
*Corresponding author. Fax: 886-3-5721490; e-mail: rhjan@cis.nctu.edu.tw.
1Chu-Fu Wang received the B.S. degree in Applied Mathematics from National Cheng Kong University, and the M.S.

degree in Computer and Information Science from National Chiao Tung University, Taiwan, 1995. Since 1995, he has
been working toward the Ph.D. degree in Computer and Information Science at National Chiao Tung University,
Taiwan. His research interests include multicast distribution, network reliability, and network optimization.

2Bo-Rong Lai received the B.S. and M.S. degrees in Computer and Information Science from National Chiao Tung
Univeristy, Taiwan, in 1994, and 1996, respectively. His research interests include computer networks and multicast
distribution.

3Rong-Hong Jan received the B.S. and M.S. degrees in Industrial Engineering, and the Ph.D. degree in computer
Science from National Tsing Hua University, Taiwan, he is currently a Professor in the Department of Computer and
Information Science, National Chiao Tung University. He has been a Visiting Associate Professor in the Department of
Computer Science, University of Maryland. His research interests include computer networks, distributed systems,
network reliability, and operations research.

Computers & Operations Research 26 (1999) 461—480

Optimum multicast of multimedia streams

Chu-Fu Wang1, Bo-Rong Lai2, Rong-Hong Jan*,3
Department of Computer and Information Science, National Chiao Tung University, Hsinchu, 30050, Taiwan

Received February 1998; received in revised form August 1998

Scope and purpose

As multimedia service becomes more widely used through computer networks, conserving network
resources becomes increasingly important. Multicast communications can save network bandwidths when
delivering data to multiple destinations. Therefore, many researchers have given much attention to multicast
routing problems. Most of the multicast routing problems only consider a single multicast session. However,
in the real world, several multicast sessions will be broadcast, simultaneously. These multicast sessions will
contend for the limited resources (such as bandwidth) of networks. This creates a new network optimization
problem which is different from any other multicast routing problem. In this research, we studied an optimal
video distribution problem which arises from video on demand (VOD) systems with multiple multicast
sessions. We believe that the results are useful for improving video distribution methods in multimedia networks.
In addition, this study would be applicable on the field of network flows, especially multicommodity flows.

Abstract

In a VOD system, multicast is a preferred method for saving network bandwidth. That is, customers
requesting the same video program over a small time interval can be arranged in a multicast tree (group), and

0305-0548/99/$ — see front matter (1999 Elsevier Science Ltd. All rights reserved.
PII: S0305-0548(98)00075-6

then the video server sends a video stream via this tree to customers. In this research, we considered how to
arrange a set of multicast trees such that the number of customers served is maximized and the link capacity
constraint is maintained. For a directed acyclic graph (DAG), we proposed a branch-and-bound algorithm to
solve this problem and the solution method is illustrated by example. Next, we extended the algorithm to find
an approximate solution for a general graph case. It is shown, through simulations on randomly generated
graphs that the solution for our approximation method is very close to the optimal solution. (1999 Elsevier
Science Ltd. All rights reserved.

Keywords: Integer programming; Branch-and-bound algorithm; Network optimization; Multicast routing

1. Introduction

The demand for multimedia (such as video or audio) transmissions is increasing rapidly and the
transmission of multimedia is time sensitive. In order to maintain quality of service (QoS),
networks have to allocate enough bandwidth for transmitting multimedia data. Two types of
multimedia transmissions are usually used. They are point-to-point transmission and point-to-
multipoint transmission. The point-to-multipoint transmission, known as multicast, occurs when
the multimedia data is to be delivered to a subset of nodes in the network. Broadcast is a special
case of multicast in which the data is to be delivered to a set that includes all the network nodes.

In a multicast communication, the source sends identical data to all destinations. Since the data
can be duplicated at switching nodes (the intermediate nodes), it is not necessary for the source
node to send separate copies to all destinations. Thus, a good multicasting path can help to reduce
the number of redundant streams flowing on the network. For example, consider a VOD system to
which several users may subscribe an identical multimedia stream over a small time interval.
Because the transmission of the video stream consumes the high bandwidth, it is a good idea for
video server to collect the subscription information and then find a multicast tree to transmit
a copy of the subscribed video stream to all subscribers.

Usually, two types of objective functions are considered in solving multicast transmission
problems. One function minimizes the transmission cost. The other function minimizes transmis-
sion delay. For unconstrained case, a least cost multicasting path finding problem is known as the
Steiner tree problem. In this problem, we are given a subset S-N of nodes, called member nodes,
and we wish to determine the minimum cost tree that has to contain all of the member nodes in S.
The Steiner tree problem is known to be NP-complete [1]. Several exponential time algorithms
have been developed for finding exact solution. Among these works, Hakimi [2] proposes
a spanning tree enumeration algorithm that runs in O(k22n~k#n3) time, where n"DND, and
k"DSD. Levin [3] proposes a dynamic programming approach algorithm that runs in
O(3kn#2kn2#k2n) time. Other exponential time algorithms have also appeared without time
complexity analysis. Beasley [4] gives a Lagrangean relaxation algorithm. Another 0—1 linear
programming algorithm in a slightly different version is given by Wong [5]. Also, there are many
heuristic algorithms [6—8] that have been presented for solving Steiner tree problem. For detail
description and more lectures on both exact and heuristic methods, one can refer two survey
papers, Hwang and Richards [9] and Winter [10]. On the other hand, if the goal is to minimize the
delay, a shortest path tree is the solution [11—14]. The problem can be solved by finding the

