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A b s t r a c t - - T h e  multiple stacks problem is that a number of stacks have to be manipulated in a 
finite continuous memory, simultaneously. Many applications need the support of multiple stacks, 
e.g., the parallel computing with shared memory. The~e are two approaches mentioned in [1] for 
manipulating multiple stacks. In this paper, we present and analyze the Multigroup method which 
combines the concept of coexisting. By the concept of coexisting, storage sharing in a linear data 
structure is possible. We show that the new method has better performance than the two previous 
approaches, and improves the extra manipulating time. 

1. I N T R O D U C T I O N  

Stack is a kind of linear list. It is a simple and useful data structure. A stack usually has 
two operations, Push and Pop. The simplest and most natural way of keeping a stack inside a 
computer is to put items in sequential locations. It is quite convenient to deal with one stack by 
sequential locating. However, software developers frequently encounter programs which involve 
multiple stacks, each of which has dynamically varying size. In such a situation, keeping multiple 
stacks in a common area which is sequential in allocation will cause some troubles. Because 
the sequential locations are shared by many stacks, each stack must keep two pointers, the top 
and bottom addresses of the stack, just belonging to itself. However, developers would hate to 
impose a maximum size on each stack, since the size is usually unpredictable. Another problem is 
overflow. An overflow situation will occur when the stack is already full, yet there are still more 
items that ought to be put in. A solution for overflow is memory reallocation, making room for 
the overflowed stacks by taking some spaces from stacks that are not yet filled. This operation 
is called repack; it may move a few items to their proper locations in order to keep correctness of 
push operations coming later. 

Knuth [1] proposed an intuitive algorithm to reallocate memory by move operation when 
overflow occured. Suppose that there are n stacks, and that m items are pushed into the n stacks 
randomly. As is shown in the analysis of Knuth [1], the reallocation needs 

1 ( 1 - 1 )  ( ~ )  

move operations in the average case. The detailed algorithm and analysis can be found in [1]; we 
do not describe it here. 

An improved algorithm in [1], ~a-called Algor i thm G, was proposed by J. Garwick, who 
suggested a complete repacking of memory when overflow occurs. The detail of Algorithm G is 
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also shown in [1]. Algorithm G is more complicated than the previous Knuth's  method but the 
performance of Algorithm G is better than Knuth's  method. The analysis of Algorithm G can 
be found in [2]. 

In this paper, an idea called coexisting is applied to the manipulation of multiple stacks. By 
the concept of coexisting, an improved algorithm [3], called Multigroup method, is presented. We 
will also analyze the performance of the Multigroup method here. The results of analysis can 
estimate the algorithm's performance and explain its properties correctly. We will also show 
that  the performance of our method is better than the previous two methods, both theoretically 
and practically. In Section 2, the concept of coexisting and the Multigroup method are stated. 
The models of analysis are described in Section 3. Section 4 outlines the theoretical values 
and experimental results and gives a comparison. In addition, we also compare the Multigroup 
method with the previous two methods in [1]. In conclusion, we suggest an approach which makes 
the Multigroup method work flexibly. 

2. T H E  M U L T I G R O U P  M E T H O D  

A stack is a last-in-first-out (LIFO) data structure which always grows towards one direction. 
If the stack is given a fixed size, the number of items in the stack will not exceed the capacity 
of the stack; otherwise, an overflow will occur. The concept of coexisting is to set two stacks 
so that  they grow towards each other. The capacities of the two stacks can be shared. If the 
number of items in one of the two stacks exceeds the capacity of a single stack, the capacity 
of the other stack can be used to store the exceeding items of the neighbor stack. This idea is 
shown in Figure 1. The Multigroup method applies the idea to the multiple stacks by dividing 
the total stacks into several groups and growing the even numbered stack and odd numbered 
stack in opposite directions. 

Is tack 11 Istack2, I ~stack ~ [stack 21 

Bottom Bottom Bottom Bottom 
of stack 1 of stack 2 of stack 1 of s,.ack 2 

(~) (b) 
Figure 1. (a) Growing stacks in the same direction. (b) Growing stacks towards each other. 

The detail of the Multigroup method is described as follows. Assume that there are n stacks and 
these stacks all share the common memory area consisting of all locations p with P0 < P < Poo, 
where P0 and Poo represent the lowest and highest locations of the common memory area. For 
each stack i, we shall use BASE[i] and TOP[i] to represent the position one less than the bottom 
and the position of the top of stack i, respectively. C O N T E N T S ~ ]  stands for the content of 
memory address p, P0 < p < P¢~. Let n ~ be defined as follows: 

n I = n if n is even, 
2 

n' - (n + 1) if n is odd. 
2 

Initially, we divide the n stacks into n ~ groups. If n is odd, a pseudo stack n + 1 will be 
added for processing easily. Each group consists of one odd numbered stack 2i - 1 and one even 
numbered stack 2i, 1 < i < n ~. The two stacks in the same group grow towards each other. We 
start  out by giving each group equal space, /(Poo - Po)/n'l. The bottom and top positions of 
stacks begin with 

