifting (B = 0.73). 

R u l e  e: I F  Temperature is Cool, T H E N  Weight-lifting (B = 0.88). 

R u l e  f :  I F  Temperature is Mild, Wind is Windy, T H E N  Weight-lifting (B = 0.81). 

W i t h  the  d e r i v e d  six c lass i f ica t ion  rules,  the  c lass i f ica t ion  a c c u r a c y  for  the  t r a in ing  d a t a  is s h o w n  in 

T a b l e  7. T h e  c lass i f ica t ion  for  a g iven  ob j ec t  is o b t a i n e d  us ing  the  f o l l o w i n g  steps: 

1. F o r  e a c h  rule,  c a l cu l a t e  t he  m e m b e r s h i p  of  t he  c o n d i t i o n  for  the  ob j ec t  ba sed  o n  its a t t r ibu tes .  T h e  

c o n c l u s i o n  m e m b e r s h i p  (the c lass i f ica t ion  to  a class) is set e q u a l  to  the  c o n d i t i o n  m e m b e r s h i p .  

~ 8  rifling) 
w? . - , ,  No,_.wi   

 #t_mng) 

o.85 o.72 0.73 o.8, o.78 

Fig. 2. Decision tree derived by the Yuan and Shaw approach on the sport classification domain. 

Table 7 
Accuracy of the Yuan and Shaw approach on the sport classification domain 

Case Classification known in training data Classification derived from learned rules 

Volleyball Swimming W-lifting Volleyball Swimming W-lifting Results 

1 0.0 0.8 0.2 0.0 0.9 0.0 r 
2 1.0 0.7 0.0 0.4 0.6 0.0 w 
3 0.3 0.6 0.1 0.2 0.7 0.3 r 
4 0.9 0.1 0.0 0.7 0.3 0.3 r 
5 0.0 0.0 1.0 0.3 0.1 0.9 r 
6 0.2 0.0 0.8 0.3 0.0 0.7 r 
7 0.0 0.0 1.0 0.0 0.0 1.0 r 
8 0.7 0.0 0.3 0.2 0.0 0.8 w 
9 0.2 0.8 0.0 0.0 1.0 0.0 r 

10 0.0 0.3 0.7 0.1 0.0 0.7 r 
11 0.4 0.7 0.0 0.0 0.7 0.0 r 
12 0.7 0.2 0.1 0.7 0.0 0.3 r 
13 0.0 0.0 1.0 0.0 0.2 0.8 r 
14 0.0 0.0 1.0 0.3 0.0 0.7 r 
15 0.0 0.0 1.0 0.0 0.0 1.0 r 
16 0.8 0.6 0.0 0.5 0.5 0.0 a 

Note: w = wrong classification; a = ambiguity; r = right classification. 
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2. When two or more rules classify an object into the same class with different degrees of membership, take 
the maximum as the class membership value. 

3. An object may be classified into several classes with different degrees of membership. When classifica- 
tion to only one class is required, select the class with the highest membership. 

Among the 16 training cases, 13 cases (except cases 2, 8, 16) were correctly classified. The classification 
accuracy was 81%. 

Next, the sport classification problem was run using our proposed fuzzy inductive learning algorithm with 
the two parameters ~ and fl being respectively, 0.5 and 0.7. The set of fuzzy rules induced by our proposed 
approach is shown in Fig. 1. 

According to the derived six classification rules, the classification accuracy for the training data is shown in 
Table 8. The classification accuracy was 81%. 

Although the accuracy and the number of rules derived using our approach are the same as those derived 
using the Yuan and Shaw fuzzy decision tree approach [27], the rules derived using our approach are, 
however, simpler than Yuan and Shaw's. Some irrelevant tests of the rules derived using our approach have 
been removed. For example, the selector "Temperature is Hot" in Rule d does not appear in Rule 4, and the 
selector "Temperature is Mild" in Rule fdoes  not appear in Rule 6. 

7.2. The IRIS domain 

The Iris problem is stated as follows. There are three species of Iris flowers to be distinguished: Setosa, 
Versieolor, and Viroiniea. There are 50 training instances for each class. Each training instance is described 
by four attributes: Sepal Length (SL), Sepal Width (SW), Petal Length (PL), and Petal Width (PW). All four 
of the attributes are numerical domains. The membership functions of each attribute used in this experiment 
are defined in Fig. 3. 

