
computers &
mathematics
vmh smk.dkme

PERGAMON Computers and Mathematics with Applications 37 (1999) 73--88

Space-Decomposition Minimization
Method for Large-Scale Minimization Problems

CHIN-SUNG LIU
Research Assistant of Applied Optimum Design Laboratory

Department of Mechanical Engineering, National Chiao Tung University
Hsinchu 30050, Taiwan, R.O.C.

CHING-HUNG TSENG
Professor of Applied Optimum Design Laboratory

Department of Mechanical Engineering, National Chiao Tung University
Hsinchu 30050, Taiwan, R.O.C.

(Received August 1997; accepted September 1998)

Abstract--This paper introduces a set of new algorithms, called the Space-Decomposition Min-
imization (SDM) algorithms, that decomposes the minimization problem into subproblems. If the
decomposed-space subproblems are not coupled to each other, they can be solved independently with
any convergent algorithm; otherwise, iterative algorithms presented in this paper can be used. Fur-
thermore, if the design space is further decomposed into one-dimensional decomposed spaces, the
solution can be found directly using one-dimensional search methods. A hybrid algorithm that yields
the benefits of the SDM algorithm and the conjugate gradient method is also given.

An example that demonstrates application of SDM algorithm to the learning of a single-layer
perceptron neural network is presented, and five large-scale numerical problems are used to test
the SDM algorithms. The results obtained are compared with results from the conjugate gradient
method. (~) 1999 Elsevier Science Ltd. All rights reserved.

Keywords--Unconetralned minimization, Decomposition method, Direct-search method, Large-
scale problem.

1. I N T R O D U C T I O N

This paper introduces a set of space-decomposition minimization (SDM) algorithms for solving
the unconstrained minimization problem

min f(x), (1)
zER ~

where f : ~n ~ ~ is a lower bounded and continuously dilferentiable function.
The space-decomposition minimization (SDM) algorithms are based on decomposing the design

space S 6 ~'* into individual subspaces. The minimization problem can then be decomposed
into q subproblems and the final minimization solution is the combination of the q decomposed-
space minimization solutions.

The research reported in this paper was supported under a project sponsored by the National Science Council
Grant, 'Palwan, R.O.C., NSC 85-2732-F_,-009 -010.

0898-1221/99/$ - see front matter (~) 1999 Elsevier Science Ltd. All rights reserved Typeset by .AA4S-TEX

PII: S0898-1221(99)00088-7

74 C.-S. LIu AND C.-H. TSZNG

The space-decomposition minimization (SDM) algorithms can be considered as extensions of
the Parallel Variable Distribution (PVD) algorithm and associated decomposition methods. The
PVD algorithm, proposed by Ferris and Mangasarian [1], and extended by Solodov [2], is a
method that decomposes the design variable x into q blocks xl,..., xq and distributes them

among q processors, where xt E ~ nt with ~"~=I nt = n. Mangasarian [3] also introduced a
method that assigns a portion of the gradient Vf(x) to q processors. Similarly, the n-dimension
real-space Nn is also decomposed into q hi-dimension subspaces.

Decomposition methods for decomposing the minimization problem into subproblems have been
proposed by several researchers. Kibardin [4] decomposed minimization problem (1) into f(x) =
~~=i fi(x), where x E Nn and fi(x) is a convex function. Mouallif, Nguyen and Strodiot [5] also

decomposed minimization problem (1) into, where f(x) -- fo(X) + ~-~=1 fi(x), where x E Nn,
f0 is a differentiable, strongly convex function, and fi(x) is a convex function. In these studies,
the computing efficiency was shown to increase when the original minimization problem could be
decomposed into subproblems.

In this paper, the PVD algorithm and the decomposition methods are combined into the
space-decomposition minimization (SDM) algorithms. It is shown that any convergent algorithm
that satisfies the descent condition can be applied to solve the decomposed-space subproblems.
In addition, if the design space is further decomposed into one-dimensional decomposed spaces,
one-dimensional search methods can be used directly to solve the subproblems. That is, the SDM
algorithm can be considered a direct search method.

Direct-search methods search for minimum solutions directly without requiring analytic gra-
dient information. The multiple mutually conjugate search directions are commonly used in the
direct search methods [6-8]. Line search along these multiple search directions can be evalu-
ated simultaneously on different computers using only evaluation of minimization function. In
this paper, the special pseudo-conjugate directions [9] that parallel the coordinate axes are used
for the direct-search SDM algorithm, and one-dimensional search methods, including exact and
nonexact methods, can be used directly to solve the one-dimensional subproblems.

This paper is organized as follows. The space-decomposition minimization (SDM) algorithm is
presented in Section 2. The direct-search space-decomposition minimization (direct-search SDM)
algorithm is presented in Section 3. In Section 4, a hybrid SDM algorithm that combines the
algorithms presented in Sections 2 and 3 is introduced. An example of application to the neural
networks is given in Section 5, and numerical experiment results are given in Section 6. The
conclusions along with further research directions are given in Section 7, and all test problems
are listed in the Appendix.