BASE[2i - 11 = TOP[2i - 11 = [ ( ! .~)  (p~  _ P0)J + P0, 

BASE[2i] = TOP[2i] = L(~) (Poo - Po)] + Po + 1, f 
l < i < n  I. 
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If Poo-P0 is divisible by n', all groups have the same available space. For example, if Poo-P0 = 20 
and n = 4, the initial step is shown as Figure 2, and the detailed algorithm is listed as follows: 

Initial(n) 

begin  

n' ,--- (b,/21 • 2)/2; 

for i := l to n' do 

begin 

BASE[2 i -  1] ,-- [ ( ~ ) ( P o o  - P0)J + To; 

TOP[2i -  1] *-- L(£~) (Poo - P0)J + P0; 

OLDTOP[2i-  1] ~ [ ( £ ~ ) ( B o o -  P0)J + P0; 

BASE[2,~ ~ t ( ~ ) ( P ~ -  P0)] + P0 + 1; 

TOP[2i] ,---- [ ( 5 ) ( P ~  - P0)J + Po + 1; 

OLDTOP[2i] .--- [ (~)(Poo - P0)] + P0 + 1; 

end; 

end; 

P0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

l l l l l l l l l l l l l l l t l l l l l  
bl b3 b2 b4 
tl  t3 t2 t4 

Figure 2. The initial step of the Multigroup method. 

After the initial step, the Push and Pop operations are similar to the situation of a single 
stack, except that the odd numbered stacks always grow towards higher locations and the even 
numbered stacks grow towards lower locations. We show them in the following: 

Push(i, Y) (* Push the item Y into stack i .)  
begin  

if i is odd 
t h e n  begin 

TOP[i] ,-- TOP[i] + 1; 
if TOP[i] > TOP[i + 1] 

t h e n  Overflow(i) 
end  

else begin  
TOP[z~ ~.- TOP[i] - 1; 
if  TOP[z~ <_ T O P [ i -  1] 

t h e n  Overflow(i) 
end; 

CONTENTS[TOP[i]] ~-- Y; 
end; 

Pop(i, Y) ( ,  Pop the item Y from stack i ,)  
begin  

if  TOP[z~ - BASE[i] 
t h e n  Uuderflow( i) 

25:3-0 
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else  b e g i n  
Y ~-- CONTENTS[TOP[ill;  
i f  i is odd 

t h e n  TOP[IJ ~ TOP[z] - 1 
else TOP[s~ ~ TOP[i] + 1; 

end ;  
e n d ;  

While pushing an item into stack i and finding TOP[i] >_ TOP[i+1] or TOP[i] <_ TOP[i-I],  we 
say that  overflow is occurring at the group which contains the stack i. The  memory reallocation 
is needed at this time. The reallocation strategy is stated as follows: 

1. Find the total amount of available space left. 

2. Check whether all the available space is used up. 

3. Compute the new B A S E  address of each stack in accordance with the following principle: 

* Set two reallocation parameters a and fl, where 0 < a, fl _< 1 and a + fl = 1. 

• Approximately a x 100 percent of available space is shared equally among the n ~ 
groups, and the other f l x  100 percents will be reallocated in proportion to the ratio 
of growth of individual stack pair since the last overflow. 

4. Shift up or down each stack to the accurate position. 

5. Adjust related pointers of each stack. 

In the example of Figure 2, there are some items pushed into stacks and the stacks become 
Figure 3a. The left group containing stack 1 and stack 2 is already full at this time. Now, if an 
i tem belonging to stack 2 is pushed again. The left group will cause overflow. Before the new 
item which belongs to stack 2 is pushed, the number of items in the left group and the right group 
are 10 and 5, respectively; and the total number of available space is 5. Let a = 0 and fl = 1 be 
the predefined reallocation parameters. After reallocation, the number of available space in the 
left group is 5 x 10/15 ~. 3, the right group is 5 x 5/15 m 2. Then we can push the new item into 
stack 2, as shown in Figure 3b. 

tl t2 t3 t4 

Po ; ;  ,I, +P. 
1 2 3 4 5 6 7 8 9 I0 II 12 13 14 15 16 17 18 19 20 

I I I I M i n i  
t t  
b3 b2 

(a) 

tl t2 t3 t4 

Po + + + +P. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ut t , t  b3 b2 
Ncw itcrn 

(b) 
Figure 3. (a) An overflow; (b) the solving strategy of the Multigroup method. 