Table 8 
Accuracy of our approach on the sport classification domain 

Case Classification known in training data Classification derived from learned rules 

Volleyball Swimming W-lifting Volleyball Swimming W-lifting Results 

1 0.0 0.8 0.2 0.0 0.9 0.4 r 
2 1.0 0.7 0.0 0.4 0.6 0.0 w 
3 0.3 0.6 0.1 0.2 0.7 0.3 r 
4 0.9 0.1 0.0 0.7 0.3 0.3 r 
5 0.0 0.0 1.0 0.3 0.1 0.9 r 
6 0.2 0.0 0.8 0.3 0.0 0.7 r 
7 0.0 0.0 1.0 0.0 0.3 1.0 r 
8 0.7 0.0 0.3 0.2 0.0 0.8 w 
9 0.2 0.8 0.0 0.0 1.0 0.7 r 

10 0.0 0.3 0.7 0.1 0.0 0.9 r 
11 0.4 0.7 0.0 0.0 0.7 0.2 r 
12 0.7 0.2 0.1 0.7 0.0 0.3 r 
13 0.0 0.0 1.0 0.0 0.2 1.0 r 
14 0.0 0.0 1.0 0.3 0.0 0.7 r 
15 0.0 0.0 1.0 0.0 0.0 1.0 r 
16 0.8 0.6 0.0 0.5 0.5 0.0 a 

Note: w = wrong classification; a = ambiguity; r = right classification. 
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u(SL) 

u(PL) 

u~dW) 

Short Medium Long Narrow Medium Wide 

4.3 5 .02  5 .74 6 .46 7.18 7'.9 2.0 2 .48 2.96 3.44 3.92 4'.4 

(a) (b) 
u~W) 

Short Medium Long Narrow Medium Wide 

1.0 2 .18  3.36 4.54 5.72 6'.9 0.1 0 .58  1.06 1.54 2.02 2.5 

(c) (d) 
Fig. 3. The membership functions of the attributes for the Iris flower classification problem. 

PW 

Sw 

Table 9 
Accuracy of six learning algorithms on the Iris Flower Problem 

Class 
Algorithm Setosa Viginica Versicolor Average 

FIL 100 98 94 97.33 
GVS 100 94 94 96.00 
IVSM 100 93.33 94.00 95.78 
NT growth 100 93.50 91.13 94.87 
Dasarathy 100 98 86 94.67 
C4 100 91.07 90.61 93.89 

Since the training set includes only 150 instances, a method called N-fold cross validation I-4] was adopted 
for this small set of examples. All instances were randomly divided into N subsets of as nearly equal size as 
possible. For  each i, i = 1 . . . . .  N, the ith subset was used as a test set, and the other subsets were combined 
into a training set. In the experiments, the data were partitioned into 10 subsets, each with 15 instances 
composed of five positive training instances and 10 negative training instances. The fuzzy learning algorithm 
was then run on the training instances to derive promising rules. Finally, the rules derived were then tested on 
the remaining test data. Classification rates were then averaged across all possible groups. The set of rules 
derived using our approach was: 

Rule 1: IF PL is Short, T H E N  Iris Setosa (B = 0.99). 
Rule 2: IF PL is Medium, T H E N  Iris Versicolor (B = 0.89). 
Rule 3: IF PL is Lon9, T H E N  Iris Virginica (B = 0.97). 
Rule 4: IF PW is Wide, T H E N  Iris Virginica (B = 0.93). 

The average classification accuracy was 100% for Setosa, 98% for Versicolor, and 94% for Virginia. The 
accuracies of some other learning algorithms on the Iris Flower Classification Problem are also shown in 
Table 9 for comparison. The methods studied were Hirsh's Incremental Version Space Merging [13], Aha 
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and Kibler's noise-tolerant NT-growth [1], Dasarathy's pattern-recognition approach [9], Quinlan's C4 
[21], and Hong and Tseng's generalized version space learning algorithm (GVS) [14]. It can easily be seen 
that the accuracy of our method is the highest among all the listed learning methods. 

8. Conclusion 

In this paper, we have proposed a fuzzy inductive learning algorithm based on fuzzy information gain to 
generate fuzzy if-then rules. This approach can solve problems conventional inductive learning methods 
have with fuzzy set, and find promising inference rules. Also, the proposed approach eliminates irrelevant 
tests in the rules. Experimental results show that our method yields high accuracy, and the induced rules are 
concise. The proposed method is thus a flexible and efficient fuzzy inductive learning method for modular 
rules. 
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