Distance Graphs and T-Coloring

Gerard J. Chang*

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan E-mail: gjchang@math.nctu.edu.tw

Daphne D.-F. Liu⁺

Department of Mathematics and Computer Science, California State University, Los Angeles, Los Angeles, California 90032 E-mail: dliu@calstatela.edu

and

Xuding Zhu

Department of Applied Mathematics, National Sun Yat-sen University, Kaoshing 80424, Taiwan E-mail: zhu@math.nsysu.edu.tw

Received April 3, 1997

We discuss relationships among T-colorings of graphs and chromatic numbers, fractional chromatic numbers, and circular chromatic numbers of distance graphs. We first prove that for any finite integral set T that contains 0, the asymptotic T-coloring ratio $R(T)$ is equal to the fractional chromatic number of the distance graph $G(Z, D)$, where $D = T - \{0\}$. This fact is then used to study the distance graphs with distance sets of the form $D_{m,k} = \{1, 2, ..., m\} - \{k\}$. The chromatic numbers and the fractional chromatic numbers of $G(Z, D_{m,k})$ are determined for all values of m and k. Furthermore, circular chromatic numbers of $G(Z, D_{m,k})$ for some special values of m and k are obtained. \circ 1999 Academic Press

1. INTRODUCTION

The T-coloring problem was formulated by Hale [18] as a model for the channel assignment problem, in which an integer broadcast channel is

Supported in part by the National Science Council under Grant NSC86-2115-M-110-004.

^{*} Supported in part by the National Science Council under Grant NSC86-2115-M009-002.

[†] Supported in part by the National Science Foundation under Grant DMS-9805945.

assigned to each of several locations so that interference among nearby locations is avoided. Interference is modeled by a non-negative integral set T containing 0 (called a T -set) as forbidden channel separations. One can construct a graph $G=(V, E)$ such that each vertex represents a location; two vertices are adjacent if their corresponding locations are nearby. Thereafter a valid channel assignment or \overline{T} -coloring is a mapping f from the vertex set of V of G to the set of non-negative integers $\{0, 1, 2, ...\}$ such that $| f(x) - f(y)| \notin T$ whenever $xy \in E$. The span of a T-coloring f is the difference between the largest and the smallest numbers in $f(V)$, i.e., $\max\{|f(u)-f(v)|: u, v \in V\}$. Given T and G, the T-span of G, denoted by $\text{sp}_{\tau}(G)$, is the minimum span among all T-colorings of G.

T-coloring has been extensively studied in the literature (see [4, 5, 16, 23–26, 30–32, 35]). Let σ_n denote $\text{sp}_T(K_n)$, where K_n is a complete graph with n vertices. Griggs and Liu $[16]$ proved that the *difference optimum* sequence, $\Delta \sigma = (\sigma_{n+1} - \sigma_n)_{n=1}^{\infty}$, is eventually periodic. This implies that for any T-set, the asymptotic T-coloring ratio

$$
R(T) := \lim_{n \to \infty} \frac{\sigma_n}{n}
$$

exists and is a rational number. This result was also proven by Rabinowitz and Proulx [30] and Cantor and Gordon [1] by different approaches.

The notion of distance graphs originated with the plane-coloring problem: What is the smallest number of colors needed to color all points of a Euclidean plane such that points at unit distances are colored with different colors. It is well known that four colors are necessary [28] and seven colors are sufficient [17]. However, the exact number of colors needed remains unknown (see [6]). Motivated by this problem, Eggleton $[10]$ made the following generalization. Suppose S is a subset of a metric space M with metic d , and D is a set of positive real numbers. The *distance* graph $G(S, D)$ with *distance set* D is the graph with vertex set S and edge set $\{xy: d(x, y) \in D\}$. The objective is to determine $\chi(S, D)$, the chromatic number of $G(S, D)$. Note that the plane-coloring problem introduced above is equivalent to finding $\chi(R^2, \{1\})$.

Let D be a set of positive integers (called a D -set). The distance graph to be studied in this article is $G(Z, D)$, which has Z as the vertex set and $\{uv: |u-v| \in D\}$ as the edge set. The problem of finding $\chi(Z, D)$ for different *D*-sets has been studied extensively (see $[2, 7, 9, 11-14, 21, 37-41]$).

A fractional coloring of a graph G is a mapping c from $\mathcal{I}(G)$, the set of all independent sets of G , to the interval $[0, 1]$ such that $\sum_{x \in I \in \mathcal{I}(G)} c(I) \geq 1$ for all vertices x in G. The fractional chromatic number $\chi_f(G)$ of G is the infimum of the value $\sum_{I \in \mathcal{I}(G)} c(I)$ of a fractional coloring c of G ([15, 22, 33, 34]).