The Overflow algorithm contains two additional arrays called OLDTOP[~ and NEWBASE[i],  
1 < i < n. They  are used to store the value of TOPIs1, in which previous time memory was 
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allocated, and the new BASE[s] jus t  after reallocation. Further, a procedure called Repack is 
used to shift the items down or up. The algorithm is listed in as follows: 

Overflow(i) (* Solve the i th stack's overflow ,)  
b e g i n  

S u m  4--- Poo - P0; (* S u m  equal to the total amount of memory space left , )  
Ine  ~-- O; (* Inc  equal to the total amount of increases in stacks 

size since the last allocation , )  
fo r  j := 1 t o  n d o  (* Compute the total number of available space , )  

i f  j is odd t h e n  
b e g i n  

S u m  ~ S u m  - ( T O P ~ ]  - BASE[ j ] ) ;  
i f  T O P ~ ]  > O L D T O P ~ ]  

t h e n  b e g i n  
D~] .-- T O P ~ ]  - O L D T O P ~ ] ;  
Ine  ~ Inc  + D[j];  

e n d  
else  

D[j] ,--- O; 
e n d  

e lse  b e g i n  
S u m  ~ S u m  - ( T O P ~ ]  - B A S E , l ) ;  
i f  T O P ~ ]  < O L D T O P ~ ]  

t h e n  b e g i n  
D~] ~ O L D T O P ~ ]  - TOP[j];  
Ine  ~ Ine  + D[j]; 

e n d  

, - -  o; 
end;  

i f  s u m  <_ 0 (* There is no remained available space , )  
t h e n  Systemfail; 

Ave  ~ a * LSum/n'J; 
Weigh t  ~ 1~ * ISurn/IncJ;  
N E W B A S E [ 1 ]  ¢- BASE[ l ] ;  
N E W  B A S  E[2n'] 0-- B A S  E[2n']; 
a *-- O; 
fo r  j := 1 to  n ~ - 1 do  ( ,  Set new bot tom address of stacks , )  

b e g i n  
r ,-- a + D[j  - 1] • Weigh t  + Ave; 
N E W B A S E [ 2 j ]  ,-- N E W B A S E [ 2 j  - 1] + (TOP[2 j  - 1] - BASE[2j - 1]) 

+[rJ  - [aJ + (TOP[21] - BASE[2j]) + 1; 
N E W B A S E [ 2 j  + 1] *-- N E W B A S E [ 2 j ]  - 1; 
O" ¢-- T; 

end;  
i f  i is odd 

t h e n  TOP[i] .-- TOP[z] - 1 
else TOP[i] *-.- TOP[i] + 1; 

Repack; 
i f  i is odd 

t h e n  TOP[i] ~ TOP[,] + 1 
e l se  TOP[i] ~-- TOP[t] - 1; 

fo r  j := 1 t o  n do  ( ,  Save the old T O P ~ ]  for computing the increasing items , )  
O L D T O P ~ ]  .-- TOP[i];  

end;  

e lse  
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Repack ( ,  Move stacks' items ,)  
begin  

j ~--- 1; 
while  j _< n do 

begin  
i f  NEWBASE[J] < BASE[J] (* Shift down *) 

t hen  beg in  
6 ~ BASE[j] - NEWBASE[j];  
i f  j is odd t hen  

for  p := BASE[j] + 1 to  TOP[J] do 
C O N T E N T S [ p -  6] *..- CONTENTS[p] 

else 
for  p := TOP[j] to  BASE[j] - 1 do  

CONTENTS[p  - 6] ,-- CONTENTS[p]; 
BASE[j] ~ N EWBASE[j]; 
TOP[j] ~ TOP[J] - if; 

end; 
j ~ j +  1; 

end; 
while j # 1 do ( ,  Shift up *) 

beg in  
if  NEWBASE[j]  > BASE[j] 

t hen  begin  
6 .-- NEWBASE[j]  - BASE[j]; 
if j is odd t hen  

for p := TOP[J] downto BASE[J] + 1 do 
CONTENTS[p  + 6] ~ CONTENTS[p] 

else 
for  p :-- BASE[j] - 1 downto  TOP[j] do 

CO NTENTS[p  + ~f] ~-- CONTENTS[p]; 
BASE[J] ~ N EWBASE[j]; 
TOP[j] ~-- TOP[J] + if; 

end; 
j * - - j - l ;  

end; 
end; 

Underflow(i) ( ,  Stack i occurs underflow ,)  
beg in  

writeln('Stack ',i,' is empty.'); 
( ,  print the messages of stack empty ,)  

end; 

3. T H E  P R O B A B I L I S T I C  ANALYSIS OF T HE  M U L T I G R O U P  M E T H O D  

The time complexities of the Multigroup method are analyzed as follows. The procedure Initial 
takes O(n) time to initialize the stacks' bottom and top addresses. The operation Push (or Pap) 
will spend O(1) time to push an item into one of the stacks (or pop an item from one of the 
stacks), if the operation is successful. Otherwise, when the operations fail, the Push operation 
will reallocate memory and execute the Overflow procedure, and the Pop operation will execute 
the Underflow procedure. The Underflow procedure only needs O(1) time to reply a message 
to users that there is no item in the stack. On the other hand, the procedure Overflow is 
much more complicated than the Underflow. In the Overflow procedure, the first for  loop is 
used to compute the total number of available space, taking O(n) time, while the overflow is 
occurring. The second and the third for loop is to set the new bottom addresses and save the old 
top addresses for every stack, taking O(n) time, too. The only unknown time is the procedure 
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Repack. The Repack procedure, contained in Overflow, is used to move data  items from old 
BASE[i] to NEWBASE[s] when overflow occurs. The item movements are very costly in time 
and take up most of the time of manipulating stacks. But,  we do not know how many items will 
be moved indeed when overflow occurs. Since the number of item movements cannot be observed 
from the procedure directly, we proposed a probability model estimating the expectation of item 
movements and finding the overflow probability when k items are pushed into the stacks. Of 
course, k should not be larger than the size of memory. 

