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Abstract--This paper introduces a set of new algorithms, called the Space-Decomposition Min- 
imization (SDM) algorithms, that decomposes the minimization problem into subproblems. If the 
decomposed-space subproblems are not coupled to each other, they can be solved independently with 
any convergent algorithm; otherwise, iterative algorithms presented in this paper can be used. Fur- 
thermore, if the design space is further decomposed into one-dimensional decomposed spaces, the 
solution can be found directly using one-dimensional search methods. A hybrid algorithm that yields 
the benefits of the SDM algorithm and the conjugate gradient method is also given. 

An example that demonstrates application of SDM algorithm to the learning of a single-layer 
perceptron neural network is presented, and five large-scale numerical problems are used to test 
the SDM algorithms. The results obtained are compared with results from the conjugate gradient 
method. (~) 1999 Elsevier Science Ltd. All rights reserved. 

Keywords--Unconetralned minimization, Decomposition method, Direct-search method, Large- 
scale problem. 

1. I N T R O D U C T I O N  

This paper introduces a set of space-decomposition minimization (SDM) algorithms for solving 
the unconstrained minimization problem 

min f(x), (1) 
zER ~ 

where f : ~n ~ ~ is a lower bounded and continuously dilferentiable function. 
The space-decomposition minimization (SDM) algorithms are based on decomposing the design 

space S 6 ~'* into individual subspaces. The minimization problem can then be decomposed 
into q subproblems and the final minimization solution is the combination of the q decomposed- 
space minimization solutions. 
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The space-decomposition minimization (SDM) algorithms can be considered as extensions of 
the Parallel Variable Distribution (PVD) algorithm and associated decomposition methods. The 
PVD algorithm, proposed by Ferris and Mangasarian [1], and extended by Solodov [2], is a 
method that decomposes the design variable x into q blocks xl,..., xq and distributes them 

among q processors, where xt E ~ nt with ~"~=I nt = n. Mangasarian [3] also introduced a 
method that assigns a portion of the gradient Vf(x) to q processors. Similarly, the n-dimension 
real-space Nn is also decomposed into q hi-dimension subspaces. 

Decomposition methods for decomposing the minimization problem into subproblems have been 
proposed by several researchers. Kibardin [4] decomposed minimization problem (1) into f(x) = 
~~=i fi(x), where x E Nn and fi(x) is a convex function. Mouallif, Nguyen and Strodiot [5] also 

decomposed minimization problem (1) into, where f(x) -- fo(X) + ~-~=1 fi(x), where x E Nn, 
f0 is a differentiable, strongly convex function, and fi(x) is a convex function. In these studies, 
the computing efficiency was shown to increase when the original minimization problem could be 
decomposed into subproblems. 

In this paper, the PVD algorithm and the decomposition methods are combined into the 
space-decomposition minimization (SDM) algorithms. It is shown that any convergent algorithm 
that satisfies the descent condition can be applied to solve the decomposed-space subproblems. 
In addition, if the design space is further decomposed into one-dimensional decomposed spaces, 
one-dimensional search methods can be used directly to solve the subproblems. That is, the SDM 
algorithm can be considered a direct search method. 

Direct-search methods search for minimum solutions directly without requiring analytic gra- 
dient information. The multiple mutually conjugate search directions are commonly used in the 
direct search methods [6-8]. Line search along these multiple search directions can be evalu- 
ated simultaneously on different computers using only evaluation of minimization function. In 
this paper, the special pseudo-conjugate directions [9] that parallel the coordinate axes are used 
for the direct-search SDM algorithm, and one-dimensional search methods, including exact and 
nonexact methods, can be used directly to solve the one-dimensional subproblems. 

This paper is organized as follows. The space-decomposition minimization (SDM) algorithm is 
presented in Section 2. The direct-search space-decomposition minimization (direct-search SDM) 
algorithm is presented in Section 3. In Section 4, a hybrid SDM algorithm that combines the 
algorithms presented in Sections 2 and 3 is introduced. An example of application to the neural 
networks is given in Section 5, and numerical experiment results are given in Section 6. The 
conclusions along with further research directions are given in Section 7, and all test problems 
are listed in the Appendix. 

The notation and terminology used in this paper are described below [3]. 

S E Nn denotes n-dimensional Euclidean design space, with ordinary inner product and associ- 
ated two-norm [[ • [[. Italic characters denoting variables and vectors. For simplicity of notation, 
all vectors are column vectors and changes in the ordering of design variables are allowed through- 
out this paper. Thus, the design variable vector x E S can be decomposed into subvectors. That 
is, x = [xs l , . . . ,  xs~] T, where xs~ are subvector or subcomponent of x. 