The notation and terminology used in this paper are described below [3].

S E Nn denotes n-dimensional Euclidean design space, with ordinary inner product and associ-
ated two-norm [[• [[. Italic characters denoting variables and vectors. For simplicity of notation,
all vectors are column vectors and changes in the ordering of design variables are allowed through-
out this paper. Thus, the design variable vector x E S can be decomposed into subvectors. That
is, x = [xs l , . . . , xs~] T, where xs~ are subvector or subcomponent of x.

2. S P A C E - D E C O M P O S I T I O N

M I N I M I Z A T I O N (S D M) A L G O R I T H M

The space-decomposition minimization algorithm is based on the nonoverlapping decomposed-
space set and the decomposed-space minimization function defined below.

DEFINITION 2.1. NONOVERLAPPING DECOMPOSED-SPACE SET. For the design space S spanned
by {x [x E ~"}, if the design variable x is decomposed into x = [xsl , . . . ,xs,] T, then the
decomposed space Si spanned by {xsi [xs~ 6 ~" ' , where ~"~=lq n~ = n} forms a nonoverlapping

Space-Decomposition Minimization Method 75

decomposed-space set {$1, Sq}. That is,

q
US,=S and S~nSj=O, ifi~j.

Moreover, the complement space of S~ is defined as

Si spanned by {x&] where _- x) . (2)

That is, Si U Si = S and :~i n S~ = 0, V i e (1, q).
According to definitions of the nonoverlapping decomposed-space set, the minimization func-

tion (1) can be decomposed as

f(x) = f$, (xS,,x~,) -t-f~, (x~,). (3)

where fs,(xs,, x&) is the decomposed-space minimization function and fg, (xg,) is the comple-
ment decomposed-space minimization function.

COROLLARY 2.2. According to (3), the complement decomposed-space minimization function
f&(xg,) is only a function of x&. That is, f ix& /s a constant vector, f&(x&) can be treated
as a constant value that can be removed during the process of minimizing decomposed-space
subproblems.

The following example uses the Powell test function listed in the Appendix to describe Defini-
tion 2.1 and Corollary 2.2.

EXAMPLE 2.3. The Powell minimization problem with four design variables is [9-11].

min f(x) = (Xl -{- 10x2) 2 -[- 5 (x3 - x4) 2 -{- (x2 - 2x3) 4 -{- 10(Xl - x4) 4.
zER 4

Definition 2.1 and Corollary 2.2 suggest the nonoverlapping decomposed spaces Si, i = 1, . . . , 4,
are spanned by {Xl), {x2}, {x3), {x4}, and the complementary spaces •, i = 1, . . . ,4 , are
spanned by {x:,xa,x4), {xl,xa,x4}, (xl,x2,x4}, {xl,x2,x3), respectively. Thus, the decom-
posed-space minimization function f& can be expressed by eliminating the component of f(x)
defined only in S~. That is,

IS1 (XSI,X~I) -~ (Xl -}- 10X2) 2 "{- 10(xl - x4) 4,
= + 2 + - 4,

f ss (XSa, X~s) ---- 5(X3 -- X4) 2 -4- (X 2 -- 2X3) 4,

IS4 (Xs, , X,~4) ---~ 5(X3 -- X4) 2 + 10(Xl -- X4) 4.

These subproblems can then be solved using the methods presented in this paper. |

The definition of the nonoverlapping decomposed-space set leads to the following theorem.

THEOREM 2.4. UNCOUPLED SPACE-DECOMPOSITION THEOREM. //'minimization problem (1)
can be decomposed into

q

f(x) = ~ f& (XS,), (4)
iffil

where {81,..., Sq } is the nonoverlapping decomposed-space set, then the minimization prob-
lem (1) can be decomposed into q uncoupled subproblems that can be solved independently
using any convergent a/gorithm. That is,

x~, e arg minf&(x&), Vi • (1,q), (5)

76 C.-S. LIu AND C.-H. TS~.NG

and the final minimization or stationary solution can be obtained from

x" [* . . x *] T
= = s , , . , s , (6)

PROOF. From (4), it gets

0 / (=) = Ofs,(=s,) v x j E s~. (7)
Oxj Oxj '

Thus, from Definition 2.1 and (7), it can be concluded that

Of(x) 0Is, (xs,)
0=-"-7 = o=~ ' v=~ e s. (8)

Since x~, is the minimization solution for decomposed space Si, it follows that

x* 0fs, (s ,) = 0, Vxj 6 S,. (9)
Oxj

Thus, from (8) and (9), it can be concluded that

Of (x*)
Ox----7- " = O, V xj E S.

That is, [[Vf(x*)][= 0, and this is the minimization or stationary condition for minimization
problem (1). |

Theorem 2.4 is efficient for some simple problems, and can save lots of processor time and
memory resources. However, most minimization problems cannot be decomposed into uncoupled
decomposed-space subproblems, so iterative algorithms must be used.

Before stating and proving the iterative space-decomposition minimization algorithm, the def-
inition of forcing function [1,3] is required and is defined below.

