
Journal of Visual Languages and Computing (1999) 10, 147—164
Article No. jvlc.1998.0107, available online at http://www.idealibrary.com on
2D C-Tree Spatial Representation for Iconic Image

FANG-JUNG HSU,*s SUH-YIN LEEs AND BAO-SHUH LINt

sInstitute of Computer Science and Information Engineering , National Chiao Tung University, 1001 Ta Hsueh
Road, HsinChu, Taiwan 30050, People’s Republic of China, e-mail: fjhsu@info4.csie.nctu.edu.tw

tComputer & Communication Research Laboratories, Industrial Technology Research Institute, HsinChu,
Taiwan

Accepted 1 October 1998

The 2D string approaches provide a natural way of constructing iconic indexing for
images. The 2D C-string representation with an efficient cutting mechanism is more
characteristic of spatial knowledge and efficient in the representation of iconic images.
However, the computation of object ranks in a 2D C-string might make the inference
of spatial reasoning somewhat complicated. This shortcoming is overcome by the 2D
C-tree representation. The 2D C-tree not only keeps the comprehensive spatial
knowledge in the original 2D C-string, but also the ordered labeled tree is more suitable
for spatial reasoning and image retrieval. The spatial knowledge can be derived directly
from the inference rules embedded in the characteristic structure of the 2D C-tree
representation.
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Notation

Xi the i th subpart of symbolic object X
Ab the begin-bound of object A
Ae the end-bound of object A
R the root of a 2D C-tree
si the ith immediate descendant of node S
e empty-node
MC, DN a set-node containing objects C and D
I a rooted tree
a, b the Dewey decimal notation (D-notation) of node
a/I a subtree rooted at a in I
DI D the size of tree I
SI (a) the label of a in I
DI (a) the depth of a in I
LI (a) the level of a subtree rooted at a in I
PI (a) the set of predecessors of a in I
Pi

I (a) the i th predecessor of a in I
*Corresponding author.
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CI (a) the number of immediate descendants of a in I
pI (a) the set of legitimate descendants of a in I
pi
I (a) the i th legitimate descendant of a in I

qI (a) the set of lateral descendants of a in I
q i

I (a) the i th lateral descendant of a in I
fI (a) the postfix ordering of a in I
hI (a) the leading descendant of subtree a/I

1. Introduction

IN IMAGE INFORMATION SYSTEMS, one of the most important methods for discriminating
the images is the perception of objects and the spatial relationships that exist among
them in the desired images. Therefore, how images are stored and the capability of
assembling queries on objects and their spatial relationships in a database are important
design issues of image database systems. The data structure, called 2D string [1], to
represent the spatial knowledge in symbolic pictures was introduced by Chang et al. This
approach allows a natural way of constructing iconic indexes for images. In order to
describe more accurately the spatial relations for images of arbitrary complexity, many
extended representations were proposed. 2D G-strings [2, 3] extended the idea of
symbolic projection [4] by introducing the cutting mechanism to describe images with
overlapping objects. The cuttings are performed at all extreme points of symbolic
objects in the image viewing from x- and y-projection, respectively. A more efficient
cutting mechanism was introduced in the 2D C-string representation [5]. Basically, the
cutting of 2D C-string is performed only at the point of partial overlapping. It preserves
all the spatial information of an image by the least possible number of cuttings and
the number of subparts generated by this sparse cutting mechanism are reduced
significantly.

However, multiple subparts of the same symbolic object within the string might make
the inference of spatial reasoning somewhat complicated. For solving the limitations
of subpart management in 2D C-strings, a variation of symbolic projections called
2D B-string [6] was suggested using the interval projection method in which no cutting
is required. Petraglia et al. [7] defined a mapping between images and indexes that
satisfies the property of normalization for more freedom in the filing of images. The
indexed 2D C-strings numbers the derived subparts and produces a virtual image with
respect to reverse invariance. Petraglia et al. also introduced 2R string [7], using a polar
axis system that substitutes the Cartesian one, to achieve rotation invariance. Recently,
Jungert and Chang proposed the p-tree [8], for logical description of images, which is
a symbolic hierarchical representation of a 2D or 3D space such that spatial reasoning or
iconic indexing can be performed.