Assume that  the memory size used to manipulate all stacks is Poo - P0 = m, the number of 
stacks is n, and n ~ is defined as in Section 2. An experiment which pushes items into n different 
stacks contained by n ~ groups will be done. For the sake of easy understanding, in the experiment, 
the m memory cells can be thought of as m balls and the n ~ groups as n ~ boxes. The n ~ boxes 
are labeled 1 , . . . ,  n ~. The random variable Yj, 1 < j < m, is defined as the label of the box into 
which the jth ball is placed. {1~ = i} denotes the event that  the experiment pushes the jth ball 
into the i th box. Let k pushes be a k-dimensional random vector (Y1,. . - ,Yk),  where 1 < k < m. 
Here, the random variables Y1, . . . ,  Yk are mutually independent. 

Each experiment begins with empty boxes. Then the balls are placed into the boxes and form 
a random vector (Y1,- . . ,  ~ , . . . ) .  After the m balls are all pushed into the boxes, the pushing 
will be stopped and the experiment is finished once. The finished experiment generates an 
m-dimensional random vector. Each random vector has at most m dimensions, when the number 
of balls is m. 

We define X{ to be the random variable of the number of balls in i th box after j balls are 
pushed, where 1 < j _< m and 1 < i < n ~. Since the boxes in our experiment correspond to the 
groups in the Multigroup method, the items pushed into stack 2 i -  1 or stack 2i should be placed 
to group i, i.e., box i. The difference between groups and boxes is that  the capacity of each group 
is bounded and each box almost has no limitation. Tha t  is, when the number of balls is larger 
than the capacity of groups, overflow will occur. Let ti, 1 < i < n ~, represent the number of 
available space of group i. The overflow will occur at the smallest j with X{ > ti for 1 < i < n ~. 

We now discuss the expectation of total pushed items when overflow occurs. For simplicity, 
only the first overflow situation is considered here. At the initial step, assume the total memory 
size m is divisible by the number of groups n ~, and each group is of the same size m/n ~. We denote 
X(n, ) j  to be the maximum ofXx ~ . ,X~n,, i.e., X(n, ) i  = max{X~, . . .  J ,.. , Xn, }. The first overflow will 

occur at the smallest j with XJ(,9 > m/n',  where 1 _< j _< m. {X(~n,) > t} is the event that  

the maximum of the items in n ~ groups is more than t after k items are pushed. To compute 
the probability of the event {X~n, ) > t} more easily, we define N(t) to be the smallest j with 

J X(n, ) > t; i.e., g(t )  = inf{j;  X{n, ) > t}. It is clear that  the event {X~n, ) > t} is equivalent to the 

event { g ( t )  < k}. 

Therefore, when the k th item is pushed, the probability of overflow will be 

Pr{N( t )  = k} = Pr{N( t )  < k } -  Pr{N( t )  < k -  1} 

= Pr{X~n, ) > t} - Pr{X~nS J > t}. 

Now, if we place k balls into n' boxes, a k-dimensional random vector (YI,Y~, ... ,Yk) will be 
generated. Let the probability of placing a ball into the box i be P~i = Pr{]~ = i}, 1 < i < n ~. 
The joint density of the numbers of balls in the n ~ boxes X ~ , . . . ,  X~n, is as follows. 

P r { X ~  m y l , . . . , X  ~' = Yn'} = 
(y,,!) " " p . , ,  

O, 

yi are nonnegative integers, 
such that  Yx + "'" + Yn, - k; 

elsewhere. 
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Let 

Pk(t) = Pr(X  s t , . . .  , x ,  h, < q ,  (1) 
k! _,y., 

( y , ! ) . . . ( y , , ! )  ""P " ' '  (2) 
O_<gr..U.,_<t 

where Yl , . . . ,  Yn, are nonnegative integers, such that Yl + Y~ + "'" + Yn, - k. We have 

Vr{X~.,) > t} = 1 - Vr{X~n, ) < t )  

= 1 -  e r{X~ < t , . . . , X ~ ,  _(t} 

= 1 - P~( t ) .  

Therefore, when the ]C t h  item is pushed, the overflow probability Pr{N( t )  = k} can be represented 
~8 

Pr{N(t )  = k} = Pr{Xn k, > t} - Pr{Xnk71 > t} 

= 1 - P k ( t )  - (1 - P k - l ( t ) )  (3) 

= Pk- l ( t )  - P~(t). 