DEFINITION 2.5. FORCING FUNCTION. A continuous function a from the nonnegative real line
into itself is said to be a forcing function on the nonnegative real-number sequence {~} if

a (0) = 0 , w i t h { a (~) } > 0 f o r ~ > 0 . (10)

In addition, a(~) --* 0 implies {~i} --* 0.

The forcing function definition leads to the following space-decomposition theorem and proof.

THEOREM 2.6. SPACE-DECOMPOSITION THEOREM. I f the design space S 6 @%" of n~nirnization
problem (1) is decomposed into a nonoverlapping decomposed-space set {S, , . . . , Sq}, then mini-
mization problem (1) can be solved iteratively in the q decomposed spaces using any convergent
algorithm that satisfies the descent condition [3]:

k T ~ ([W/s, (11) - V f s , (Xs,,XS,) ds, >_ a]

and
(X k+l (- -V f$, (xk,,x,~,) T d k) > 0, (12) f$, (x~,,x~,) - f$, l , S, ,x~,) _> 0"2

where d k & is the search direction in decomposed-space S~, (71 is a forcing function on the se-
quence { II V / s , (=~,, =;,)11 }, ~2 is a forcing function on the sequence { - V / s , (=~,, =~,)rd~, }, and
X k+l X IT rXk = ~T s, , &] =is,, &] +akd~, in space S~.

The final minimization or stationary solution can be obtained by directly combining the solu-
tions of the q subproblems. That is, x* = [Xsl, , . . . ,Xsq] . m.

S p a c e - D e c o m p o s i t i o n M i n i m i z a t i o n M e t h o d 77

PROOF. Using (12) and the forcing function definition yields

(Xs, ,xg,) -< Ss, (x~,,xg,). (13) fs~ k+l

Expanding (13) using the Taylor series about point x~ yields

.fs, (x~,,x~,) +ak (c~, .d~,) _< .fs, (x~,,x~,), (14)

where c~, is the gradient of fs, (x~,, xg,) in space S,. Thus, the descent condition for S, can be
obtained as [12]

_< o (15)

Since ak > 0, it can be rewritten as
_< o. (16)

That is, (13) and (16) are equivalent.
From (7) and (8), it gets

Since d k d k = [s l , " " ,d~q] T, from (16) and (17) it gets that

q

ck" dk = Z (c~,. d~,) < 0. (18)
'/,----1

That is, the descent condition is also satisfied in design space S and it can be concluded that

f (x k+l) < f (xk). (19)

Therefore, {f(xk)}, is a nonincreasing sequence. Since f (x k) is a lower bounded function, it gets
from (19) that

0 = lim [$ (x k) - .f (xk+')]
k---*oo

q
{xk+l~] = k-.oolim ~ [f (xk,) -- f ~, s,]J (20)

i----1
q

> lim ~'a~(--Cks,.dks,) >0 , (by(12)).
- - k--*oo ~

i = 1

Thus, from (20) and the forcing function definition, it gets

lim (- c k, .dk,) = 0 , Vi E (1,q). (21)
k - * o o

Using (11) and (21), it gets

0 = lira (-~s, "dk,) > lira al (11411) > 0. (22)
k - . o o - - k-- ,oo - -

Therefore, forcing function definition yield [l~&[[= 0. From (17), it can be concluded that
I[ckl[= 0. That is, [[Vf(xk)[I = 0, and the minimization or stationary solution can be obtained
a s

l i r a [Ix k ' b l - x k [[---- O. m
k-- .oo

In general, finding the exact zero point of [[Vf(xk)[[is either impossible or impractical for
numerical methods. Thus, the following convergence criteria can be applied to solve all the
decomposed-apace subproblems [13]:

I. Max {[[V fs,(x~,,xg,)[[,i = 1, . . . ,q} < e,
II. [[Vf(xk)[[<_ e, where xk ---- [xk81 ' " " ' ' xk8, J1T'

k+l - (x~,)j[_< e([(x~+l)j[+ 1), where (.)j denotes the jth component of xs,. III. [(Xs,)i

78 C.-S. Lxv AND C.-H. TSENO

It has been shown that Theorem 2.6 can be applied to minimization problem (1) even though

the decomposed-space minimization functions are coupled to each other. Theorem 2.6 can be

summarized as the following algorithm.

ALGORITHM 2.7. SPACE-DECOMPOSITION MINIMIZATION (SDM) ALGORITHM.

Step 1. Decompose the design space into a nonoverlapping decomposed-space set {$I,..., Sq}.
Step 2. Derive the decomposed-space minimization functions f& (xs~, xg~), for { = 1,..., q.
Step 3. Choose the starting point x I, where x I X 1 = [S l " ' ' ' xlsq] T and set k -- 1.

t t x k ' i X x Step 4. For i = 1 to q, solve one or more steps of the minimization subproblems Js~t s~, ~,)
using any convergent algorithm, such as the conjugate gradient method, that satisfies
descent conditions i l l) and (12). Then, update Xs,k'i, which is the subvector of xk; that is,
X k [xk ,1 _ k , q l T

-~ t Si ' ' " " X S q l "
Step 5. Apply convergence criterion to all decomposed-spaces Si. If the convergence criterion is

satisfied for all decomposed spaces, then the minimization solution has been found as
x* = [X's1, "'" , X*sqj]T', otherwise, set k = k + 1 and go to Step 4.