The various 2D string variants have their respective improvement or advantage in the
representation or handling of spatial knowledge over 2D strings. However, solving
the problem of image query or similarity retrieval of images based on 2D string
subsequence matching is not suitable unless a ranking mechanism is employed. The
analogous matching mechanism, as developed in 2D C-string also using a ranking
scheme, can be employed for similarity retrieval for 2D string variants. The essence of
the ranking mechanism is based on an implicitly implied tree structure. To solve the
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problem from the root, therefore, in this paper we propose a new spatial representation
called 2D C-tree for iconic images. The spatial relationships among symbolic objects are
retained and the spatial knowledge is implicitly embedded in the characteristic structure
of an ordered labeled tree. The spatial knowledge is derivable from a 2D C-tree simply
by the common operations of tree structure. A specific tree matching algorithm can be
developed to solve the problem of image retrieval and subpicture query. In the rest of
the paper, the 2D C-string approach is briefly recalled in the next section. Then we
present the characteristic tree structure and the construction algorithm in Section 3. The
spatial reasoning of 2D C-tree is also analyzed in Section 4. In Section 5, we make a brief
description and illustration of the use of 2D C-tree for image query and retrieval. Finally,
conclusions are given in the last section.

2. Spatial indexing by 2D C-Strings

The original 2D string [1] is point-based for representing symbolic pictures. The basic
idea is to project the objects of a picture along the x- and y-coordinates to form two
strings representing the relative positions of objects in the x- and y-axis, respectively [4].
Three spatial relation operators ‘(’, ‘"’, and ‘ : ’ are employed in 2D strings. The
operator ‘(’ denotes the ‘left-right’ or ‘below-above’ spatial relation. The operator ‘"’
denotes the ‘at the same spatial location as’ relation. The operator ‘ : ’ denotes the ‘in the
same set as’ relation. A symbolic picture and its corresponding 2D string representation
are shown in Figure 1.

However, the operators of 2D strings are not sufficient to give a complete description
of spatial knowledge for images of arbitrary complexity. Chang et al. extended the idea of
symbolic projection by introducing the cutting mechanism and proposed the generalized
2D string (2D G-string) [3] for images with overlapping objects. The cuttings are
performed at all the extreme points of symbolic objects in the picture, but they are not
economic for complex images in terms of storage space and navigation complexity.
A more efficient cutting mechanism with a characteristic set of spatial operators as
illustrated in Table 1 was introduced in the 2D C-string representation [5]. The notations
Ab and Ae (Bb and Be) denote the begin- and end-bound of object A (B ), respectively.
Figure 1. A symbolic picture and its corresponding 2D string representation



Table 1. The definition of spatial operators

Notation Condition Meaning

A(B A
%
(B

"
A disjoins B

A DB A
%
"B

"
A is edge to edge with B

A"B A
"
"B

"
and A

%
"B

%
A has the same projection as B

A [ B A
"
"B

"
and A

%
'B

%
A contains B and they have the same begin-bound

A ] B A
"
(B

"
and A

%
"B

%
A contains B and they have the same end-bound

A%B A
"
(B

"
and A

%
'B

%
A contains B and they do not have the same bound

A/B A
"
(B

"
(A

%
(B

%
A is partly overlapping with B
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Basically, the cutting of 2D C-string is performed only at the point of partial
overlapping. The spatial operators are classified into two categories: global operators
and local operators. The global operators ‘(’ and ‘ D ’ handle the cases of
non-overlapping. The local operators ‘ [ ’, ‘% ’, ‘ ] ’, ‘"’ and ‘/ ’ handle the cases of
overlapping. Since transitivity does not hold in the inference of spatial reasoning when
the derivation involves the partly overlapping operator ‘/ ’, there might incur ambiguity.
The ‘/’ operator can be expressed in terms of other operators and is dropped from the
set of spatial operators for unique representation.

As for the case of two objects that are partly overlapping, a cutting will be performed
at the end-bound point of the preceding object.

Definition 1. For two objects A and B, the object A is called the preceding object of
object B when Ab(Bb (the begin-bound of object A is smaller than that of object B ).
On the contrary, the object B is called the following object of object A.

Definition 2. For the case of two objects that are partly overlapping, the preceding object
is called the dominating object of the following object.