I f  m is divisible by n',  P r { N ( m / n ' )  - k} is the probability of the first overflow occurring at 
the time when the It t h  item is pushed after the n stacks are initialized. However, in general, the 
available space of each group are not the same in the second, third and later overflows. In order to 
suit these overflows, the equations (1)-(3) are generalized as follows. Let t l ,  t~ , . . . ,  t , ,  represent 
the number of available space of group 1, group 2, .., group n' respectively. N ( t l ,  t2,  t , , )  • . , . ' . ,  

stands for the smallest j that  one of the conditions XI > tl ,  X~ > t2 , . . .  ,X~, > t , ,  is satisfied; 
i.e., N ( t l , t 2 , . . .  ,tn,) = inf{j ;X~ > ti, 1 < i < n'}. And we define 

P t ( t l , . . .  , t , , )  = Pr{X~ _< t l , . . .  ,X~, _< t , ,} .  

We have the following lemma. 

LEMMA 1. In the M u l t i g r o u p  method, after k items are pushed into n stacks, the p r o b a b i l i t y  of 
n o  o v e r t l o w  is  

k! p,~, _,~., 
. . .  (yl!) . . . (y , ,!)  " " P " "  

o<y~ <t~ o_<u., < t . ,  

w h e r e  Y l , . . . ,  Yn' are n o n n e g a t i v e  in tegers ,  such  t h a t  91 + 92 + "" • + Yn' = k .  

PROOF. Since the items belonging to stack 2i - 1 stack 2i are pushed into group i, where 1 _< 
i _( n'. Let p j  be the probability of pushing an item into stack j ,  and zj be the number of items 
pushed into stack j ,  1 <_ j _< n. Therefore, we have 

P~ "-  P l  -I" P2, 

P2 ---- P3 -I- P4, 

and 

P~, = P2 . ' - I  + P~.'- 

Y l  -" X l  + X2 ,  

Y2 ~ X3 + X4,  

Yn '  - -  X 2 n ' - I  ")" X2n~. 

If n is odd, P2n, = 0 and x2n, = O. Since Pk ( t l , . . .  ,tn,) is the general form of the equation (1), 
the lemma can be proved by applying the equation (2). | 
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If items are pushed into a multiple stacks system with n stacks, and tx, . . . .  tn, are the numbers 
of available space of the n ~ groups, respectively, since the last reallocation, then we have the 
following lemma. 

LEMMA 2. When the k th i tem is pushed, the probability o f  overflow is P h - l ( t x , . . . , t n , )  
-Pk(t l , . . . , t , , ) .  

PROOF. The overflow probability is similar to the equation (3), 

V r { N ( t l , . . .  , in,) = k} = V r { N ( t l , . . .  , in,) < k} - P r { N ( t l , . . .  , tn,) < k - 1}, 

and 

Thus,  

P r { N ( q , . . . , t , , )  < k} = 1 -  Pr{X~ < t x , . . . , X ~ ,  < t , , }  

= 1 - Pk( tx , . . .  , t , , ) .  

Pr{N( t l ,  . . .  , tn,) = k} - P k _ l ( t l , . . .  ,tn,) - -  e k ( t l , . . .  ,tn'). | 

Suppose the total number of available space so far is ta + . . .  + tn, = m, n is the number of 
stacks, and n' is the number of groups. We define EXm,,~ to be the expectation of pushed items 
when overflow occurs. 

LEMMA 3. 
m 

E X , . ,  = P i ( t , , . . . , t , , ) .  
i=O 

PROOF. By Lemma 2, 

E X I l r l  ,n  "-- 

m+l 
Z j "  P r { N ( t x , . . .  ,t,~,) = j )}  
j=l 
m+l 
Z j ' ( P j - l ( t l ' ' ' "  ' t n ' ) -  e j ( t l " ' "  tn')) 
j=l 
Po( t l , . . .  , t , , )  + P l ( t l , . . .  ,t,~,) + . . .  + P , , ( t l , . .  . ,t,~,) - (m + 1). Pm+l ( t l , . . .  ,tn'). 

Since the total number of available space is m, the ( m +  1) th push will cause overflow definitely. 
We have Pm+l( t l ,  . . .  , tn,) = 0, thus 

EXm,,  = E~=ot '~( t l , . . . , t , , ) .  | 

When overflow occurs, the total items in n stacks must be repacked. Since the number of 
items in each group is different, various numbers of data  movements are required. However, 
i tem movements are not necessary for all stacks, for the new bot tom addresses N E W B A S E [ i ] ,  
1 < i < n, are determined by the ratio of each stack's items and the two parameters ~ and/3. If 
the old bot tom address BASE[i]  is equal to the new bot tom address N E W B A S E [ s ] ,  the items 
in i th stack will avoid being moved. Moreover, since the bot tom of stack 2i is connected with the 
bot tom of stack 2i + 1 for 1 < i < n'  - 1, the movement of stack 2i and stack 2i -!- 1 will occur 
at the same time. 