3. DIRECT-SEARCH
S P A C E - D E C O M P O S I T I O N

MINIMIZATION (SDM) ALGORITHM

Since direct-search methods with no analytic gradient information are of interest to a number
of researchers, a direct-search SDM algorithm is also introduced in this paper.

It has been shown that , if the design space S is further decomposed into a one-dimension
decomposed-space set {$1 , . . . , S ,} , V S~ E !!~ 1, one-dimensional search methods can be directly
applied to Step 4 of Algorithm 2.7, and search direction updating can be eliminated. That is,
the minimization function gradient is not required. The direct search algorithm is illustrated as
the direct-search SDM algorithm below.

ALGORITHM 3.1. DIRECT-SEARCH SDM ALGORITHM.
Step 1 to 3 are the same as those in Algorithm 2.7 except for setting q = n.

Step 4. For i -- 1 to n, solve the minimization solutions x kJ & using any one-dimensional search
method that satisfies

[k,~
Ss, ~,Xs, ,x~,) < Ss, (xks,,x~,) • (23)

Then, update x k'i which is the subcomponent of xk; that is, x k Ix k'z "k'nlT
S i = t $ 1 ' " " " ' " ~ S t t J "

Step 5. Check the convergence criteria

max ISs, (x~, ,x~,) - Ss, (x~, + ~,x~,)l < ~ , (24)
iE(1,n)

o r

- + 2 <

i----1

where 6 and ~ are small positive values. If the convergence criterion has been satisfied,
• X* | T . then the minimization solution has been found as x* = [xs~, . . . , s.J , otherwise set

k = k + 1 and go to Step 4.

In the direct-search SDM algorithm, x ~ is used as the line search parameter, and any exact
or inexact line search method satisfied (23) can be used. This is a special case of Algorithm 2.7.
The advantages are tha t the search direction is either +1 or - 1 , depending only on the sign of
f s , (xk~, x~,) -- f S , (x ~ + 6, x ~) , where if is a small positive real number. Only one-dimensional
search methods are used in every decomposed-space Si, and the convergence of Algorithm 3.1 can

Space-Decomposition Minimization Method 79

be proof by Theorem 2.6 with all the dimensions of decomposed space are set to one. In addition, if
the gradient of any decomposed-space minimization function ~ = 0 can be explicitly expressed

d x s i

as x & = g (x &) , then x s , can be calculated directly without using any one-dimensional search
method.

4. H Y B R I D S P A C E - D E C O M P O S I T I O N
M I N I M I Z A T I O N A L G O R I T H M

As shown in Figures 1 and 2, the direct-search SDM algorithm initially decreases the min-
imization functionis value far faster than the conjugate gradient method does. However, the
direct-search SDM algorithm converges more slowly than the conjugate gradient method around

100
: • Conjugme Gradient Method IO ,,

• . ~ Non-gradient SDM AIgorflhm
u 1 ~ ~ . ".....% .

"'~-" Stage II of Hybrid SDM Algori@an
o.1 .~

o.o,

0.001 '~

0.00001 i ':

o.ooooo i i
0 . 0 0 0 0 0 0 1 ' '": ' ' '

0 0.1 0 .2 0.3 0 .4 0.5 0 .6 0 .7

Sec.

Figure 1. Minimization function value versus time for problem (6) when n = 20.

1oooo 1
--. ~Non-~m SDMAls~ridan ~ I

I00 ~ " ""-,. - Stalle IIofHybridSDMAlgorithmwilh ~ =I0" I

I0 !L " " " - StagelI°fHybridSDMAIsm'iltanwitheh=104 I

0.I

0.01 . ~
0.001 '"",...

0.0001 "~
0.00001 . 4

0.000001 ' ' '

0 0.1 0.2 0.3 0.4 0.5
See.

Figure 2. Minimization function value versus time for time for text problem (I) when
n = 100.

80 C.-S. LIU AND C.-H. TSENG

the minimization point. Thus, a hybrid algorithm that combines the benefits of both algorithms

is presented below.

ALGORITHM 4.1. HYBRID SPACE-DECOMPOSITION MINIMIZATION (HSDM) ALGORITHM.

Stage I

STEP 1 to 4 are the same as the direct-search Algorithm 3.1.

Step 5. If f& (x~, x$~) > 0, V k, check the approximate convergence criterion

Ss, (x~,, x~,) ~h Ss, (x~,,x~,)
[xk+ 1 < , (26)

otherwise, check the approximate convergence criterion

max IS~, (x~,,x~,) - Ss, (x~, + 6,x~,)l < ~h , (27)
iE(1,n)

to all decomposed-spaces, where ~ and eh are small positive values. If the approximate
convergence criterion has been satisfied for all decomposed spaces, then go to Step 6;
otherwise go to Step 4.