The cutting mechanism keeps the preceding object intact and partitions the following
object. The following object is forced to split into two subparts. The first subpart is
terminated at the end-bound of the dominating object, and the remaining subpart is
reborn at the same location. For example, B/C can be transformed to B ]C1DC2 , where
C1 denotes the first subpart of object C and C2 the second subpart. The cutting
mechanism is also suitable for images with many objects. Consider the example image
with three objects B, C, and D, as shown in Figure 2. Only one cutting is performed
at the end-bound of the dominating object B, and then the remaining subparts of C
and D are now completely overlapping, not partly overlapping. The example image in
Figure 2 is represented as B ]C1]D1DD2[C2 . Furthermore, the cutting, which is performed
at the end-bound of a dominating object, does not partition the preceding objects of this
dominating object. A simple example is shown in Figure 3. Object B is the dominating
object of object C, and object A is the preceding object of object B. Object C is segmented
by object B naturally, but object A is not. Thus the example image is represented as
A%(B ] C1 D C2).

In the example image f in Figure 4, the object A is partly overlapping with the objects
C and D, and the cutting is performed at the end-bound point of object A along the



Figure 2. Object B is a dominating object

Figure 3. B is a dominating object of C, but A is not segmented by B
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x-direction. The objects C and D are each partitioned into two subparts. The 2D
C-string representation of the image f along the x-axis is

2D C-string( f ): A ] C1"D
1
% B D D2 [(C2(E ).

All the spatial information of an image is preserved by the least possible number of
cuttings and the number of subparts generated by this sparse cutting mechanism is
reduced significantly. Considering the spatial knowledge of 2D C-strings, three kinds of
fundamental laws were explored from the algebraic point of view of the 2D C-string [9].
The transitive laws are capable of deriving any binary relationships among three
successive objects in a 2D C-string. The distributive laws are used to handle the case of
local body [5]. The manipulation laws are for the inference of the segmented objects
treating their relationships integrally. It has been proved that all the binary relationships
among objects in a picture can be inferred from a 2D C-string.

The problem of how to infer the spatial relations between two symbolic objects from
a given 2D C-string representation in spatial reasoning is solved by using the rank
mechanism [10]. The rank values of objects stand for the relative sequencing in the 2D
C-string representing the relative spatial positioning of the original symbolic image. The
rank plays an important role in 2D string subsequence matching [5]. The spatial
knowledge is embedded in the ranks of the symbolic objects. In fact, the ranks are
representative of the spatial knowledge of the symbolic objects in an image. However,



Figure 4. The image f with the cutting of 2D C-string representation
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the computation of the rank values of objects might make the inference of spatial
reasoning somewhat complicated due to the transformation of the implicitly hidden tree
structure of a 2D C-string. Therefore, we directly explore a tree structure for the 2D
C-string representation.

3. 2D C-Tree

3.1. 2D C-Cutting Algorithm

Suppose that the objects are recognized and enclosed by minimum bounding rectangles
in a given image. Each minimum bounding rectangle has both begin-bound and
end-bound along the x- and y-coordinate axis, respectively. The two orthogonal sets of
cutting corresponding to the cuts along the x- and y-direction are independent of each
other, and the symbolic picture is constructed into respective 2D C-tree [11] along the
x- and y-axis individually. Since the spatial relationships among many objects in the
image are complicated, some objects may be segmented by cutting lines to represent
the spatial relationships in good order. Before detecting the cuttings, the values of all the
begin-bounds and end-bounds of objects need to be sorted. Then the same-value points
are grouped into the same-value sets and will be abbreviated as sets in the following
context. The same-value sets are the principals of the algorithm. For the example image
f in Figure 4, there are five objects in the image. After sorting and grouping the values of
all bound points, there are nine same-value sets as follows.

MAbN, MCb,
DbN, MBbN, MBeN, MAeN, MCeN, MEbN, MEeN, MDeN.

For each set, we must check whether there is any end-bound point in the set. The case
of partly overlapping occurs only in the condition that the end-bound of a dominating
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object exists in the set. From the same end-bound objects in the set, the object which has
the smallest begin-bound is chosen to be the candidate of dominating object. If there is
any following object that does not end yet, the candidate becomes a dominating object. The
dominating object forces all the following objects either to terminate or to split into two
subparts. If the end-bound of a following object is also in the set fortunately, the following
object terminates naturally. If not, the following object is segmented into two subparts.
The detailed cutting algorithm, called 2D C-Cutting, is described as follows.