462 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 1. An example for solving multicast transmission problem, which the objective function is to minimize the
transmission delay.

shortest paths from the source node to all of the destination nodes and then merging these paths
into a single multicast tree. For example, in Fig. 1a, node s is the source node and nodes v

2
, v

4
and

v
5

are the destination nodes. Each link is associated with a nonnegative integer to represent its
transmission delay. Then the optimal solution for this problem (see Fig. 1c) can be obtained by
merging three shortest paths, which are shown in Fig. 1b, into a tree.

In previous research, most of the multicast problems only considered a single multicast session.
In the single multicast session, the major concern is how to find a minimum cost Steiner tree. Then
use this tree to transmit the same data to every multicast member. However, in the real world,
several multicast sessions will happen, simultaneously. For example, if there are a lot of video
programs available in a VOD system for subscriptions, the server will establish several multicast
sessions (i.e., each video has a multicast session) to transmit the video stream to customers. Note
that the amounts of network resources are fixed. When multiple multicast sessions are setup
simultaneously, they will contend for these network resources. If the resources are large enough, all
multicast sessions can be setup. Otherwise, some of the sessions will fail. Therefore, the important
issue is how to allocate network resources to each multicast session. The objective function for
multisession problem can be the minimization of the total cost or the maximization of the number
of VOD customers served. Note that for a VOD system, which provides pay-movies, the more
number of customers served means the more revenues earned.

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 463

Fig. 2. A VOD system with one VOD Server and four switching nodes.

In this research, we considered a VOD system with multiple multicast sessions. The problem was
to find a set of mulitcast trees such that the number of VOD customers served was maximized
under the bandwidth constraint. For the directed acyclic network, a branch-and-bound method
was proposed to solve this problem. The solution method can be modified to solve the general
graph case.

The remainder of this paper is organized as follows. Section 2 states the formulation for this
problem. Section 3 presents a branch-and-bound method that can solve this problem over
a directed acyclic network. Section 4 presents a DAG’s based heuristic algorithm to solve the
general graph using a modified branch-and-bound method. In Section 5, we give simulation results
that illustrate the performance of our proposed method. Finally, concluding remarks are given in
Section 6.

2. Statement of the problem

Consider the VOD system shown in Fig. 2. There is one VOD server and four switching nodes
(e.g., ATM switches) in this system. The VOD server is responsible for providing the video

464 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

programs, and the switching node has the ability to duplicate the video stream that comes from the
server. The customer’s terminal device is connected to a switching node and the customer can
receive the video program from the down link of the connected switching node. The switching
nodes and the server are connected to each other in some fashion by directed links. The available
capacity of a link is defined as the maximum number of video streams that can be served. In our
model, each video program requires a unit of the link capacity for transmission. In order to
guarantee the quality of service, we also assume that when a multicast session is established, the
bandwidth allocated for this session is reserved until the session finishes.

Suppose there are m video programs P
1
, P

2
,2, P

m
available on the server. Because the

switching node can duplicate the video stream, if a video stream flows into a switching node, all
subscribers connected to that switching node can obtain the program in that stream. Therefore, the
bid bk

j
of a video program P

k
at a switching node j is defined as the number of customers who

subscribe to video program P
k
. The bid vector (b1

j
, b2

j
,2, bm

j
) for switching node j is the collection of

bid bk
j
at switching node j. We assume that any video program that flows in each link requires a unit

of link capacity. Hence, we associate a nonnegative integer (link capacity) r
ij

for each link (i, j) to
represent the maximum number of video programs which can flow on that link (i, j) . Therefore,
a VOD system shown in Fig. 2 is modeled as a network G"(», E) shown in Fig. 3a where » is a set
of nodes containing a server node (node 0) and all switching nodes (nodes 1, 2, 2 , n!1) and E is
a set of communication links between these nodes. Let vk

j
"1 denote the video stream k flowing

into node j and vk
j
"0, otherwise. Thus, the total number of subscribers being served (called source

gain) is +n~1
j/1

+m
k/1

vk
j
) bk

j
where m is number of streams and n!1 is number of switching nodes. For

example, the source gain for the multicast scheme in Fig. 3b is 23. Fig. 3c shows that the video
distribution scheme in Fig. 3b is composed using a set of multicast trees M¹

1
, ¹

2
, ¹

3
N where ¹

1
,

¹
2

and ¹
3

can be used for multicast sessions of video programs P
1
, P

2
and P

3
, respectively.