Stage II

Step 6. Using the approximate minimization solution in Stage I as the starting point, and then
applying other convergent algorithms, such as the conjugate gradient method or the Al-
gorithm 2.7, to find the final minimization solution.

Hybrid Algorithm 4.1 includes two stages. In the first stage, direct-search Algorithm 3.1 is used
to solve for the approximate minimization solution. Then, another algorithm that converges more
rapidly around the minimization point can be applied to solve for the final minimization solution
in the second stage.

5. A P P L I C A T I O N E X A M P L E

The SDM algorithms were applied to the learning of the single-layer perceptron neural network
to demonstrate their effectiveness.

EXAMPLE 5.1. SINGLE-LAYER PERCEPTRON NEURAL NETWORK. The single-layer perceptron
neural network with m input nodes and n output nodes shown in Figure 3 can be used as a
pattern-classification device. The pth input pattern {x0p,..., Xrap} is multiplied by {wji}, which
is a set of adjustable synaptic weights connecting the ith input node to the jth output node.

. w = [wJ] u
Xop o - 1 I ~- 0 lp

u 2
xzpc 2 I ~ O2p

,.

U n
X rap 0 : 0 ,p

Figure 3. The single-layer pereeptron neutral network.

Space-Decomposition Minimization Method 81

Then, the internal potential ujp generated at the jth output node for the pth input pattern, is
evaluated using

m

= (wj,x,p), (2s)
,=0

and the output YJn E (1,-1) is generated either via hard limiter

yjp = sign (u~p),

or sigmoid function
YJn = tanh(Tujp), 7 > 0. (30)

Then, the output YJn is compared with the desired signal, d ¢ n • (1,-1), and the quantized error

ejp = din - YJn (31)

is generated to adjust the weight.

The standard perceptron neural network learning algorithm minimizes the mean-squared error
function. Such a mean-squared error function for the f h pattern can he formulated as

1 n
Ep = ~ ~ e2n, (32)

jffil

and the total error function for all ~ patterns is formulated as

E)--~Ep= ~ E 2 (33) = ejp.
p=l p=l j=l

In order to apply uncoupled space-decomposition Theorem 2.4 to minimize the total error func-

tion, (33) can be rewritten as

E = ~ ~ ej 2 = ~ Ej, (34)
j=l p=l j= l

where Ej ~ 2 = ~-~n--1 ejp = y~p=l(dj p _ yjp)2 is the error function generated at the jth output node
for all input patterns.

Since YJn is a function of {wj0,. . . , wjrn} only, it can be concluded on the basis of Theorem 2.4
that the original design space Sw spanned by {wji [wji • ~(r~+l)×n, j = 1 , . . . , n, i = 0 , . . . , m}
can be decomposed into n nonoverlapping decomposed-spaces Sw~ spanned by

{wj, I wj, E ~rn, i---- 0 , . . . ,m , Vj • (1,n)}. (35)

That is, LJ~'=l Sw~ = Sw and Sw~ N S ~ = q), if j # j . Then, the unconstrained minimization
problem (34) can be decomposed into n uncoupled subproblems

Ej = v j • (1 , .) . (36)
p=l

These n uncoupled subproblems can be solved independently either on a single processor or
on parallel processors. In addition, any of the n uncoupled subneural networks can be trained
using either the conventional steepest-descent gradient rule [14] or some other more efficient
minimization algorithm, such as the conjugate gradient method [15,16].

82 C.-S. LIu AND C.-H. TSZNG

Furthermore, the direct-search Algorithm 3.1 or the hybrid Algorithm 4.1 can also be applied
to these n uncoupled subproblems. To apply the direct-search Algorithm 3.1 or the first stage
of Algorithm 4.1 to subproblems (36), the original design space Swj in (36) must be further
decomposed into one-dimensional space S%~ that is spanned by the subset

I v; vj (1,m)}. (3 7)

Then, the error function ejp in (36) can be further decomposed into

e#p = d#p - y#p

= d ip - t a n h (' y u j p)

= d ip - t a n h 7 WjiXip

ie(1,m) and i@i / J

where ~-~ee(i,m)and i~i(~UJiXiP) is a constant value in the decomposed-space S%~ and can be
evaluated only once during the minimization process in decomposed-space S%~.

6. NUMERICAL TESTING

To demonstrate the SDM algorithms, five large-scale test problems [10,11,17,18] were solved
using the direct-search Algorithm 3.1 and the hybrid Algorithm 4.1. The numerical test results
are shown in Tables 1 and 2, along with the results from the conjugate gradient method for
comparison.

The notation used in Table 1 is shown below:

n -- number of variables,

IT = number of iterations,

CPU -~ processor time measured in seconds.