2. S P A C E - D E C O M P O S I T I O N  

M I N I M I Z A T I O N  ( S D M )  A L G O R I T H M  

The space-decomposition minimization algorithm is based on the nonoverlapping decomposed- 
space set and the decomposed-space minimization function defined below. 

DEFINITION 2.1. NONOVERLAPPING DECOMPOSED-SPACE SET. For the design space S spanned 
by {x [ x E ~"},  if  the design variable x is decomposed into x = [xsl , . . .  ,xs,] T, then the 
decomposed space Si spanned by {xsi [ xs~ 6 ~" ' ,  where ~"~=lq n~ = n} forms a nonoverlapping 
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decomposed-space set {$1, . . . .  Sq}. That is, 

q 
US,=S and S~nSj=O, ifi~j. 

Moreover, the complement space of S~ is defined as 

Si spanned by {x& ] where _- x ) .  (2) 

That is, Si U Si = S and :~i n S~ = 0, V i e (1, q). 
According to definitions of the nonoverlapping decomposed-space set, the minimization func- 

tion (1) can be decomposed as 

f(x) = f$, (xS,,x~,) -t-f~, (x~,). (3) 

where fs,(xs,, x&) is the decomposed-space minimization function and fg, (xg,) is the comple- 
ment decomposed-space minimization function. 

COROLLARY 2.2. According to (3), the complement decomposed-space minimization function 
f&(xg, ) is only a function of x&. That is, f ix& /s a constant vector, f&(x&) can be treated 
as a constant value that can be removed during the process of minimizing decomposed-space 
subproblems. 

The following example uses the Powell test function listed in the Appendix to describe Defini- 
tion 2.1 and Corollary 2.2. 

EXAMPLE 2.3. The Powell minimization problem with four design variables is [9-11]. 

min f(x) = (Xl -{- 10x2)  2 -[- 5 (x3  - x4)  2 -{- (x2 - 2x3)  4 -{- 10(Xl  - x4 )  4. 
zER 4 

Definition 2.1 and Corollary 2.2 suggest the nonoverlapping decomposed spaces Si, i = 1, . . . ,  4, 
are spanned by {Xl), {x2}, {x3), {x4}, and the complementary spaces •, i = 1, . . . ,4 ,  are 
spanned by {x:,xa,x4), {xl,xa,x4}, (xl,x2,x4}, {xl,x2,x3), respectively. Thus, the decom- 
posed-space minimization function f& can be expressed by eliminating the component of f(x) 
defined only in S~. That is, 

IS1 (XSI,X~I) -~ (Xl -}- 10X2) 2 "{- 10(xl - x4)  4, 
= + 2 + - 4, 

f ss  (XSa, X~s) ---- 5(X3 -- X4) 2 -4- (X 2 -- 2X3) 4, 

IS4 (Xs, ,  X,~4) ---~ 5(X3 -- X4) 2 + 10(Xl  -- X4) 4. 

These subproblems can then be solved using the methods presented in this paper. | 

The definition of the nonoverlapping decomposed-space set leads to the following theorem. 

THEOREM 2.4. UNCOUPLED SPACE-DECOMPOSITION THEOREM. //'minimization problem (1) 
can be decomposed into 

q 

f(x) = ~ f& (XS,), (4) 
iffil 

where {81,...,  Sq } is the nonoverlapping decomposed-space set, then the minimization prob- 
lem (1) can be decomposed into q uncoupled subproblems that can be solved independently 
using any convergent a/gorithm. That is, 

x~, e arg minf&(x&), Vi • (1,q), (5) 
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and the final minimization or stationary solution can be obtained from 

x" [ *  . . x * ]  T 
= = s , , .  , s ,  (6) 

PROOF. From (4), it gets 

0 / (= )  = Ofs,(=s,) v x j  E s~. (7) 
Oxj Oxj ' 

Thus, from Definition 2.1 and (7), it can be concluded that 

Of(x) 0Is, (xs,) 
0=-"-7 = o=~ ' v=~ e s. (8) 

Since x~, is the minimization solution for decomposed space Si, it follows that 

x* 0fs, ( s , )  = 0, Vxj 6 S,. (9) 
Oxj 

Thus, from (8) and (9), it can be concluded that 

Of (x*) 
Ox----7- " = O, V xj E S. 