In this research, the problem was formulated to find a multicast scheme such that the source gain
is maximized and the bandwidth constraint is maintained. We call this problem an optimum source
gain multicast problem (OSGMP).
Notation:

n : number of nodes.
m : number of video streams.
r
ij
: capacity of link (i, j) .

bk
j
: switch j’s bid for stream k.

vk
j
: the decision variable, vk

j
"G1, stream k flows into node j,

0, otherwise.

xk
ij
: the decision variable, xk

ij
"G

1, stream k flows in link(i, j),
0, otherwise.

M : big M; a very large number.

Assumptions:

(1) Each stream requires one unit of link capacity.
(2) Each link has integral units of capacity.
(3) Node 0 is the source node and nodes 1, 2,2 , n!1 are switching nodes.
(4) The video server has bid information.

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 465

Fig. 3. An example for video distribution scheme.

The problem can be mathematically stated as follows.

Maximize
n~1
+
j/1

m
+
k/1

vk
j
bk
j

subject to
m
+
k/1

xk
ij
)r

ij
, 0)i, j)n!1, (1)

n~1
+
i/0

xk
i0
"0, 1)k)m, (2)

n~1
+
i/0

xk
ij
"vk

j
, 1)j)n!1, 1)k)m, (3)

466 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 4. Topological order of a DAG.

n~1
+
s/0

xk
js
)Mvk

j
, 1)j)n!1, 1)k)m, (4)

xk
ij
3M0, 1N 0)i, j)n!1, 1)k)m; vk

j
3M0, 1N 0)j)n!1, 1)k)m. (5)

Constraint (1) ensures that the multicast streams in each link do not exceed the bandwidth
boundaries. Constraint (2) ensures that no stream can flowback to the server. The remaining
constraints indicate that a video stream can flow out from a switch node only if it has received the
video stream from its upstream neighbors. Furthermore, for each node, all video sets which were
sent by its upstream neighbors are mutually exclusive.

3. A branch-and-bound algorithm for directed acyclic graphs

In order to solve the OSGMP, we use a tree, called a state-space tree to represent all of the
feasible solutions, and apply the branch-and-bound algorithm on the state-space tree to search for
the optimal solution.

Note that for a DAG there exists a topological order for its nodes. That is, we can label the nodes
such that i(j for every directed link (i, j). For example, Fig. 4 shows a topological order for
a DAG. Based on the topological order, we can find all feasible solutions for each node. For
example, in Fig. 5, links (1, 3) , (2, 3) are the only incoming links of node 3. Let node 1 can receive
video programs P

1
, P

2
and P

3
. That is, node 1 has video program set MP

1
, P

2
, P

3
N. Similarly, let

node 2 have video program set MP
2
, P

3
N. The capacity of link (1, 3) is 2, it means two video

programs can be chosen from set MP
1
, P

2
, P

3
N and send them to node 3. Similarly, we can choose

one video program from set MP
2
, P

3
N at node 2 and then send it to node 3. Therefore, all possible

video program sets for node 3 are MP
1
, P

2
N, MP

1
, P

2
, P

3
N, MP

1
, P

3
N, MP

2
, P

3
N. Note that we only keep

dominating video program sets for node 3. For example, MP
1
, P

2
N, MP

1
, P

3
N, MP

2
, P

3
N are domin-

ated by MP
1
, P

2
, P

3
N at node 3 because MP

1
, P

2
, P

3
N for node 3 has a better gain than others. Thus,

we keep MP
1
, P

2
, P

3
N as a dominating video program set at node 3. In the following, we will present

how to generate dominating video set for each node. Let

vk
j
"G

1, video program P
k

can be received at switching node j,
0, otherwise.

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 467

Fig. 5. Example of computing the feasible video received set of a node.

Let vector v
j
"(v1

j
, v2

j
,2 , vm

j
) denote the video vector received at the switching node j. The or

operation for vector v"(v
1
, v

2
,2 , v

m
) and u"(u

1
, u

2
,2 , u

m
) is defined as

vsu"(v
1
su

1
, v

2
su

2
,2 , v

m
su

m
)

where s is logic or operation. Let e
j
be a unit vector with all entries at zero except entry j, which is

a one. Thus, v"+m
i/1

v
i
e
i
. Let S

x
be the received video set for v

x
at node x, such that if vj

x
"1 then

e
j

is an element in S
x
. For example, in Fig. 5, node 2 has video vector v

2
"(0, 1, 1), then

v
2
"e

2
#e

3
and S

2
"Me

2
, e

3
N. Suppose that link capacities of (x, z) and (y, z) are 1, then the set that

includes all possible video vectors received at node z is defined as

S
x
sS

y
"Me

i
se

j
D e

i
3S

x
, e

j
3S

y
N.

For example, S
x
"Me

1
, e

2
, e

3
N and S

y
"Me

2
, e

3
N, then the set that includes all possible video

vectors received at node z are S
x
sS

y
"M(1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 1), (0, 0, 1)N. Let

S(2) denote SsS and S(i)"S(i~1)sS. For any node j, assume that links (i
1
, j), (i

2
, j),2, (i

a
, j) are the

incoming links for node j and node i
s
(s"1, 2,2, a) has video vector received (v1

is
, v2

is
,2, vm

is
). Let

F
j
be the set that includes all of the possible received video vectors for node j. Thus,

F
j
"S(ri1j)

iÇ
sS(ri2j)

iÈ
s2sS(riaj)

ia ,

where r
isj

is the link capacity of (i
s
, j), s"1, 2, 2 , a.