Algorithm: 2D C-Cutting
Step 1: Sort the values of all the begin-bound and end-bound points of objects.
Step 2: For the sorted points, group the same-value points into same-value sets.
Step 3: Loop from step 4 to step 8 for each set until no more set, then finish.
Step 4: Check whether there is any end-bound in the current set. If all points in the set

are begin-bounds, go back to step 3 for the next set.
Step 5: Find the dominating object selected from the same end-bound objects in the

current set. The dominating object has the smallest begin-bound. (A cutting is
performed at the location of this set, if the case of partly overlapping occurs.)

Step 6: If there is any following object whose begin-bound is in the range of the dominating
object, cut all the following objects and link them. Otherwise, go to step 7.

(1) Cut the following objects. If the end-bound of a following object is also in the
current set, the following object ends naturally and does not need to be cut.
Otherwise, the following object is segmented into two subparts because the
case of partly overlapping objects occurs. The front subpart is to be linked in
the next substep and the back subpart will be collected into the current set at
step 8.

(2) Link the following objects (or subparts). According to the begin-bound values
of the following objects/subparts, the same begin-bound objects/subparts are
linked by ‘"’ to constitute an individual same-begin list (abbreviated as list ).
Then the lists are linked by ‘ ] ’ together from the largest to the smallest. If the
smaller list had linked other objects (or lists) before, two additional actions
need to be done. (a) The operator is changed to ‘ D ’ when the larger list had
been marked the ‘edge’ flag at step 8 previously; otherwise, the operator is
changed to ‘(’. (b) If the operator between the smaller list and its first linked
object/list is ‘ [ ’ or ‘%’, it is changed to ‘"’ or ‘ ] ’ correspondingly.

Step 7: If there is more than one dominating object with same begin- and end-bound in
the current set, link them by ‘"’ into a dominating list. If there is other same
begin-bound object that does not end yet, the dominating objectDlist is linked to
this object by ‘[’. Otherwise, the dominating objectılist is linked to its preceding
object by ‘%’ operator. If the preceding object had linked other objects before,
the operator is changed to ‘ D ’ when the dominating object/list had been marked
the ‘edge’ flag at step 8 previously; otherwise, the operator is changed to ‘(’.

Step 8: Remove the end-bound points from the current set and remove the begin-
bound points of all the following objects from the previous sets within the range
of the dominating object. The remaining subparts of segmented objects in step
6(1) are viewed as new objects with begin-bound being the location of the
current set and merged into this set. Then mark this set with an ‘edge’ flag. If
the set is empty, de-allocate this set.
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Obviously, the 2D C-Cutting algorithm takes O(N log N ) time for sorting and O(N2)
time for parsing the objects in an image. The process of 2D C-Cutting algorithm for f in
Figure 4 is briefly explained and demonstrated in Figure 5. The original input data, all the
begin-bound and end-bound points of objects, are shown in Figure 5(a). After sorting
the values of points at step 1, the sorted points are shown in Figure 5(b) and grouped
into nine same-value sets at step 2 as shown in Figure 5(c). At step 3, loop from step 4 to
step 8 for each set until no more set.
Figure 5. The construction process of 2D C-Cutting Algorithm for image f. (a) The original input data. (b)
The sorted value points. (c) Nine same value sets. (d) Object B has ended. (e) Object A is a dominating

object. (f ) Object C has ended. (g) Object E keeps intact. (h) The final result
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The first three sets are all begin-bound points, so nothing has to be done at step 4.
A processing indicator currently passes over the third set as shown in Figure 5(c). The
fourth set has one point Be which is an end-bound point. Since Be is the only end-bound
point in the current set, B is a dominating object itself (step 5). Because there is no following
object in the range of object B (step 6), B has ended and is linked to its preceding object
(the second set ) by ‘%’ operator (step 7). The third and fourth sets are de-allocated after
removing Bb and Be at step 8. The temporary result is shown in Figure 5(d).