That is, [[Vf(x*)][ = 0, and this is the minimization or stationary condition for minimization 
problem (1). | 

Theorem 2.4 is efficient for some simple problems, and can save lots of processor time and 
memory resources. However, most minimization problems cannot be decomposed into uncoupled 
decomposed-space subproblems, so iterative algorithms must be used. 

Before stating and proving the iterative space-decomposition minimization algorithm, the def- 
inition of forcing function [1,3] is required and is defined below. 

DEFINITION 2.5. FORCING FUNCTION. A continuous function a from the nonnegative real line 
into itself is said to be a forcing function on the nonnegative real-number sequence {~} if  

a ( 0 ) = 0 ,  w i t h { a ( ~ ) } > 0 f o r ~ > 0 .  (10) 

In addition, a(~)  --* 0 implies {~i} --* 0. 

The forcing function definition leads to the following space-decomposition theorem and proof. 

THEOREM 2.6. SPACE-DECOMPOSITION THEOREM. I f  the design space S 6 @%" of n~nirnization 
problem (1) is decomposed into a nonoverlapping decomposed-space set {S, , . . . ,  Sq}, then mini- 
mization problem (1) can be solved iteratively in the q decomposed spaces using any convergent 
algorithm that satisfies the descent condition [3]: 

k T ~ ([W/s, (11 )  - V f s ,  (Xs,,XS,) ds, >_ a] 

and 
(X k+l ( - -V  f$, (xk,,x,~,) T d k )  > 0, (12) f$, (x~,,x~,)  - f$, l ,  S, ,x~,) _> 0"2 

where d k & is the search direction in decomposed-space S~, (71 is a forcing function on the se- 
quence { II V / s ,  (=~,, =;, )11 }, ~2 is a forcing function on the sequence { - V / s ,  (=~,, =~, )rd~, }, and 
X k+l X IT rXk = ~T s, , &] =is,, &] +akd~,  in space S~. 

The final minimization or stationary solution can be obtained by directly combining the solu- 
tions of the q subproblems. That is, x* = [Xsl, , . . .  ,Xsq ] .  m. 
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PROOF. Using (12) and the forcing function definition yields 

(Xs, ,xg,) -< Ss, (x~,,xg,). (13) fs~ k+l 

Expanding (13) using the Taylor series about point x~  yields 

.fs, (x~,,x~,) +ak  (c~, .d~,) _< .fs, (x~,,x~,), (14) 

where c~, is the gradient of fs, (x~,, xg,) in space S,. Thus, the descent condition for S, can be 
obtained as [12] 

_< o (15) 

Since ak > 0, it can be rewritten as 
_< o. (16) 

That is, (13) and (16) are equivalent. 
From (7) and (8), it gets 

Since d k d k = [ s l , " "  ,d~q] T, from (16) and (17) it gets that  

q 

ck" dk = Z (c~,. d~,) < 0. (18) 
'/,----1 

That is, the descent condition is also satisfied in design space S and it can be concluded that  

f (x k+l) < f (xk). (19) 

Therefore, {f(xk)}, is a nonincreasing sequence. Since f ( x  k) is a lower bounded function, it gets 
from (19) that  

0 = lim [$ (x k) - .f (xk+')] 
k---*oo 

q 
{xk+l~] = k-.oolim ~ [f (xk,) -- f ~, s, ]J (20) 

i----1 
q 

> lim ~'a~(--Cks,.dks, ) >0 ,  (by(12)). 
- -  k--*oo ~ 

i = 1  

Thus, from (20) and the forcing function definition, it gets 

lim ( - c  k, .dk,) = 0 ,  Vi E (1,q). (21) 
k - * o o  

Using (11) and (21), it gets 

0 = lira (-~s,  "dk,) > lira al (11411) > 0. (22) 
k - . o o  - -  k-- ,oo - -  

Therefore, forcing function definition yield [l~&[[ = 0. From (17), it can be concluded that 
I[ckl[ = 0. That  is, [[Vf(xk)[I = 0, and the minimization or stationary solution can be obtained 
a s  

l i r a  [ Ix  k ' b l  - x k [ [  ---- O. m 
k-- .oo 

In general, finding the exact zero point of [[Vf(xk)[[ is either impossible or impractical for 
numerical methods. Thus, the following convergence criteria can be applied to solve all the 
decomposed-apace subproblems [13]: 

I. Max {[[V fs,(x~,,xg,)[[,i = 1, . . .  ,q} < e, 
II. [[Vf(xk)[[ <_ e, where xk ---- [xk81 ' " " ' ' xk8, J1T' 

k+l - (x~,)j[ _< e([(x~+l)j[ + 1), where (.)j denotes the jth component of xs,. III. [(Xs, )i 
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It has been shown that Theorem 2.6 can be applied to minimization problem (1) even though 

the decomposed-space minimization functions are coupled to each other. Theorem 2.6 can be 

summarized as the following algorithm. 