We say a vector v is dominated by vector u if and only if vsu"u. For example, (0, 1, 1) is
dominated by (1, 1, 1) because (0, 1, 1)s(1, 1, 1)"(1, 1, 1). Let [F] denote the set of vectors in
which all the dominated vectors in F are deleted. That is, any two vectors in [F] are not dominated
by one another. Fig. 5 shows an example for how to compute all possible video vectors received for
a node. The video vectors received at nodes 1 and 2 are (1, 1, 1) and (0, 1, 1), respectively. Then, set
F
3

can be generated by computing the result of [[S(2)
1

]sS
2
]. The possible video sets received,

S
1

and S
2

with respect to F
1

and F
2

are Me
1
, e

2
, e

3
N and Me

2
, e

3
N, respectively. Therefore,

S(2)
1
"Me

1
, e

2
, e

3
NsMe

1
, e

2
, e

3
N"M(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (0, 1, 1),

(0, 0, 1)N, and [S(2)
1

]"M(1, 1, 0), (1, 0, 1), (0, 1, 1)N by deleting the dominated vectors from set S(2)
1

. In
the final computation, [[S(2)

1
]sS

2
]"[M(1, 1, 0), (1, 0, 1), (0, 1, 1)NsM(0, 1, 0), (0, 0, 1)N]"M(1, 1, 1)N.

This means that node 3 can receive video programs P
1
, P

2
and P

3
from its incoming links.

468 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 7. A portion of state-space tree.

Fig. 6. Example of a OSGMP.

The state-space tree is generated from the network G. The node for the state-space tree is labeled
by a received video vector (v1

j
, v2

j
,2, vm

j
), which specifies that switching node j can receive video

programs P
k

whenever vk
j
"1, k"1, 2,2, m. The path from the root to a leaf node in the

state-space tree will be defined to represent a sequence of possible video vectors, i.e., a sequence of
received video vectors (v1

0
, v2

0
, 2 , vm

0
), (v1

1
, v2

1
, 2, vm

1
), 2 , (v1

n~1
, v2

n~1
, 2, vm

n~1
). Note that the

feasible solution xk
ij
, ∀i, j, k can be found easily from the sequence of received video vectors.

For example, Fig. 7 is a partial state-space tree generated from Fig. 6. As shown in Fig. 6, node
0 is the server which provides three video programs P

1
, P

2
, and P

3
, hence the received video vector

for the root x
0

in the state-space tree is (1, 1, 1) (i.e., F
0
"M(1, 1, 1)N). For switching node 1, because

link from node 0 to node 1 is the only incoming link and the boundary capacity for this link is 2,
hence, the possible video vectors that can be received by node 1 can be derived using
F
1
"[S(2)

0
]"M(1, 1, 0), (1, 0, 1), (0, 1, 1)N. Thus, the second level for the state-space tree is generated

and labeled using (1, 1, 0), (1, 0, 1) and (0, 1, 1). Similarly, for switching node 2, because link from
node 0 to node 2 and link from node 1 to node 2 are the only incoming links and r

02
"1 and

r
12
"1, the children of node 1 in state-space tree can be determined by [Me

1
, e

2
NsMe

1
, e

2
, e

3
N]

"M(0, 1, 1), (1, 0, 1), (1, 1, 0)N. Therefore, we labeled these nodes using (0, 1, 1), (1, 0, 1) and (1, 1, 0).
By continuing the same process, the entire state-space tree for this OSGMP can be obtained.

In fact, to find an optimal solution, we will not consider all of the feasible sequences since it is
very time consuming. We will apply a best-first branch-and-bound algorithm to find the optimal

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 469

solution by traversing only a portion of the state-space tree. The branch-and-bound method is
basically characterized by two decision rules. One provides the method to estimate the upper
bound of an objective function at every node of the state-space tree. The other specifies a choice
criterion for the selection of a node for the next branch.

3.1. The estimation of the upper bound for the objective function at node x

Assume that the current by visited node is x
i
in the state-space tree. Then the partial sequence for

the received video vectors can be defined by the path A
xi

from the root x
0

to node x
i

is
(v1

0
, v2

0
,2, vm

0
), (v1

1
, v2

1
,2 , vm

1
),2 , (v1

i
, v2

i
,2 , vm

i
). That is, there are i switching nodes being as-

signed to received video vectors. The current value of the objective function at node x
i
is:

f (A
xi
)"

i
+
j/1

m
+
k/1

bk
j
vk
j
.