The next set has one point Ae , and Ae is also the only end-bound point in this set.
Because there are two begin-bound points Cb and Db in the range of object A, the case
of partly overlapping objects occurs. Object A becomes the dominating object of objects
C and D (steps 5 and 6). The following object C is segmented into two subparts C1 and C @.
Object D is also segmented into two subparts D1 and D @ (step 6(1)). The same
begin-bound subparts C1 and D1 are linked by ‘"’ to constitute a same-begin list. Then
the list is linked to its preceding object (the first set ) by ‘ ] ’ (step 6(2)). The dominating object
A has ended immediately and produces the first portion of the given image because no
object is preceding object A (step 7). Three begin points Ab, Cb, Db and an end-bound
point Ae are all removed. The remaining subparts of segmented objects C and D, i.e.
C @b and D @b, are collected into the current set, and this set is marked with an ‘edge’ flag
(step 8). The temporary result is shown in Figure 5(e).

The next set has one point Ce . Since there is no following object in the range of the
reborn object C @ (step 5 and step 6), the object C @ has ended and becomes the second
subpart of C, C2. Then C2 is linked to another same begin-bound point D @b that does not
end yet by ‘ [ ’ (step 7). Remove two points C @b and Ce and de-allocate the set containing
Ce at step 8. The temporary result is shown in Figure 5(f ).

The next two sets constitute an intact object E. At step 7, similar to object B, object
E has to be linked to its preceding object D @b. Since the preceding object D @b has contained
another object C2, object E is linked to D @b by ‘(’ operator because no ‘edge’ flag is
marked in the set containing Eb . The temporary result is shown in Figure 5(g).

Finally, the last point D @e . Because there is no following object, the object D @ has ended
naturally and becomes the second subpart of D, D2 . The subtree rooted at D2 forms the
second portion of the given image. It is noted that the ‘edge’ flag is marked on the object
D2 in the phase of Figure 5(e). The final result is shown in Figure 5(h). Now, the
algorithm 2D C-Cutting is accomplished and we can construct a labeled tree, called the
signed 2D C-tree.

3.2. Constructing a 2D C-Tree

We first initialize a root of 2D C-tree, R, which represents the margin or boundary of the
area covered by a given image. Then all the portions produced in the process of
2D C-Cutting are sequentially linked to the root R. The first portion is always linked to
the root by ‘"’ operator. Other portions are linked by ‘ D ’ operator if the ‘edge’ flag is
marked on the portions; otherwise, by ‘(’ operator. The signed 2D C-tree of f is
constructed as shown in Figure 6.

Each node with label represents an object or subpart in the image. The link, called the
signed link, connecting two nodes is signed with the relation operator between the
preceding objectısubpart and the following objectısubpart. For the ordered subtree rooted
at node S with n immediate descendants in the ordering s1, s2,2, sn , S being the parent is



Figure 6. The signed 2D C-tree of image f
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actually the preceding object of all its immediate child nodes. The relation operator
between node S and its first child-node s1 is surely a local operator that indicates the
ensemble relationship between S and the block consisting of all its child-nodes s1,
s2,2, sn . For example, in Figure 6, the ‘ [ ’ operator between D2 and its first child
C2 indicates that D2 is the same-begin-bounded overlapping with the local body
consisting of C2 and E. The relation operators between node S and other child-nodes
si (24i4n) are definitely global operators that indicate the sibling relation between the
child-node si (24i4n) and the prior child-node si!1 of node S. For example, the ‘(’
operator between D2 and E, in Figure 6, indicates the sibling relation between C2 and E.
However, a tree with signed link is somewhat unusual for general applications. And the
specific tree cannot benefit from currently available tree algorithms. Consequently,
a variant 2D C-tree is investigated to comply with the general usage of conventional
trees.

The empty-node defined below is employed in order to remove the relation operator
from the signed link according to the basic definition of the operators.

Definition 3. An empty-node is a pseudo-node which is labeled ‘e’ and can be of various size.

In the following transformation process, the example signed tree for image f in
Figure 6 is taken for illustration and the transformed tree is depicted in Figure 7. The
relation operators of the signed links can be removed by the transformation rules below.

(TR—1) The ‘ ] ’ operator between a node S and its first child-node s1 can be removed
by adding an empty-node before the first child-node s1. For example, the ‘ ] ’
operator between A and C1 is removed by adding e1 .