The speed-up factors used in Table 2 were calculated as follows:

Processor time for the conjugate gradient method
Speed-up factor 1 = Processor time for nongradient Algorithm 3.1 ' (38)

Processor time for the conjugate gradient method
Speed-up factor 2 = Processor time for hybrid Algorithm 4.1 (39)

As shown in Table 2, the speed-up factors varied from 0.109 to 184.345 for the direct-search SDM
algorithm, and from 1.5 to 27.708 for the hybrid SDM algorithm. The numerical results were
obtained on a Pentium 120 Mhz machine with 48 M bytes of RAM memory, and the convergence
criteria were set as e = 10 -3 and ~h -- 10 -3. The numerical test results show that the conjugate
gradient method may be superior to direct-search SDM algorithm on some test problems. As
shown in Figures 1 and 2, the direct-search SDM has a high convergence characteristic during
the first few steps, but the convergence speed slows down significantly near the minimization
point. However, as shown in Figures 1 and 2, the slow convergence problem of the direct-search
SDM can be improved using the hybrid SDM algorithm. As Figure 2 shows, if the switch point
between the two stages of hybrid SDM Algorithm 4.1 is properly chosen, the processor time can
be significantly reduced.

The processor times for the conjugate gradient method, the direct-search SDM algorithm and
the hybrid SDM algorithm are shown in Figures 4-6, respectively. As Figure 1 shows, the

Space-Decomposition Minimization Method 83

Table i. CPU times and iteration numbers for the five test problems.

Direct-search SDM Conjugate Gradmnt
Hybrid SDM algorithm*

Problem n Algorithm Method*

IT CPU IT CPU IT1# IT2## CPU

20 90 0.041 67 0.480 7 20 0.130

40 134 0.130 85 0.772 7 20 0.171

100 214 0.500 110 1.502 7 32 0.450

200 294 1.392 203 4.126 7 45 0.982
1

400 394 3.646 371 12.828 7 46 1.742

600 465 6.459 425 21.331 7 46 2.534

800 521 9.654 456 29.292 7 47 3.315

1000 569 1 3 . 1 9 9 459 35.651 7 47 4.056

20 13 0.005 66 0.571 3 31 0.290

40 13 0.010 108 1.061 3 49 0.550

100 14 0.040 210 2.934 3 51 0.801

200 15 0.070 212 4.326 3 63 1.532
2

400 15 0.140 416 13.670 3 68 2.794

600 15 0.210 616 28.781 3 69 4.196

800 16 0.291 814 46.547 3 69 5.307

1000 16 0.380 1008 70.051 3 80 7.460

20 27 0.010 26 0.201 14 16 0.130

40 32 0.030 42 0.330 14 26 0.220

I00 67 0.221 74 0.811 26 27 0.431

200 95 0.581 113 2.063 38 15 0.631
3

400 131 1.472 190 4.937 54 16 1.562

600 143 2.093 341 14.340 57 17 2.804

800 168 3.646 482 25.797 75 20 5.157

1000 187 4.566 495 32.597 77 19 6.991

20 593 0.551 63 0.471 20 30 0.230

40 615 1.172 73 0.620 20 42 0.391

100 643 3.045 147 2.073 20 42 0.671

200 664 6.229 246 5.838 20 44 1.092
4

400 685 12.849 760 29.803 20 49 2.093

600 697 19.608 1038 60.777 20 49 3.144

800 706 26.468 1161 88.487 20 49 4.026

1000 713 33.399 1447 134.303 20 48 4.847

20 959 0.631 53 0.371 6 19 0.140

40 998 1.322 129 1.001 6 19 0.170

100 1049 3.445 60 0.701 6 19 0.250

200 1087 7.090 61 1.102 6 19 0.431
5

400 1125 14.701 61 1.833 6 19 0.691

600 1148 22.532 61 2.734 6 19 1.062

800 1164 30.474 61 3.455 6 19 1.362

1000 1176 38.475 61 4.186 6 20 1.702

*Gradient information is assumed to be available for the conjugate gradient method
and hybrid SDM algorithm.
IT1 is the iteration number for Stage I of hybrid DSM Algorithm 4.1.
IT2 is the iteration number for Stage II of hybrid DSM Algorithm 4.1.

84 C.-S. L]u AND C.-H. TSENO

Table 2. Speed-up factors for the five test problems.

Problem n Speed-up Factor 1" Speed-up Factor 2**

20 11.707 3.692

40 5.938 4.515

100 3.004 3.338

200 2.964 4.202
1

400 3.518 7.364

600 3.303 8.418

800 3.034 8.836

1000 2.701 8.790

20 114.200 1.969

40 106.100 1.929

100 73.350 3.663

200 61.800 2.824
2

400 97.643 4.893

600 137.052 6.859

800 159.955 8.771

1000 184.345 9.390

20 20.100 1.546

40 11.000 1.500

100 3.670 1.882

200 3.551 3.269
3

400 3.354 3.161

600 6.851 5.114

800 7.075 5.002

1000 7.139 4.663

20 0.855 2.048

40 0.529 1.586

100 0.681 3.089

200 0.937 5.346
4

400 2.319 14.239

600 3.100 19.331

800 3.343 21.979

1000 4.021 27.708

20 0.588 2.650

40 0.757 5.888

100 0.203 2.804

200 0.155 2.557
5

400 0.125 2.653

600 0.121 2.574

800 0.113 2.537

1000 0.109 2.459

*Speed-up factor 1 was calculated using (41).