We observe the addresses BASE[i]  and N E W B A S E [ z ]  which are the bot tom addresses of 
stack i before and after repacking, for 1 _< i _< n. Let t t , t ~ , . . . , t n ,  represent the number of 
available space in n ' groups and zi be the number of items in stack i when the last reallocation was 
done, zx + . . . + z n  = k. Assume the bot tom address of stack 1 is zero, i.e., BASE[ l ]  = 0. Then, 
the bot tom addresses of stacks n will be BASE[n]  -- m + 1 if n is even (or B A S E [ n  + 1] = m + 1 
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if n is odd), where m is the total number of memory cells. The bot tom addresses of the other 
stacks are 

BASE[2i] = ~(x2~-i +x2~ +t~)+ 1 
j= l  for l < i < n ' - l .  

i 
BASE[2i + 1] = Y~ (z2j-a + z2j + t j)  

j = l  

From the last reallocation on, there are z~ items pushed into stack i for 1 < i < n, and z] + 
• .. + z"  - k'. If overflow occurs at the k th pushed item, the procedure Overflow will be executed 
as follows. First, it calculates the total number of available space in the n'  groups and sets the 
new bo t tom address NEWBASE[i]; then the procedure Repack is started. Let t ] , t~ , . . . , t '~ ,  
represent the number of available space remained in n' groups after the all k' items are pushed. 
Except the stack I and stack 2n', the new bottom addresses of stacks should be 

' } NEWBASE[2il = ~ (x2~-~ + x2~ + x' j= x 2j- 1 + z~j + t~) + 1 

i ' f°r 1 < i < n ~ -  1" 

NEWBASE[2i  + 1] = Y~ (x~j-x + z2j + x'  ./----1 2 j - - I  -[- Xt2j "~ t~ ) 

The following condition must be satisfied in order to avoid moving items. 

LEMMA 4. The necessary and sufficient condition of BASE[2i] = NEWBASE[2i] or BASE[2i 
+1] = NEWBASE[2i  + 1] in the Multigroup method is 

~ x ; .  (x + t " -  (k+ k') [ × ~) = ~ ×,. ( [ - ~ J  - Ira- {~+k"J) +~ × ~, 

where 1 < i < n ~ - 1 and a , /3  are the parameters  in procedure Overttow. 

PROOF. If BASE[2i] = NEWBASE[2i] or BASE[2i+ 1] = NEWBASE[2i+ 1], 1 < i < n ' - 1 ,  
the addresses of the stacks before and after overflow should satisfy the condition 

i i 

+ + = + + + + 

j----1 j = l  

except that  the bot tom addresses of stack 1 and stack 2n' are always 0 and m + 1. So, 

i i 2i i 

E(X2j_I-~-X2~'4-tj)-" E(~gj_I'4CZ2j-~t~'3LX~j_I']-Xt2~), EX~  = E ( t i - - ~ ) .  (4) 
j=l  j=l  j=l  j=l  

Since the available space is determined by the number of items in the stacks and the parameters a 
and/3,  the values of tj and t) are as follows: 

L t~= ---yr- x ~ + ( z 2 ~ - ~ + x v )  x/3, (5) 

' [m - (k + k')J × ~ + ( 2j_l + ~ , )  • [ =  x' m - (kk, + k') i x / 3 .  (6) tj n' 

We replace the tj and t~ in equation (4) with (5) and (6), and get 

Thus, 

E ~ ' j  k ~ n~ 

If the above condition is satisfied, the stack 2i and stack 2i + 1 will not be moved during the 
repacking process. | 
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In the condition of Lemma 4, the zl + . . .  + zn = k is the total number of items of the last 
reallocation, and m is the initial number of available space. Let the random variable Xl be the 
number of pushed items since the last reallocation. The probability of stack i which has no 
movement is defined as qi. 

LEMMA 5. 
qi = 1, for i = 1 and i = 2n I i f i  i s  e v e n ;  (7) 

where 

q2i  = q2i+l = 

× [P , , (h , . . .  , t , ) .  (pk,_l_, , (t ,+~, . . .  , t , , )  - P, ,_0,(t ,+x, . . .  ,t, ,))] 

' I  

, t n ' )  " ( P c i - t ( t t , . - . , t i )  - P c , ( t l , . . . , t i ) ) ] [ ,  [ P k , - , , ( t , + l , .  . . x 

. I  

for 1 < i < n ' -  1, 

(8) 

L ot x i. ( L - ~ ] -  L'-<y'"J) ÷,~× ( t - ~ J  ~'_-, ~ ) /  
Ci -.- J ,+ L,.-~,,+,,,j× 

Pn.oor .  We have known that  the condition of the ith stack will not be moved as described in 
Lemnm 4. Since the numbers of items are all integers in our discussions, the event 