(TR—2) The ‘%’ operator between a node S and its first child-node s1 can be removed
by adding an empty-node before the first child-node s1 and after the last
child-node sn , respectively. For example, the ‘%’ operator between D1 and
B is removed by adding e2 and e3 .

(TR—3) The ‘ [ ’ operator between a node S and its first child-node s1 can be removed
by adding an empty-node after the last child-node sn . For example, the ‘ [ ’
operator between D2 and C2 is removed by adding e5 .



Figure 7. The transformed 2D C-tree with operators removed
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(TR—4) The ‘"’ operator between a node S and its first child-node s1 can be
removed unconditionally. For example, the ‘"’ operator between the root
R and the object A can be removed. Also, the ‘"’ operator between C1 and
D1 is removed.

(TR—5) The ‘ D ’ operator between a node S and its child-node si (24i4n) can be
removed unconditionally. For example, the ‘ D ’ operator between R and
D2 can be removed.

(TR—6) The ‘(’ operator between a node S and its child-node si (24i4n) can be
removed by inserting an empty-node before this child-node s

i
. For example, the

‘(’ operator between D2 and E is removed by adding e4 .

When the relation operators are stripped off from a signed 2D C-tree after employing
the above transformation rules, each node of the transformed tree has at least two
child-nodes except the node that originally connects to its single child-node by removing
the ‘"’ operator. The ‘"’ operator possesses the commutation law, which is different
from other relation operators of 2D C-tree. The objects which are connected with the
‘"’ operator have the same begin-bound and end-bound. For example, the ‘"’
operator between C1 and D1 indicates that these two objects/subparts have the same
begin-bound and end-bound. For the reasoning of relationship among the nodes of 2D
C-tree, a special set-node is introduced for treating a set of lineage that each node has
single child-node.

Definition 4. A set-node is a multi-label node consisting of objects that have the same
begin-bound and end-bound.

Thus, an additional transformation rule is proposed.

(TR—7) A node S that has single child-node can be merged with its single child-node
to form a set-node and the descendants of the child-node become the
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descendants of the set-node. For the example in Figure 7, C1 is merged with its
single child-node D1 to form a set-node MC1, D1N and the descendants of D1,
e2 , B, and e3 become the descendants of the set-node MC1 , D1N as shown in
Figure 8.

Additionally, many properties of 2D C-trees are pointed out.

Lemma 3.1. Any two nodes of a 2D C-tree are either completely overlapping or non-overlapping.

Proof. Since the cuts are performed at the cases of partly overlapping objects, any
object or segmented subpart is exempt from partly overlapping with the others. h

Lemma 3.2. An empty-node of a 2D C-tree is a leaf node.

Proof. The empty-node is a pseudo node for removing the relation operator
between nodes. Clearly, it is impossible that any substantial node is a child-node of an
empty-node. h

Lemma 3.3. Each internal node of a 2D C-tree has at least two child-nodes.

Proof. Considering the case that the internal node has only one child-node in a signed
2D C-tree, the internal node is definitely completely overlapping its child-node. Either
these two nodes are merged to a set-node by using (TR—4) and (TR—7) for the case that the
internal node is originally connected to its child-node with ‘"’ operator, or some
empty-nodes are added by using (TR—1)—(TR—3) for the cases that the internal node is
originally connected to its child-node with ‘ ] ’, ‘% ’, or ‘ [ ’ operator. The internal node
becomes a set-node in the former case. And the internal node has at least two child-nodes
in the latter case. h

By employing the transformation rules from (TR—1) to (TR—7), a general 2D C-tree is
obtained and is in conformity with the above properties. The sample symbolic image f
in Figure 4 is represented in a general 2D C-tree as shown in Figure 8 with subscript of
empty-nodes being omitted.
Figure 8. The general 2D C-tree of image f
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4. Spatial Reasoning Using 2D C-Tree

The 2D C-tree is an ordered labeled tree in which each node has a label and the
left-to-right order of its children (if it has any) is fixed. Before the discussion of spatial
reasoning on 2D C-tree, the notations on trees used [12] are briefly described and are
listed in the Notation section.