**Speed-up factor 2 was calculated using (42).

Space-Decomposition Minimization Method 85

processor times for the conjugate gradient method are approximately exponential functions of
the design variable numbers. By contrast, the processor times for the direct-search and hybrid
SDM algorithms are approximately linear functions of the design variable numbers, as shown in
Figures 5 and 6.

In order to compare the memory resources required by these methods, a Memory-Required
Ratio (MRR) were calculated as follows:

Memory required for nongradient DSM Algorithm 3.1 (40)
M R R = Memory required for the conjugate gradient method "

For minimization problem (1) with n design variables, it can be shown that the conjugate
gradient method requires at least 3r~ units of memory to save the design variables, minimization
function gradient and search-direction vector. Furthermore, additional temporary memory is
required during the computation process for the conjugate gradient method. By contrast, the

140 , t
o Problem 1

B J

120 - - o - - Problem 2 , / , "

100 ""<>"" Problem 3 ,-

"-" - . .o-. Problem 4 .o"

.~ 80 -..o--- Problem 5 - " ' "
• s S (

60 ..o'"'" "

4°

20

0 200 400 600 800 1000

n

Figure 4. Processor times for the conjugate gradient method for different scales.

35 .,-""
o Problem 1 .-" ,,~

. . s ° . ~ "

30 - - o - - Problem 2 . . a .-.'""
,-v.o-.-- Problem 3 ..,-'" , ~ - ' "

25 ~o

,_,~ -. -o -- Problem 4 .°--" f . . . ' "
. , -

~ 20 -..o.-- Problem 5 .
°~° °,~°

. . - S - " ~ . .~ .*°

5 4

0 _ - " ~ ' f ~ " O " • ~ 0 " - - - - - ~ - " " " "~

0 100 200 300 400 500 600 700 800 900 1000

n

Figure 5. Processor time for the nongradient DSM algorithm for different scales.

86 C.-S. LIU AND C.-H. TSENG

8

7 o Problem I ,**J~
~ O .°°

- -o - - Problem 2 ,,,,'..--"

"-" 6 ...o--- Problem 3 -0"'"" ~ 5 -.-o-- Problem 4 , . . -" ' . ' -" .-
~.,,, .°°° . . ~ ' ~

4 -"o"" Problem5o--" . ..o.

~ 3 - ."" c r ' ~ . - ' ° -'_...~...--~

2

~ , ' . " ~ " -O"

0 I I I [

0 100 200 300 400 500 600 700 800 900 1000
n

Figure 6. Processor time for the hybrid DSM algorithm for different scales.

direct-search SDM algorithm requires only n units of storage memory to save the design variables
and some more units of temporary storage for the one-dimensional search method.

Because temporary storage requirements are strongly dependent on programming techniques,
the minimum amount of memory required was used to calculate the MRR. The MRR is less
than 0.3333 as compared with conjugate gradient method. Therefore, the direct-search SDM
algorithm is particular suitable for large-scale problems due to its low memory requirement.

7. C O N C L U S I O N S

Three fundamental convergent space-decomposition minimization (SDM) algorithms for large-
scale unconstrained minimization problems have been presented in this paper. These algorithms
allow minimization problems to be decomposed into q subproblems. If the decomposed-space
minimization functions are uncoupled from each other, the q subproblems can be solved indepen-
dently using any convergent algorithm. However, if they are coupled to each other, the iterative
space-decomposition minimization (SDM) algorithm can be used and all subproblems can be
solved iteratively with any convergent algorithm that satisfies space-decomposition Theorem 2.6.
Furthermore, it has been shown that if the design space is further divided into one-dimensional
decomposed spaces, general one-dimensional search methods can be applied directly to the one-
dimensional subproblems, and the SDM algorithm can be considered a direct-search algorithm.
Although the direct-search SDM algorithm converges slowly near the minimization point, the
hybrid SDM algorithm can be used to eliminate the slow convergence problem.

Numerical tests have shown that the SDM algorithms save more processor time and memory
resources than the conjugate gradient method. In addition, properly choosing the switch point
between the two stages of the hybrid SDM algorithm allows the processor time to be significantly
reduced, and further study of methods for finding the proper switch point for the hybrid SDM
algorithm is warranted.

Although all of the test problems are solved on a serial computer, all of the algorithms presented
in this paper are particularly suitable for parallel computers after further modification. Further
study and testing on parallel computer of the SDM algorithms are warranted.

In the application example, the single-layer perceptron neural network was used as an example
to demonstrate the effectiveness of SDM algorithms. However, the SDM algorithms can be ex-
tended to multilayer perceptron neural network by the multilevel decomposition methods [19,20]
and further study and testing for multilayer pereeptron neural network are also warranted.