2i ,, ox, .  (t~J-[~-':,+'"J) + ~ ( t~J  z , . , , , )  Ex;= 

will be replaced by 

Let 

2i 

j=l 

ot x i .  (Lmh-~] -  [m-(nk+J")]) + / 3 x  ( [ - ~ J '  E~'--,.O / 
' + L ~ ]  x:, j 

~, = [o×,-(L-W-J- ['-~e'"J) + :'× (t-~J Z~'_-~ ~,) 
1 +  [m-~+k ' ) ]  x 

Then,  we have 

/ ~  i ) --1. q21 = q2i+1 = Pr Xj = ci , for 1 < i < n' 
(j=l 

Assume k items are pushed into the n stacks during the time that  from the initial step to the 
last reallocation, and the overflow occurs when the k ~ th item are pushed since the last reallocation. 
When the condition of no movement is satisfied, there are ci items which will be pushed into the 
stack 1 , . . .  ,stack 2i, and the others will be pushed into the stack 2i + 1 , . . .  ,stack n. It forms a 
binomial distribution. Let the overflow occur at the group containing stack 1 , . . . ,  stack 2i, 

q2i ~--- q2i+l : E Ci 
k~=l 

"1 

× [pk,-c,(t ,+l , . . .  ,t,,,). ( P c , - x ( h , . . .  , t d  - Po,(tx,. . .  , td ) ] / .  
.I 
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The other situation is that the overflow occurs at the group containing stack 2i + 1 , . . . ,  stack n. 
In this case, we have 

m-h+l [ ( k ' - l )  (2--~)e' 
q2i "-- q21+1 --  ei 

k*_.-1 

× [ P e , ( t l , . . .  , t i ) "  ( P k ' - l - e i ( t i + l , . . .  , in ' )  -- P k ' - e , ( t i + l , . . .  , t n ' ) ) ]  ] • 

Since stack 1 and stack 2n' are not moved always, ql = q2n, = 1. The probabilities of the other 
stacks are the summation of the above cases. II 

What we want to discuss now is the number of moved items when overflow occurs. Clearly, 
the expectation of item movements is the expectation of the pushed items when overflow occurs 
subtracting the expectation of items without movement in the n stacks. We conclude the above 
results in the following theorem. If in the system there remains m' available space after j - 1 
overflows, the number of groups is n I, and E X  j -1  is the sum of expectation of the number of 
items in the stacks after j - 1 overflows, since the system was started. Let j > 0 and E X  ° = O. 
We have E X J  = E X  j -1  + EXm, ,n .  

THEOREM 1. The expecta t ion  o f  i t em  m o v e m e n t s  in j th  overflow is 

(-)1 E X  j " - _ _ P i  " qi • 
i=1 

PROOF. Since the stacks' experiments is a multinomial distribution, the expectation of items 
in each stack is ( E X  j -1  + EXm, ,n)  • Pi when j th  overflow occurs at the expectation EXm, ,n .  
We know that E X J  = E X  j -1  + EXm, ,n .  Therefore, the expectation of the number of item 
movements becomes 

E X  j - E ( E X j  "pi "qi) = E X  j "  1 -  Pi "qi • II 
i=1 i=1 

P k ( h , . . . , t n ' )  is the probability of no overflow after k items are pushed. P k - l ( t l  . . . .  , t n , ) -  
P k ( t l , . . . ,  tn,) is the probability of overflow when k th item is pushed. Therefore, the probability 
for the number of overflow occurring after k items are pushed will be found by the recurrence 
function in the following theorem. Let Qi(k,  n') be the probability of the Multigroup method 
whose overflow occurs i times. We have 

THEOREM 2. 

k 
Qi(k,  n') = E [ (P j - l ( t l , . . . ,  t , , )  - P j ( t l , . . .  , tn,))  . P k - j ( t l , . . . ,  t~,)], 

j = l  
k 

Qi(k,  n') = E [ ( P j - l ( t l , . . .  , tn,)  - P i ( t l , . . .  , tn,))  " Q i - l ( k  - j ,  n')], 
j = l  

for i = 1; 

for i > 2. 

PROOF. The probability of only one overflow after k items pushed is that the first overflow occurs 
at the j th  pushed item and the remained k - j items do not cause overflow. Let t l , . . .  ,tn, and 
t~ , . . .  ,t~n, be the number of available space in n' groups before and after overflow occurring. So, 
let tl  ÷ . - . ÷ t n ,  - j and t~ + - - - ÷ t ~ ,  = k -  j ,  

k 
Q l ( k , n ' )  Z [ e r { N ( h , . . .  ,t,~,) = j } .  Pk-j( 1,. . .  ,t~,)] 

j = l  
k 

= , t , , )  - , t , , ) ) .  , t ' , ) ] .  
j - - I  
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By recurrences, we can get 

k 
Q i ( k , n t )  -- E [ ( P J - l ( t l ,  . - .  , tn ' )  -- e j ( t l , ' "  , t n ' ) ) "  Q i - l (  k - J, n ' ) ] ,  

j=l  

4. T H E  S I M U L A T I O N S  A N D  C O M P A R I S O N S  

for i > 2. II 

In Section 3, we analyze the number of item movements. In this section we will simulate the 
Multigroup method and compare with its theoretical values. Our simulations are made by giving 
a sequence of random data, which assumes the probabilities of items pushed into each stack are 
the same. Moreover, the two parameters a and fl are set to 1 and 0. At the beginning of our 
simulations, the number of available space in each group is Lm/n~J, for 1 < i < n. After an 
overflow occurred, the number of available space in each group is determined by the reallocation 
parameters  and the number of items in the stacks at that  time. By the formulas of Section 3, 
we compute the theoretical values of the first overflow and compare with experimental average 
values when the first overflow occurs. The experimental values are averaged by running 1000 
different cases. 