Note that there are remaining n!(i#1) switching nodes unvisited. Let switching node j be
a node in G with bid vector (b1

j
, b2

j
,2 , bm

j
) and incoming links (i

1
, j), (i

2
, j),2, (i

a
, j). We sort the

bids at node j such that biÇj
*biÈj

*2*bim
j
. An upper bound ub

j
for gain contributed from node

j can be estimated by ub
j
"+h

k/1
bik
j
where h"+a

s/1
r
is j

. The value ºB
i
"f (A

xi
)#+n~1

j/i`1
ub

j
is an

upper bound for the objective function value in the complete assignment generated from partial
assignment (v1

1
, v2

1
,2, vm

1
), (v1

2
, v2

2
,2 , vm

2
),2 , (v1

i
, v2

i
,2 , vm

i
).

3.2. The selection process in a branching node.

To facilitate the generation of the state-space tree, a data structure heap called live-node heap is
used to record all live nodes that are waiting to be branched. The search strategy of the proposed
branch-and-bound algorithm is a best-first search. That is, the node, say node x, selected for the
next branch is the live node whose ºB

x
value is the largest among all of the nodes in the live-node

heap. Note that the maximal value is at the top of the heap. Traversing the state-space tree begins
from the root and stops when the live-node heap is empty. In addition, a current maximal source
gain (G

max
) is associated with the branch-and-bound algorithm. Initially, G

max
is set at 0 and

updated to be G
max

"max(G
max

, f (A
y
)) whenever a leaf node y is reached. If a node x satisfies

ºB
x
)G

max
, then node x is bounded since further branching from x will not lead to a better

solution. When the live-node heap becomes empty, we obtain the optimal solution (v1
1
, v2

1
,2 , vm

1
),

(v1
2
, v2

2
,2, vm

2
),2 , (v1

n~1
, v2

n~1
, 2 , vm

n~1
) with optimal value +n~1

j/1
+m

k/1
bk
j
vk
j
"G

max
. The detailed

algorithm is presented in Fig. 8, and the method is introduced using a recursive version.
A simple numerical example is given in Fig. 9. In Fig. 9a, each switching node is associated with

a bid vector and each link is associated with a capacity. Fig. 9b shows the generation of the
state-space tree. Initially, set the current maximal source gain (G

max
) to be 0 and the root node x

0
of

the state-space tree is (1, 1, 1) (i.e., S
0
"Me

1
, e

2
, e

3
N). The upper bound for gain contributed from

switching node 1 is ub
1
"7. This is because b2

1
'b3

1
'b1

1
and r

01
"2. Then, ub

1
"b2

1
#b3

1
"7.

Similarly, we have ub
2
"7 and ub

3
"3. Therefore, the possible received video vectors set for

switching node 1 can be computed and obtained using [S(2)
0

]"M(0, 1, 1), (1, 0, 1), (1, 1, 0)N. This
generates nodes 1, 2 and 3 of the state-space tree.

470 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 8. Algorithm of optimal-stream distribution.

Now, we estimate the upper bound for the objection function (UB) at each node. We observed
that at node 1, ºB

1
"(0, 1, 1))(1, 4, 3)#ub

2
#ub

3
"17 was the biggest value among ºB

1
, ºB

2
and ºB

3
. Therefore, we selected node 1 to be our next branching node. Continuing the same

process, we can reach the first leaf node 7 and update the current maximal source gain (G
max

) to be
17. Finally, G

max
bounds node 4 because (0, 1, 1))(1, 4, 3)#(0, 1, 1))(4, 3, 1)#ub

3
"14(17. Sim-

ilarly, nodes 5, 2 and 3 are bounded by G
max

. Hence, no more nodes are waiting for branching and
the algorithm terminates.

4. A DAG’s-based heuristic algorithm for general graphs

In order to solve the OSGMP for a general graph case, we propose a two phased algorithm to
find an approximate solution. At the first phase, we properly choose a directed acyclic subgraph
from the given general graph and then apply the branch-and-bound algorithm to find an initial
solution. In the second phase, the residual capacities for links are considered so that the source gain
of the initial solution will be increased. To achieve this goal, for each residual link (i, j), we can select
a set of video programs which appear on node i but not on node j, and send them along the link
until the capacities are exhausted. The details are given as follows.

4.1. Phase I: choose a directed acyclic subgraph from a general graph

We can choose a directed acyclic subgraph from a general graph by labeling the node order.
Based on the node order, we can obtained a DAG by removing all links (i, j) if i'j. Different node
orders produce different subgraphs. A good directed acyclic subgraph is a subgraph with greater
source gain at the first phase. A subroutine Find-node-order is proposed to determine a node order
for a general graph such that a good directed acyclic subgraph can be produced. Subroutine
Find-node-order gives each node with a value called gain-lost to estimate the maximum source gain
that may be lost in the first phase when a node order is given.

Initially, we set the gain-lost for each node to be a big number, say 999 except for the source node.
The gain-lost for the source node is set to be 0. For each iteration, Find-node-order will choose
a node whose number of incoming links (in-degree) is zero and then label it. If no zero in-degree

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 471

Fig. 9. A numerical example for branch-and-bound algorithm.