Space-Decomposition Minimization Method 87

A P P E N D I X

PROBLEM 1. EXTENDED POWELL TEST FUNCTION [9,10].

n/4

F = Z [(x4i-3 + 10x4i-2) 2 + 5(x4i-1 - x4i) 2
i=1

+(x4 i -2 - 2x4i-1) 4 + 10(x4/-3 - x4i)4] ,

x (1) = [3 , - 1 , 0 , 1 , . . . , 3 , - 1 , 0 , 1 ,] T .

PROBLEM 2. EXTENDED DIXON TEST FUNCTION [11].

= __ (1 - + (1 - + _ _ (x~. - X j + l) 2 , F
/--1 j = 1 o i - 9

X (1) = [- - 2 , - - 2 , . . . , - - 2] T .

PROBLEM 3. TRIDIA TEST FUNCTION [i0].

n

F = Z[i(2x/- x,_1)2],
i=2

X (1) = [3, - 1 , 0 , 1 , . . . , 3, - 1 , 0, 1] T.

PROBLEM 4. EXTENDED WOOD TEST FUNCTION [9,11].

n/4

F = Z { 1 0 0 (x2/-3 - xa/-2) 2 + (xa/-3 - 1) 2 + 90 (x2/_1 - Xa,) 2
i=1

+ (I - x4i_1) 2 -~- 10.1 [(x4i_ 2 - 1) 2 Jr (x4/ - 1) 2]

+ 19.8(x4/-2 - 1)(X4i -- I) } ,

X (I) = [-3, - I , -3 , - I , . . . , -3, - I , -3 , -I] T.

PROBLEM 5. EXTENDED ROSENBROCK TEST FUNCTION [i0,II].

n/2
F ~ [100 (x2, 2 2 _ ---- - - L -- X2i-1) -~- (1 X2i_I) 2]

/=1

X (I) = [--1.2, I , --1.2, i , . . - , --1.2, i] T.

R E F E R E N C E S

1. M.C. Ferris and O.L. Mangasarian, Parallel variable distribution, SIAM J. Optim. 4 (4), 815-832, (1994).
2. M.V. Solodov, New inexact parallel variable distribution algorithms, Computational Optim. and Applications

7, 165-182, (1997).
3. O.L. Mangasarian, Parallel gradient distribution in unconstrained optimization, SIAM J. Contr. ~ Optim.

38 (6), 1916--1925, (1995).
4. V.M. Kibardin, Decomposition into functions in the minimization problem, Automation and Remote Control

40 (1), 1311-1323, (1980).
5. K. Mouallif, V.H. Nguyen and J.-J. Strodiot, A perturbed parallel decomposition method for a class of

nonsmooth convex minimization problems, SIAM J. Contr. ~ Optim. 29 (4), 829-847, (1991).
6. D.G. Mcdowell, Generalized conjugate directions for unconstrained function minimization, J. Optim. Theory

and Applications 41 (4), 523-531, (1983).
7. Y.A. Shpalenskii, Iterative aggregation algorithm for unconstrained optimization problems, Automation and

Remote Control 42 (i), 76--82, (1981).
8. C. Sutti, Nongradient minimization methods for parallel processing computers, Parts 1 and 2, J. Optim.

Theory and Applications 89 (4), 465-488, (1983).

88 C.-S. LIU AND C.-H. TSF.~G

9. E.C. Housos and O. Wing, Pseudo-conjugate directions for the solution of the nonlinear unconstrained opti-
mization problem on a parallel computer, J. Optim. Theory and Applications 42 (2), 189-180, (1984).

10. A. Buckley and A. Lenir, QN-link variable storage conjugate gradients, Math. P~gramming 27, 155-175,
(1983).

11. D. Touati-Ahmed and C. Storey, Efficient hybrid conjugate gradient techniques, J. Optim. Theory and
Applications 64, 379-397, (1990).

12. J.S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, (1989).
13. P.J.M. van Laarhoven, Parallel variable metric algorithms for unconstrained optimization, Math. Program-

ming 33, 68-81, (1985).
14. A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley &

Sons, New York, (1993).
15. C. Charalvanbous, Conjugate gradient algorithm for efficient training of artificial neural networks, IEE Pro-

ceedings Part G 139 (3), 301-310, (1992).
16. E.M. Johansson, F.U. Dowla and D.M. Goodman, Backpropagation learning for multilayer feed-forward

neural networks using the conjugate gradient method, International J. of Neural Systems 2 (4), 291-301,
(1992).

17. J.J. Mor~, B.S. Garbow and K.E. Hill~trom, Testing unconstrained optimization software, AC, M Trans. Math.
Software 7 (1), 17--41, (1981).

18. J.A. Snyman, A convergent dynamic method for large minimization problems, Computers Math. Applic. 17
(10), 1369--1377, (1989).

19. W. Xicheng, D. Kennedy and F,W. Williams, A two-level decomposition method for shape optimization of
structures, Int. J. Numerical Method8 in Engineering 40, 75--88, (1997).

20. U. Kirsch, Two-level optimization of prestressed structures, Engineering Structures 19 (4), 309-317, (1997).