ALGORITHM 2.7. SPACE-DECOMPOSITION MINIMIZATION (SDM) ALGORITHM. 

Step 1. Decompose the design space into a nonoverlapping decomposed-space set {$I,..., Sq}. 
Step 2. Derive the decomposed-space minimization functions f& (xs~, xg~), for { = 1,..., q. 
Step 3. Choose the starting point x I, where x I X 1 = [ S l " ' ' '  xlsq] T and set k -- 1. 

t t x k ' i  X x Step 4. For i = 1 to q, solve one or more steps of the minimization subproblems Js~t s~, ~,) 
using any convergent algorithm, such as the conjugate gradient method, that  satisfies 
descent conditions i l l )  and (12). Then, update Xs,k'i, which is the subvector of xk; that  is, 
X k [xk ,1  _ k , q l T  

-~ t Si  ' ' " " X S q l  " 
Step 5. Apply convergence criterion to all decomposed-spaces Si. If the convergence criterion is 

satisfied for all decomposed spaces, then the minimization solution has been found as 
x* = [X's1, "'" , X*sqj]T', otherwise, set k = k + 1 and go to Step 4. 

3. DIRECT-SEARCH 
S P A C E - D E C O M P O S I T I O N  

MINIMIZATION (SDM) ALGORITHM 

Since direct-search methods with no analytic gradient information are of interest to a number 
of researchers, a direct-search SDM algorithm is also introduced in this paper. 

It has been shown that ,  if the design space S is further decomposed into a one-dimension 
decomposed-space set {$1 , . . . ,  S ,} ,  V S~ E !!~ 1, one-dimensional search methods can be directly 
applied to Step 4 of Algorithm 2.7, and search direction updating can be eliminated. That  is, 
the minimization function gradient is not required. The direct search algorithm is illustrated as 
the direct-search SDM algorithm below. 

ALGORITHM 3.1. DIRECT-SEARCH SDM ALGORITHM. 
Step 1 to 3 are the same as those in Algorithm 2.7 except for setting q = n. 

Step 4. For i -- 1 to n, solve the minimization solutions x kJ & using any one-dimensional search 
method that  satisfies 

[ k,~ 
Ss, ~,Xs, ,x~, )  < Ss, (xks,,x~,) • (23) 

Then, update x k'i which is the subcomponent of xk; that  is, x k Ix k'z "k'nlT 
S i  = t $ 1  ' " " " ' " ~ S t t  J " 

Step 5. Check the convergence criteria 

max ISs, (x~, ,x~,)  - Ss, (x~, + ~,x~,)l < ~ ,  (24) 
iE(1,n) 

o r  

- + 2 < 

i----1 

where 6 and ~ are small positive values. If the convergence criterion has been satisfied, 
• X* | T .  then the minimization solution has been found as x* = [xs~, . . . ,  s.J , otherwise set 

k = k + 1 and go to Step 4. 

In the direct-search SDM algorithm, x ~  is used as the line search parameter,  and any exact 
or inexact line search method satisfied (23) can be used. This is a special case of Algorithm 2.7. 
The advantages are tha t  the search direction is either +1 or - 1 ,  depending only on the sign of 
f s ,  (xk~, x~,) -- f S , ( x ~  + 6, x ~ ) ,  where if is a small positive real number. Only one-dimensional 
search methods are used in every decomposed-space Si, and the convergence of Algorithm 3.1 can 



Space-Decomposition Minimization Method 79 

be proof by Theorem 2.6 with all the dimensions of decomposed space are set to one. In addition, if 
the gradient of any decomposed-space minimization function ~ = 0 can be explicitly expressed 

d x s  i 

as x &  = g ( x & ) ,  then x s ,  can be calculated directly without using any one-dimensional search 
method. 

4. H Y B R I D  S P A C E - D E C O M P O S I T I O N  
M I N I M I Z A T I O N  A L G O R I T H M  

As shown in Figures 1 and 2, the direct-search SDM algorithm initially decreases the min- 
imization functionis value far faster than the conjugate gradient method does. However, the 
direct-search SDM algorithm converges more slowly than the conjugate gradient method around 

100 
: .................... • ......... Conjugme Gradient Method IO ,, 

• . ~ Non-gradient SDM AIgorflhm 
u 1 ~ ~ .  ".....% . 