(1) Dewey decimal notation: Let I be a rooted tree. The Dewey decimal notation
(abbreviated D-notation) of the root of the tree is ‘0’. Assume that ‘a’ is
a D-notation of a node in I, and the node has n immediate descendants. Then
a.1, a.2,2, a.n are the D-notations of the n immediate descendants from left to
right, respectively. The D-notation of the 2D C-tree for the image f is shown in
Figure 9.

(2) Subtree: A subtree that is rooted at a in I is denoted by a/I.
(3) Size: The size of I is the number of nodes in I, denoted by DID.
(4) Label: For a3I, SI(a) denotes the label of a.
(5) Depth: For a3I, the depth of a, denoted by DI (a), is the number of nodes on

the path from the root of I to a, excluding a.
(6) Level: For a subtree rooted at a3I, LJ (a) denotes the largest depth among all its

descendants.
(7) Predecessor: For a3I, PI(a) denotes the set of predecessors of a. Also, P iI(a)

denotes the i th predecessor of a, where 0(i4DI(a). a is the root of I if
pI(a)"0.

(8) Cardinal number: For a3I, the cardinal number of a is the number of immediate
descendants of a, denoted by CI(a). a is a leaf node if CI(a)"0.

(9) Legitimate descendants: For a3I, pI(a) denotes the set of legitimate descendants of
a. Also, p i

I (a) denotes the i th legitimate descendant of a, that is, p1I (a) "a.1.
pi

I(a)"pi~1
I ( p1

I(a)), where 14i4LI (a). pI (a)"0 if a is a leaf node.
(10) Lateral descendants: For a3I, qI(a) denotes the set of lateral descendants of a. Also,

qi
I(a) denotes the i th lateral descendant of a, that is, q1

I(a)"a.n, where n"CI(a).
qi

I(a)"qi~1
J (q1

I(a)), where 14i4LI(a). qI(a)"0 if a is a leaf node.
Figure 9. The D-notation of the 2D C-tree for image f
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(11) Postfix ordering: The postfix ordering of nodes in I is a one-to-one mapping
function fI: aP-, where a is a D-notation of a node in I and
-3M1, 2,2,DIDN, that satisfies the following conditions:

(i) fI (a.i)(fI(a), where 14i4CI(a).
(ii) fI (a.i)(fI (a.j), where 14i( j4CI (a).
(iii) fI (a.i)(fI (a.j.k), where 14i(j4CI(a) for all D-notation k in subtree

a.j/I.
The postfix ordering of the 2D C-tree for the image f is shown in Figure 10.

(12) Postfix representation: Let a be a node in tree I for which CI(a)"n. The subtree
a/I can be represented recursively by a/I"a (a.1/I, a.2/I,2, a.n/I), when
n'0, and a/I"a when n"0.

(13) Leading descendant: For a3I, hI(a) denotes the node with smallest postfix
ordering of subtree a/I.

Suppose that X and Y are two objects in a 2D C-tree I. Their nodes in D-notation are
a and b, and the labels of these nodes are SI(a) and SI(b), respectively. Assume that the
postfix ordering of a is after that of b, that is, fI(b)4fI(a). Many inference rules are
obtained according to the definition of relation operators.

(IR—1) X and Y are completely overlapping if and only if b is in the subtree rooted at
a, i.e. b3a/I. Besides, b3a/I if and only if fI(hI(a))4fI(b)4fI(a).
The four succinct rules below are for the four cases of completely over-
lapping.

(IR—2) X"Y if and only if a"b. For example, C1 and D1 are contained in the
multi-label set-node MC1, D1N in Figure 8. C1"D1 since they have same
D-notations.

(IR—3) X [Y if and only if b3pI(a). For example, D2 [C2 in Figure 8.
(IR—4) X ] Y if and only if b3qI (a). For example, A ] C1 in Figure 8.
(IR—5) X%Y if and only if b3a/I, but not in the above three cases. For example,

A %B in Figure 8.
Figure 10. The postfix ordering of the 2D C-tree for image f
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If b is not in the subtree rooted at a, i.e. bNa/I, Y is surely non-overlapping with X.
There are two cases of relation between objects Y and X. One is that Y is edge to edge
with X, and the other is that Y disjoins X. The first case occurs when b and a are
individually contained in two ‘adjacent ’ subtrees.

Definition 5. Two subtrees are adjacent if the root of one subtree is immediately
followed by the leading descendant of the other subtree according to the postfix
ordering. These two subtrees are called adjacent subtrees.