472 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 10. Procedure of find-node order.

nodes are found, then the node with the smallest gain-lost value among the nodes in graph G will be
selected and labeled. The chosen node is then deleted from graph G. Next, we update the bid
vectors of its outgoing neighbors. Let (j, i

1
), (j, i

2
),2(j, i

a
) be nodes j’s outgoing links and

(b1
iÇ
, b2

iÇ
,2, bm

iÇ
), (b1

iÈ
, b2

iÈ
,2 , bm

iÈ
), 2 , (b1

ia
, b2

ia
,2 , bm

ia
) be the bid vectors of node j’s outgoing neigh-

bors i
1
, i

2
,2i

a
, respectively. Note that, after link (j, i

k
) is deleted, the largest gain that can be

achieved is the sum of first r
jik

biggest bids among bid vector (b1
ik
, b2

ik
,2 , bm

ik
). We set the bid values

of the first r
jik

biggest bids to 0. Also, we re-estimate the gain-lost values for nodes i
k

using the
updated bid vector. A complete description of this subroutine is shown in Fig. 10.

For node j with bid vector (b1
j
, b2

j
, 2 , bm

j
) and incoming links (i

1
, j), (i

2
, j),2 , (i

a
, j), if we label

node j as l (j)(minMl(i
1
), l (i

2
),2 , l (i

a
)N, then all incoming links for node j will not appear on the

directed acyclic subgraph and the total capacities r"r
iÇj
#r

iÈj
#2#r

ia j
will not be used for the

first phase. Therefore, we let the gain-lost for node j be the gain contributed from the total lost
capacities r. That is, we sort the bids at node j such that biÇj

*biÈj
*2*bim

j
. A gain-lost, denoted

as glost(j) for node j can be estimated by glost (j)"+r
k/1

bik
j
. Obviously, when in-degree for node j is

0 then the value of glost(j) should be set to 0.
Fig. 11 shows a numerical example for how to determine the node order for a given graph. At

first, the algorithm initializes the gain-lost value for each node. At the first iteration, node i was
depicted and labeled by 0, for in-degree(i) is equal to zero. Now, execute the update process to
modify b

j
and b

k
. For example, updates bid vectors b

j
. Because the capacity of link (i, j) is 2,

therefore, we choose the first 2 biggest bids among b
j
and reset them to 0. This secures a modified

bid vector b
j
"(0, 0, 4) . Similarly, we can obtain the modified bid vector b

k
"(1, 3, 0) . Next,

delete node i from graph G and then update glost(k) and glost(j). For updating the value for
glost(k), (j, k) is the only incoming link of node k, hence, the total capacities r which will not be used
for phase I is equal to 1. Now, we recompute glost(k) using the summation of the first r ("1)
biggest bids among b

k
, and obtain glost(k)"3. Similarly, we can secure the value glost(j)"4.

Repeat the same iteration until graph G becomes empty. Hence, a node order is produced by this
algorithm.

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 473

Fig. 11. Determine the nodes order of graph G.

Based on the node order, we can obtained a DAG by removing all links (i, j) if i'j. At the same
time, we collect the removed links to form a subgraph called a residual subgraph. Note that, if the
given graph is a DAG, obviously the residual subgraph will be empty. Now, we apply the
branch-and-bound algorithm on the directed acyclic subgraph, and obtain an optimal received
video vector for each node of the resulting DAG.

4.2. Phase II: video streams distribution on residual graph

In order to increase the source gain, for every link (i, j) in the residual subgraph, node i can send
video streams to node j. Let link (i, j) have capacity r

ij
in the residual subgraph, and (b1

j
, b2

j
,2, bm

j
)

be the bid vector of node j. Let (v1
i
, v2

i
, 2 , vm

i
) and (v1

j
, v2

j
, 2 , vm

j
) be the received video vectors for

node i and node j, respectively. A video can contribute to the source gain when it is already received

474 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 12. General graph’s streams distribution method. (a) graph partition using a given node order, (b) streams
distribution policy which is found by heuristic algorithm.

at node i but not received at node j. That is, we want to choose a video q such that vq
i
"1 and

vq
j
"0. However, link (i, j) only has capacity r

ij
. Let Q"Mq Dvq

i
"1'vq

j
"0N. Thus, we select

a subset Q@-Q, where DQ@D"r
ij
, such that +

q|Q{
bq
j
is maximized. This can be done by selecting the

first r
ij

biggest bq
j
, q3Q.

Fig. 12a shows the graph partition by giving the node order which is obtained from Fig. 11.
Fig. 12b shows the results from applying the two-phased heuristic algorithm. The two-phased
heuristic algorithm for solving the OSGMP over a general graph is stated in Fig. 13.

5. Simulation results

In this section, the performance of the branch-and-bound algorithm for solving OSGMP over
DAG and the two-phased heuristic algorithm for a general graph case are studied. The criterion we

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 475

algorithm. Two-phased heuristic;
begin

apply subroutine Find-nodes-order;
partition graph G into a subgraph pairs (D, R) where D is the

directed acyclic subgraph, and R is the residual subgraph;
apply DAG’s Optimal-stream-distribution (D);
apply video streams distribution on residual graph R;

end;

Fig. 13. Algorithm of two-phase heuristic.

adopted to evaluate the branch-and-bound algorithm was the traversing ratio of the state-space
tree, which is defined as n

b
/N, where n

b
is the number of nodes that are traversed by the

branch-and-bound algorithm, and N is the number of nodes in the complete state-space tree. On
the other hand, the criterion we adopted to evaluate the two-phased algorithm was the gap ratio,
which is defined as 1!X

heu.
/X

opt.
, where X

heu.
is the source gain of the two-phased heuristic

algorithm, and X
opt.

is the optimal source gain.
The performance of these algorithms are influenced by the following five factors:

(1) number of nodes,
(2) the capacity constraint for each link,
(3) the bid vector with respect to each node,
(4) number of video programs available for customer subscription, and
(5) the shapes of the given graph.