Table 1. The comparison of the first overflow's theoretical val- 
ues and  exper imenta l  results .  

[ m [ n [ EX, n , n  Experi .  ~ : = I  qi Exp¢~i. 

2 21.0000 21.0000 2 .0000 2.0000 

20 4 18.2999 17.6781 2.0000 2.0000 

5 13.8081 13.8159 1.3794 1.4185 

4 36.8598 36.2438 2.0000 2.0000 

40 5 29.7458 29.5888 1.2701 1.2708 

10 29.1027 29.2042 3.1229 3.1151 

4 46.2739 45.4364 2.0000 2.0000 

50 5 36.7200 36.8208 1.1833 1.1902 

I0 37.2426 37.3387 3.0232 3.0301 

5 46.0593 46.1512 1.1939 1.1761 

60 6 51.7092 51.6531 2.3974 2.4252 

10 45.5479 45.6486 2.9446 2.9690 

4 74.7968 74.3549 2.0000 2.0000 

80 5 60.2033 60.3363 1.1123 I . I I01  

8 65.9726 66.3240 2.5998 2.5878 

4 93.9615 93.0033 2.0000 2.0000 

100 5 76.8048 76.7397 1.0964 1.0721 

I0 79.8300 79.9670 2.7446 2.8368 

In Table 1, we list two values: one is the mean of the items when the first overflow occurs and 
the other is the mean of the total number of stacks having no movement. The experimental results 
are close to the theoretical values. The difference between the theoretical values and experimental 
results is caused by the experimental variants. If the number of experiments approaches infinite, 
the experimental results will almost match the theoretical values. 

Figure 4 shows the numbers of item movements of the three methods under the memory size 
is 100 and the same pushed items. From the figure, we know that  the numbers of item movements 
of Garwick's method are much smaller than Knuth 's  methods, hut it does not mean that  the 
Garwick's method is always better.  The reason is that  the Garwick's method needs to spend 
extra  time to calcualate the number of available space and preset the addresses NEWBASE[i]. 
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Figure 4. Figure 4. The comparison of the number of item movements with the two methods 
in [4]; the memory size -- 100 and n is the number of stacks. 

If n is large, the additional computation will consume much time. It is a great disadvantage for 
the Garwick's method. In general, the critical ratio of the number of stacks n and the memory 
size m, n/m, is about 1/12 from our observation. If the ratio of n/m is larger than 1/12, Knuth's 
method will be better than Garwick's method. Therefore, we had better know the memory size 
and the number of stacks in advance and keep the ratio n/m under the critical ratio to guarantee 
the performance. 

The Multigroup method not only improves the overhead of extra computations but also reduces 
the number of item movements, since the number of groups is only a half of the number of stacks 
approximately. In Figure 4, we can find the number of item movements in Multigroup method 
is better more than a half of Garwick's method's when n is even. When n is odd, it will cause 
the worse cases, but the performance is still better than the Garwick's method. 

5. CONCLUSIONS 

In this paper, we analyze the performance of the Multigroup method under push operations. 
The probability model can be used to explain the properties of the algorithms. By "our analysis, 
the accurate estimation will be found. It can support many types of information when we design 
a multiple stacks system. We also show that our Multigroup method is a good method for the 
multiple stacks systems. It improves the previous two methods and obtains a better performance. 
Further, it uses less extra storage space and computation time than Garwick's method. During 
our simulations, the probability of data are known in advance, since the data are generated by a 
uniform generator. If we know the push probability of each stack pi in advance, the values of c~ 
and ~? can be decided to be c~ = 1, ~ = 0 or a = 0, ~ -- 1 simply, but we usually do not know the 
distribution of pushed items. So, we suggest that the values of ~ and ~ be not fixed, and leave 
them as two variables. Initially the two values can be set to ~ = 1 and ~ = 0. We can change 
them when the Push operation push items into the stacks. The strategy of change can depend 
on the variance of input data. Of course, this will complicate the Multigroup method. 

Basically, we can also use the results of our analyses to decide the load factor of a multiple 
stacks system. Since increasing the load factor and decreasing the processing time is a trade-off, 
a high load factor will derive a costly processing time. By the analyses of this paper, the best 
load factor for the multiple stacks system can be found in advance, and the performance will be 
improved in practice. 
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