"'~-" Stage II of Hybrid SDM Algori@an 
o.1 .~ 

o.o, 

0.001 '~ 

0.00001 i ': 

o.ooooo  i i 
0 . 0 0 0 0 0 0 1  ' '": ' ' ' 

0 0.1 0 .2  0.3 0 .4  0.5 0 .6  0 .7  

Sec. 

Figure 1. Minimization function value versus time for problem (6) when n = 20. 

1oooo 1 
--. .... . ~Non-~m SDMAls~ridan ~ I 

I00 ~ " ""-,. - . . . . . .  Stalle IIofHybridSDMAlgorithmwilh ~ =I0" I 

I0 !L " " "  - StagelI°fHybridSDMAIsm'iltanwitheh=104 I 

0.I 

0.01 . ~  ...... 
0.001 '"",... . . . . . . . . .  . 

0.0001 "~ 
0.00001 . 4 . . . .  . . . . . . .  

0.000001 ' ' ' 

0 0.1 0.2 0.3 0.4 0.5 
See. 

Figure 2. Minimization function value versus time for time for text problem (I) when 
n =  100. 
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the minimization point. Thus, a hybrid algorithm that combines the benefits of both algorithms 

is presented below. 

ALGORITHM 4.1. HYBRID SPACE-DECOMPOSITION MINIMIZATION (HSDM) ALGORITHM. 

Stage I 

STEP 1 to 4 are the same as the direct-search Algorithm 3.1. 

Step 5. If f& (x~,  x$~) > 0, V k, check the approximate convergence criterion 

Ss, (x~,, x~,) ~h Ss, (x~,,x~,) 
[xk+ 1 < , (26) 

otherwise, check the approximate convergence criterion 

max IS~, (x~,,x~,) - Ss, (x~, + 6,x~,)l < ~h ,  (27) 
iE(1,n) 

to all decomposed-spaces, where ~ and eh are small positive values. If the approximate 
convergence criterion has been satisfied for all decomposed spaces, then go to Step 6; 
otherwise go to Step 4. 

Stage II  

Step 6. Using the approximate minimization solution in Stage I as the starting point, and then 
applying other convergent algorithms, such as the conjugate gradient method or the Al- 
gorithm 2.7, to find the final minimization solution. 

Hybrid Algorithm 4.1 includes two stages. In the first stage, direct-search Algorithm 3.1 is used 
to solve for the approximate minimization solution. Then, another algorithm that converges more 
rapidly around the minimization point can be applied to solve for the final minimization solution 
in the second stage. 

5. A P P L I C A T I O N  E X A M P L E  

The SDM algorithms were applied to the learning of the single-layer perceptron neural network 
to demonstrate their effectiveness. 

EXAMPLE 5.1. SINGLE-LAYER PERCEPTRON NEURAL NETWORK. The single-layer perceptron 
neural network with m input nodes and n output nodes shown in Figure 3 can be used as a 
pattern-classification device. The pth input pattern {x0p,..., Xrap} is multiplied by {wji}, which 
is a set of adjustable synaptic weights connecting the ith input node to the jth output node. 

. w = [ wJ ] u 
Xop o - 1 I ~- 0 lp 

u 2 
xzpc 2 I ~ O2p 

,. 

U n 
X rap 0 : 0 ,p 

Figure 3. The single-layer pereeptron neutral network. 
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Then, the internal potential ujp generated at the jth output node for the pth input pattern, is 
evaluated using 

m 

= (wj,x,p),  (2s) 
,=0 

and the output YJn E (1,-1)  is generated either via hard limiter 

yjp = sign (u~p),  

or sigmoid function 
YJn = tanh(Tujp), 7 > 0. (30) 

Then, the output YJn is compared with the desired signal, d ¢ n •  (1,-1),  and the quantized error 

ejp = din - YJn (31) 

is generated to adjust the weight. 

The standard perceptron neural network learning algorithm minimizes the mean-squared error 
function. Such a mean-squared error function for the f h  pattern can he formulated as 

1 n 
Ep = ~ ~ e2n, (32) 

jffil 

and the total error function for all ~ patterns is formulated as 

E )--~Ep= ~ E  2 (33) = ejp. 
p=l p=l j=l 

In order to apply uncoupled space-decomposition Theorem 2.4 to minimize the total error func- 

tion, (33) can be rewritten as 

E = ~ ~ ej 2 = ~ Ej, (34) 
j=l p=l j= l  

where Ej ~ 2 = ~-~n--1 ejp = y~p=l(dj p _ yjp)2 is the error function generated at the jth output node 
for all input patterns. 