Hence, the following assumptions were made about the experiment to address these factors.

(1) The capacity constraint for each link was randomly assigned to either 5 or 6.
(2) The bid of each video program at any switching node was randomly generated between

intervals [0, 10].
(3) Number of video programs m, available for customers subscription m"8, 10, 12 were con-

sidered.
(4) Twenty instances of bid vectors were run for each given graph, and the traversing ratio (gap

ratio) was also computed when the branch-and-bound algorithm (two-phased heuristic algo-
rithm) was applied.

(5) Five DAGs were depicted from randomly generated graphs, then run for the branch-and-
bound algorithm. The number of nodes n"10, 12 were considered. Fig. 14a shows these graph
topologies.

(6) Five general graphs were depicted from randomly generated graphs, then run for the two-
phased algorithm. The number of nodes n"10 was considered. Fig. 14b shows these graph
topologies.

The results of the average traversing ratios are listed in Table 1, with the number of nodes
n"10, 12 and number of video programs available for customers subscription m"8, 10 and 12,
respectively. On average, the traversing ratios were no more than 12% (3%) for 10-node (12-node)
networks.

476 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Fig. 14. Network topologies used in the performance evaluation. (a) DAGs run for branch-and-bound algorithm
(b) General graphs run for two-phased algorithm.

The other experiment was done by applying the two-phased algorithm to five general graphs
with n"10, m"10, and for each given graph, 20 instances of bid vectors were considered. The
experimental results are listed in Table 2. It shows the source gains which were found using the
two-phased heuristic algorithm are very close to the optimal source gains and most of the gap
ratios were less than 0.07. Therefore, the proposed two-phase algorithm is very efficient.

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 477

Table 1
Variation in average traversing ratios for branch-and-bound algorithm

n"10 n"10 n"10 n"12 n"12 n"12
m"8 m"10 m"12 m"8 m"10 m"12

n
b
/N 11.4% 10.2% 10.8% 1.6% 2.6% @2.1%

Table 2
Comparision of two-phase algorithm and optimal algorithm on source gain and computational time

Sample Source gain Computational Sample Source gain Computational
time (s)! time (s)!

X
heu.

X
opt.

Gap- ¹
heu.

¹
opt.

X
heu.

X
opt.

Gap- ¹
heu.

¹
opt.

ratio ratio

1 218 226 0.035 6 78 51 235 237 0.008 9 364
2 214 220 0.027 14 118 52 253 259 0.023 12 254
3 203 210 0.033 1 645 53 221 225 0.018 10 178
4 210 218 0.037 116 4411 54 243 243 0.000 10 154
5 209 211 0.009 1 56 55 232 235 0.013 8 472
6 201 205 0.020 1 48 56 233 241 0.033 10 526
7 209 221 0.054 106 111 57 212 216 0.019 14 3121
8 218 221 0.014 1 598 58 238 247 0.036 10 797
9 210 221 0.050 200 2464 59 225 228 0.013 9 112

10 231 231 0.000 6 313 60 235 251 0.064 13 17
11 202 204 0.010 2 7351 61 217 218 0.005 1 4
12 243 249 0.024 1 74 62 216 217 0.005 1 3
13 215 222 0.032 42 2580 63 194 194 0.000 2 6
14 212 217 0.023 3 224 64 210 210 0.000 1 5
15 214 215 0.005 66 3387 65 202 202 0.000 2 11
16 220 230 0.043 43 104 66 192 195 0.015 1 1
17 191 201 0.050 61 3005 67 211 212 0.005 2 6
18 232 237 0.021 4 1412 68 215 216 0.005 1 4
19 199 203 0.020 26 380 69 216 216 0.000 1 5
20 228 232 0.017 7 345 70 214 214 0.000 1 12
21 188 188 0.000 1 28 71 195 195 0.000 1 4
22 188 188 0.000 1 16 72 241 243 0.008 1 1
23 166 173 0.340 19 32 73 206 209 0.014 1 2
24 186 186 0.000 1 15 74 211 214 0.014 3 9
25 192 192 0.000 1 23 75 212 212 0.000 1 3
26 172 174 0.011 20 23 76 224 224 0.000 1 4
27 178 178 0.000 1 22 77 188 191 0.016 2 4
28 192 197 0.025 1 27 78 231 231 0.000 1 6
29 198 198 0.000 1 15 79 202 202 0.000 3 9
30 190 190 0.000 1 18 80 226 226 0.000 1 5
31 172 185 0.070 1 28 81 185 185 0.000 10 141
32 209 217 0.037 1 22 82 183 183 0.000 13 229
33 188 188 0.000 8 31 83 172 172 0.000 17 213

478 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

Table 2. (Continued)

Sample Source gain Computational Sample Source gain Computational
time (s) time (s)

X
heu.