Moreover, the case that b is a lateral descendant of the preceding adjacent subtree and
a is a legitimate descendant of the following adjacent subtree, implies that Y is edge to edge
with X. Otherwise, Y disjoins X.

(IR—6) Y D X if and only if bNa/I and b3qI( f ~1
J ( fJ(hI(a))!1)), where f ~1 is the

reverse function of f. For example, A D D2 in Figure 8.
(IR—7) Y(X if and only if bNa/I and not the case of Y D X. For example, A(E

in Figure 8.

The above rules can be examined by the tree traversal algorithm taking O(N ) time
complexity for N nodes and they are useful for inferring the spatial relationships among
objects in a 2D C-tree.

5. Image Retrieval by 2D C-trees Matching

For many applications, we often deal with the problem of ‘finding images with similar
spatial relations as a query example’ in image information systems. The target of image
retrieval is to retrieve the images that are most similar to the query image. The similarity
based upon the minimum-distance criterion has been proposed using the techniques of
2D string matching defined in terms of the longest common subsequence [1]. For
example, the symbolic picture f1 in Figure 11(a) may be represented as the 2D string
Figure 11. A symbolic image f1 and a query q1
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(A"DE(C, A(B"C(DE ). We may want to retrieve images satisfying a
certain query q1 as in Figure 11(b). Also, q1 can be translated into the 2D string
(A"E(C, A(E ). This query string is the sub-string of the 2D string representa-
tion of the image f1. The problem of image retrieval then becomes the problem of 2D
string subsequence matching.

Although the 2D C-string is more efficient in representation and manipulation of
images, it is not suitable for solving the image query based on 2D string subsequence
matching. For example, we use a query q2 in order to match the picture f2 as in Figure 12.
The 2D C-string representation of the picture f2 and q2 are (A]D[E D B D C,
A D B%C DD%E) and (A%E(C, A(C(E ), respectively. The query q2 is also the
sub-picture of the picture f2, but the query string of q2 is quite different in the format
from the example string of f2 due to the spatial operators. The query string is not the
sub-string of the example string any longer. Unfortunately these operators are needed to
handle the global and local relations among symbolic objects in a 2D C-string and
cannot be omitted.

A specific tree matching algorithm is required to solve the problem of image retrieval
and subpicture query [13]. We use the example picture f2 in Figure 12(a) and query q2 in
Figure 12(b) to demonstrate the subpicture query. The 2D C-trees of f2 and q2 along the
x- and y-coordinate axis are in Figures 13 and 14 respectively. Obviously, the 2D C-trees
of q2 are the subtrees of the 2D C-trees of f2. That is, q2 is a subpicture of f2.
Figure 13. The 2D C-trees of query q2. (a) q2X on x-coordinate axis. (b) q2Y on y-coordinate axis

Figure 12. A symbolic image f2 and a query q2



Figure 14. The 2D C-trees of image f2. (a) f2X on x-coordinate axis. (b) f2Y on y-coordinate axis
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We apply this new spatial representation and implement an interactive video informa-
tion system [14]. The system allows users to draw a sequence of query frames by
assembling object icons and computes the tree distances between the query frames and
sample image frames. While all the sequences of the database are compared with the
query sequence, the sequence with the minimum distance is the most similar sequence
for the query.

6. Conclusions

The approach of 2D strings opens a novel area for iconic image indexing and retrieval.
Although the 2D C-string is more efficient in representation and manipulation of
images, the computation of object ranks in a 2D C-string might make the inference of
spatial reasoning somewhat complicated. Moreover, the 2D C-string representation is
not suitable for image query based on 2D string subsequence matching. In this paper, we
propose a characteristic 2D C-tree representation with the sparse cutting mechanism,
2D C-Cutting. The new representation not only keeps the whole spatial relationships
among objects in an original image, but also the spatial knowledge embedded in the
characteristic structure of the 2D C-tree can be derived using the inference rules. Owing
to the embedded knowledge in the tree structure, the tree matching algorithm for 2D
C-tree representation is worthy of exploring to solve the problem of image retrieval in
image database systems. We also apply this new spatial representation and implement an
interactive video information system for similarity retrieval of video sequence in our
further research.
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