Since YJn is a function of {wj0,. . . ,  wjrn} only, it can be concluded on the basis of Theorem 2.4 
that the original design space Sw spanned by {wji [ wji • ~(r~+l)×n, j = 1 , . . . ,  n, i = 0 , . . . ,  m} 
can be decomposed into n nonoverlapping decomposed-spaces Sw~ spanned by 

{wj, I wj, E ~rn, i---- 0 , . . . ,m ,  Vj • (1,n)}. (35) 

That is, LJ~'=l Sw~ = Sw and Sw~ N S ~  = q), if j # j .  Then, the unconstrained minimization 
problem (34) can be decomposed into n uncoupled subproblems 

Ej = v j  • (1 , . ) .  (36) 
p=l 

These n uncoupled subproblems can be solved independently either on a single processor or 
on parallel processors. In addition, any of the n uncoupled subneural networks can be trained 
using either the conventional steepest-descent gradient rule [14] or some other more efficient 
minimization algorithm, such as the conjugate gradient method [15,16]. 
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Furthermore, the direct-search Algorithm 3.1 or the hybrid Algorithm 4.1 can also be applied 
to these n uncoupled subproblems. To apply the direct-search Algorithm 3.1 or the first stage 
of Algorithm 4.1 to subproblems (36), the original design space Swj in (36) must be further 
decomposed into one-dimensional space S%~ that is spanned by the subset 

I v; vj (1,m)}. ( 3 7 )  

Then, the error function ejp in (36) can be further decomposed into 

e#p = d#p - y#p 

= d ip  - t a n h ( ' y u j p )  

= d ip  - t a n h  7 WjiXip 

ie(1,m) and i@i / J 

where ~-~ee(i,m)and i~i(~UJiXiP) is a constant value in the decomposed-space S%~ and can be 
evaluated only once during the minimization process in decomposed-space S%~. 

6. NUMERICAL TESTING 

To demonstrate the SDM algorithms, five large-scale test problems [10,11,17,18] were solved 
using the direct-search Algorithm 3.1 and the hybrid Algorithm 4.1. The numerical test results 
are shown in Tables 1 and 2, along with the results from the conjugate gradient method for 
comparison. 

The notation used in Table 1 is shown below: 

n -- number of variables, 

IT = number of iterations, 

CPU -~ processor time measured in seconds. 

The speed-up factors used in Table 2 were calculated as follows: 

Processor time for the conjugate gradient method 
Speed-up factor 1 = Processor time for nongradient Algorithm 3.1 ' (38) 

Processor time for the conjugate gradient method 
Speed-up factor 2 = Processor time for hybrid Algorithm 4.1 (39) 

As shown in Table 2, the speed-up factors varied from 0.109 to 184.345 for the direct-search SDM 
algorithm, and from 1.5 to 27.708 for the hybrid SDM algorithm. The numerical results were 
obtained on a Pentium 120 Mhz machine with 48 M bytes of RAM memory, and the convergence 
criteria were set as e = 10 -3 and ~h -- 10 -3. The numerical test results show that the conjugate 
gradient method may be superior to direct-search SDM algorithm on some test problems. As 
shown in Figures 1 and 2, the direct-search SDM has a high convergence characteristic during 
the first few steps, but the convergence speed slows down significantly near the minimization 
point. However, as shown in Figures 1 and 2, the slow convergence problem of the direct-search 
SDM can be improved using the hybrid SDM algorithm. As Figure 2 shows, if the switch point 
between the two stages of hybrid SDM Algorithm 4.1 is properly chosen, the processor time can 
be significantly reduced. 

The processor times for the conjugate gradient method, the direct-search SDM algorithm and 
the hybrid SDM algorithm are shown in Figures 4-6, respectively. As Figure 1 shows, the 
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Table i. CPU times and iteration numbers for the five test problems. 