X
opt.

gap- ¹
heu.

¹
opt.

X
heu.

X
opt.

gap- ¹
heu.

¹
opt.

ratio ratio

34 190 190 0.000 1 16 84 189 189 0.000 12 336
35 186 186 0.000 1 17 85 197 197 0.000 9 451
36 195 195 0.000 1 30 86 178 178 0.000 9 293
37 167 170 0.018 24 95 87 182 182 0.000 11 405
38 197 201 0.020 1 27 88 199 199 0.000 11 2148
39 178 178 0.000 1 18 89 184 184 0.000 23 1619
40 193 193 0.000 1 20 90 196 196 0.000 15 226
41 220 234 0.060 24 926 91 189 189 0.000 11 827
42 245 244 0.004 9 1246 92 197 197 0.000 10 1148
43 217 217 0.000 11 303 93 182 182 0.000 15 625
44 236 241 0.021 8 188 94 189 189 0.000 13 829
45 240 240 0.000 2 483 95 190 190 0.000 13 432
46 220 219 0.005 17 253 96 189 189 0.000 20 1425
47 231 231 0.000 10 1848 97 167 167 0.000 13 468
48 247 249 0.008 7 1006 98 201 201 0.000 14 223
49 229 241 0.050 10 137 99 179 179 0.000 13 125
50 256 256 0.000 5 156 100 188 188 0.000 14 50

!These samples were run on IBM PC with Pentium-PRO-S CPU of 200 MHz.

6. Concluding remarks

In this paper, we formally modelled the optimum source gain multicast problem as an integer
programming problem. A branch-and-bound method was proposed to solve this problem for
a DAG case. We presented a two-phased algorithm to find an approximate solution for a general
graph case. From the computation results, it is shown that the objective function value of the
approximation solution is very close to the optimal value. On the other hand, in our design issue of
the two-phased heuristic algorithm, a good directed acyclic subgraph was determined by choosing
a node order for the given graph to achieve higher gain in the first phase. We used gain-lost values
as the criterion for labeling the node order. In the update process for each iteration, we updated
the bid vector of the chosen node’s outgoing neighbors by setting first r biggest bids to be 0, where
r denoted the capacity for the outgoing link. This was based on assuming that the chosen
node would receive every kind of video from the server node. However, this assumption is not
accurate enough and it will cause an under-estimate of the gain-lost values. Therefore, a more
accurate estimation of the gain-lost values to enhance the performance of the two-phase algorithm
will be our future research.

The postoptimality analysis is also a possible future research. For example, it may happen that
a customer decide to discontinue viewing a particular video and switches to some other video
stream. One way to accomplish this is to solve the problem anew, but this may be computationally

C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480 479

inefficient. If one makes use of the properties of the multicast tree solution, it is possible to reduce
additional computations.

References

[1] Garey MR, Johnson DS. Computers and intractability, San Francisco: W.H. Freeman, 1979.
[2] Hakimi SL. Steiner’s problem in graphs and its implications, Networks 1971;1:113—33.
[3] Levin A. Ju. Algorithm for the shortest connection of a group of graph vertices. Soviet Mathematical Doklady

1971;12:1477—81.
[4] Beasley JE. An algorithm for the Steiner problem in graphs. Networks 1984;14:147—59.
[5] Wong RT. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Programming,

1984;28:271—87.
[6] Shore ML, Foulds LR, Gibbons PB. An algorithm for the Steiner problem in graph. Networks, 1982;12:323—33.
[7] Wu YF, Widmayer P, Wong CK, A fast approximation algorithm for the Steiner problem in graphs. Acta

Information, 1986;23:223—9.
[8] Takahashi H, Matsuyama A. An approximate solution for the Steiner problem in graphs. Mathematics of Japan

1980;24:573—7.
[9] Hwang FK, Richards DS. Steiner tree problems. Networks 1992;22:55—9.

[10] Winter P. Steiner problem in networks: a survey. Networks 1987;17:129—67.
[11] Noronha Jr. CA, Tobagi FA. Optimum routing of multicast streams. Proceedings of IEEE Infocom’94,

1994;2:865—73.
[12] Shacham N, Meditch JS. An algorithm for optimal multicast of multimedia streams. Proceedings of IEEE

Infocom’94, 1994;2:856—63.
[13] Zhu Q, Parsa M, Garcia-Luna-Aceves JJ. A source-based algorithm for delay-constrained minimum-cost multi-

casting. Proceedings of IEEE Infocom’95, 1995;1:377—85.
[14] Kompella VP, Pasquale JC, Polyzos GC. Multicast for multimedia applications. Proceedings of IEEE Infocom’92,

1992;3:2078—85.

480 C.-F. Wang et al. / Computers & Operations Research 26 (1999) 461—480