Direct-search SDM Conjugate Gradmnt 
Hybrid SDM algorithm* 

Problem n Algorithm Method* 

IT CPU IT CPU IT1# IT2## CPU 

20 90 0.041 67 0.480 7 20 0.130 

40 134 0.130 85 0.772 7 20 0.171 

100 214 0.500 110 1.502 7 32 0.450 

200 294 1.392 203 4.126 7 45 0.982 
1 

400 394 3.646 371 12.828 7 46 1.742 

600 465 6.459 425 21.331 7 46 2.534 

800 521 9.654 456 29.292 7 47 3.315 

1000 569 1 3 . 1 9 9  459 35.651 7 47 4.056 

20 13 0.005 66 0.571 3 31 0.290 

40 13 0.010 108 1.061 3 49 0.550 

100 14 0.040 210 2.934 3 51 0.801 

200 15 0.070 212 4.326 3 63 1.532 
2 

400 15 0.140 416 13.670 3 68 2.794 

600 15 0.210 616 28.781 3 69 4.196 

800 16 0.291 814 46.547 3 69 5.307 

1000 16 0.380 1008 70.051 3 80 7.460 

20 27 0.010 26 0.201 14 16 0.130 

40 32 0.030 42 0.330 14 26 0.220 

I00 67 0.221 74 0.811 26 27 0.431 

200 95 0.581 113 2.063 38 15 0.631 
3 

400 131 1.472 190 4.937 54 16 1.562 

600 143 2.093 341 14.340 57 17 2.804 

800 168 3.646 482 25.797 75 20 5.157 

1000 187 4.566 495 32.597 77 19 6.991 

20 593 0.551 63 0.471 20 30 0.230 

40 615 1.172 73 0.620 20 42 0.391 

100 643 3.045 147 2.073 20 42 0.671 

200 664 6.229 246 5.838 20 44 1.092 
4 

400 685 12.849 760 29.803 20 49 2.093 

600 697 19.608 1038 60.777 20 49 3.144 

800 706 26.468 1161 88.487 20 49 4.026 

1000 713 33.399 1447 134.303 20 48 4.847 

20 959 0.631 53 0.371 6 19 0.140 

40 998 1.322 129 1.001 6 19 0.170 

100 1049 3.445 60 0.701 6 19 0.250 

200 1087 7.090 61 1.102 6 19 0.431 
5 

400 1125 14.701 61 1.833 6 19 0.691 

600 1148 22.532 61 2.734 6 19 1.062 

800 1164 30.474 61 3.455 6 19 1.362 

1000 1176 38.475 61 4.186 6 20 1.702 

*Gradient information is assumed to be available for the conjugate gradient method 
and hybrid SDM algorithm. 
# IT1 is the iteration number for Stage I of hybrid DSM Algorithm 4.1. 
## IT2 is the iteration number for Stage II of hybrid DSM Algorithm 4.1. 
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Table 2. Speed-up factors for the five test problems. 

Problem n Speed-up Factor 1" Speed-up Factor 2** 

20 11.707 3.692 

40 5.938 4.515 

100 3.004 3.338 

200 2.964 4.202 
1 

400 3.518 7.364 

600 3.303 8.418 

800 3.034 8.836 

1000 2.701 8.790 

20 114.200 1.969 

40 106.100 1.929 

100 73.350 3.663 

200 61.800 2.824 
2 

400 97.643 4.893 

600 137.052 6.859 

800 159.955 8.771 

1000 184.345 9.390 

20 20.100 1.546 

40 11.000 1.500 

100 3.670 1.882 

200 3.551 3.269 
3 

400 3.354 3.161 

600 6.851 5.114 

800 7.075 5.002 

1000 7.139 4.663 

20 0.855 2.048 

40 0.529 1.586 

100 0.681 3.089 

200 0.937 5.346 
4 

400 2.319 14.239 

600 3.100 19.331 

800 3.343 21.979 

1000 4.021 27.708 

20 0.588 2.650 

40 0.757 5.888 

100 0.203 2.804 

200 0.155 2.557 
5 

400 0.125 2.653 

600 0.121 2.574 

800 0.113 2.537 

1000 0.109 2.459 

*Speed-up factor 1 was calculated using (41). 

**Speed-up factor 2 was calculated using (42). 
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processor times for the conjugate gradient method are approximately exponential functions of 
the design variable numbers. By contrast, the processor times for the direct-search and hybrid 
SDM algorithms are approximately linear functions of the design variable numbers, as shown in 
Figures 5 and 6. 

In order to compare the memory resources required by these methods, a Memory-Required 
Ratio (MRR) were calculated as follows: 

Memory required for nongradient DSM Algorithm 3.1 (40) 
M R R  = Memory required for the conjugate gradient method " 

For minimization problem (1) with n design variables, it can be shown that the conjugate 
gradient method requires at least 3r~ units of memory to save the design variables, minimization 
function gradient and search-direction vector. Furthermore, additional temporary memory is 
required during the computation process for the conjugate gradient method. By contrast, the 
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Figure 4. Processor times for the conjugate gradient method for different scales. 
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Figure 5. Processor time for the nongradient DSM algorithm for different scales. 
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Figure 6. Processor time for the hybrid DSM algorithm for different scales. 

direct-search SDM algorithm requires only n units of storage memory to save the design variables 
and some more units of temporary storage for the one-dimensional search method. 

Because temporary storage requirements are strongly dependent on programming techniques, 
the minimum amount of memory required was used to calculate the MRR. The MRR is less 
than 0.3333 as compared with conjugate gradient method. Therefore, the direct-search SDM 
algorithm is particular suitable for large-scale problems due to its low memory requirement. 

7. C O N C L U S I O N S  

Three fundamental convergent space-decomposition minimization (SDM) algorithms for large- 
scale unconstrained minimization problems have been presented in this paper. These algorithms 
allow minimization problems to be decomposed into q subproblems. If the decomposed-space 
minimization functions are uncoupled from each other, the q subproblems can be solved indepen- 
dently using any convergent algorithm. However, if they are coupled to each other, the iterative 
space-decomposition minimization (SDM) algorithm can be used and all subproblems can be 
solved iteratively with any convergent algorithm that satisfies space-decomposition Theorem 2.6. 
Furthermore, it has been shown that if the design space is further divided into one-dimensional 
decomposed spaces, general one-dimensional search methods can be applied directly to the one- 
dimensional subproblems, and the SDM algorithm can be considered a direct-search algorithm. 
Although the direct-search SDM algorithm converges slowly near the minimization point, the 
hybrid SDM algorithm can be used to eliminate the slow convergence problem. 

Numerical tests have shown that the SDM algorithms save more processor time and memory 
resources than the conjugate gradient method. In addition, properly choosing the switch point 
between the two stages of the hybrid SDM algorithm allows the processor time to be significantly 
reduced, and further study of methods for finding the proper switch point for the hybrid SDM 
algorithm is warranted. 

Although all of the test problems are solved on a serial computer, all of the algorithms presented 
in this paper are particularly suitable for parallel computers after further modification. Further 
study and testing on parallel computer of the SDM algorithms are warranted. 

In the application example, the single-layer perceptron neural network was used as an example 
to demonstrate the effectiveness of SDM algorithms. However, the SDM algorithms can be ex- 
tended to multilayer perceptron neural network by the multilevel decomposition methods [19,20] 
and further study and testing for multilayer pereeptron neural network are also warranted. 
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A P P E N D I X  

PROBLEM 1. EXTENDED POWELL TEST FUNCTION [9,10]. 

n/4 

F = Z [(x4i-3 + 10x4i-2) 2 + 5(x4i-1 - x4i) 2 
i=1 

+(x4 i -2  - 2x4i-1) 4 + 10(x4/-3 - x4i)4] , 

x (1) = [ 3 , - 1 , 0 , 1 , . . . , 3 , - 1 , 0 , 1 , ]  T .  

PROBLEM 2. EXTENDED DIXON TEST FUNCTION [11]. 

= __ (1 - + (1 - + _ _  (x~. - X j + l )  2 , F 
/--1 j = 1 o i - 9  

X (1) = [ - - 2 , - - 2 , . . . , - - 2 ]  T .  

PROBLEM 3. TRIDIA TEST FUNCTION [i0]. 

n 

F = Z[i(2x/- x,_1)2], 
i=2 

X (1) = [3, - 1 , 0 ,  1 , . . . ,  3, - 1 ,  0, 1] T. 

PROBLEM 4. EXTENDED WOOD TEST FUNCTION [9,11]. 

n/4 

F = Z { 1 0 0 (  x2/-3 - xa/-2) 2 + (xa/-3 - 1) 2 + 90 (x2/_1 - Xa,) 2 
i=1 

+ ( I  - x4i_1) 2 -~- 10.1 [(x4i_ 2 - 1) 2 Jr (x4/ -  1) 2] 

+ 19.8(x4/-2 - 1)(X4i -- I ) } ,  

X (I)  = [-3, - I , -3 ,  - I , . . . ,  -3, - I , -3 ,  -I] T. 

PROBLEM 5. EXTENDED ROSENBROCK TEST FUNCTION [i0,II]. 

n/2 
F ~ [100 (x2, 2 2 _ ---- - - L  -- X2i-1) -~- (1 X2i_I) 2] 

/=1 

X (I) = [--1.2, I ,  --1.2, i , . . - ,  --1.2, i] T. 
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