For a given T-set, letting $D = T - \{0\}$, Liu [26] proved that the asymptotic T-coloring ratio $R(T)$ is a lower bound of $\chi(Z, D)$. Hence, T-colorings and distance graphs are closely related. We shall explore further relationships between these two concepts. In Section 2, we prove that for any T-set, $R(T)$ is equal to the fractional chromatic number of the distance graph $G(Z, D)$, if $D = T - \{0\}$. This relationship provides new insights concerning the parameter $R(T)$, and can be used to simplify the proofs of some known results regarding $R(T)$.

Section 3 focuses on the family of distance graphs with D-sets of the form $D_{m, k} = \{1, 2, ..., m\} - \{k\}.$ The chromatic numbers of such distance graphs, denoted as $\chi(Z, D_{m,k})$, have been investigated in the following articles. In [11], Eggleton, Erdős and Skilton obtained the solution for $k=1$, and partial solutions for $k=2$: $\chi(Z, D_{m,1})=\lfloor (m+3)/2 \rfloor$ for any $m\geq 2$, $\chi(Z, D_{m,2}) = \lfloor (m+4)/2 \rfloor$ when $m \not\equiv 3 \pmod{4}$, and $\lfloor (m+3)/2 \rfloor \leq$ $\chi(Z, D_{m,2}) \leq \lfloor (m+5)/2 \rfloor$ for any $m \geq 4$ with $m \equiv 3 \pmod{4}$. For $3 \leq k < m$, the same authors provided the bounds

$$
\max\left\{k, \left\lfloor\frac{1}{2}\left(\frac{m}{k-1}+1\right)\right\rfloor t\right\} \leq \chi(Z, D_{m,k}) \leqslant \min\left\{m, \left\lfloor\frac{1}{2}\left(\frac{m}{k}+3\right)\right\rfloor k\right\},\right\}
$$

where $t=2$ if $k=3$, and $t=k-2$ if $k\geq 4$. The same result for the case $k=1$. was also proven by Kemnitz and Kolberg in [21] by a different approach. The lower bound of $\chi(Z, D_{m,k})$ in the above has been improved to $\lceil (m+k+1)/2 \rceil$ by Liu ([26]), who also showed that the new bound is sharp for all pairs of integers (m, k) where k is odd. Furthermore, complete solutions for $k=2$ and 4, and partial solutions for other even integers k are given in $\lceil 26 \rceil$.

The main results of this paper are complete solutions for the chromatic numbers and the fractional chromatic numbers of the distance graphs $G(Z, D_{m,k})$ for all values m and k. These results are also applied to study the circular chromatic number of distance graphs.

Suppose k and d are positive integers such that $k \geq 2d$. A (k, d) -coloring of a graph $G=(V, E)$ is a mapping c from V to $\{0, 1, ..., k-1\}$ such that $\|c(x)-c(y)\|_{k}\geq d$ for any edge xy in G, where $\|a\|_{k}=\min\{a, k-a\}.$ The circular chromatic number $\chi_c(G)$ of G is the infimum of k/d for all (k, d) colorings of G. The circular chromatic number is also known as the star-chromatic number in the literature (see [36, 42, 43]).

For any graph G , it is well known that

$$
\max\left\{\omega(G),\frac{|V(G)|}{\alpha(G)}\right\}\leq \chi_f(G)\leq \chi_c(G)\leq \Gamma\chi_c(G)\rceil=\chi(G). \qquad (*)
$$

The parameters involved in $(*)$ for distance graphs are explored in this paper. For simplicity, let $\omega(Z, D)$, $\alpha(Z, D)$, $\chi_f(Z, D)$, and $\chi_c(Z, D)$ denote the clique number, the independence number, the fractional chromatic number, and the circular chromatic number of $G(Z, D)$, respectively.

2. RELATIONSHIPS BETWEEN $R(T)$ AND $\chi_f(Z, D)$

This section shows that for any T -set, the asymptotic T -coloring ratio $R(T)$ is equal to the fractional chromatic number of the distance graph $G(Z, D)$, if $D = T - \{0\}$. Based upon this result, we give simpler and different proofs of some known facts regarding $R(T)$.

THEOREM 1. For any finite T-set, if $D=T-\{0\}$, then $R(T)=\chi_f (Z, D)$.

Proof. Suppose c is an optimal T-coloring of K_n , where $0 = c(1)$ < $c(2) < \cdots < c(n) = \sigma_n$. Let $m = 1 + \max_{d \in D} d$. For $1 \le i \le c(n) + m$, let

 $I_i = \{ j \in \mathbb{Z} : j \equiv i+c(k) \pmod{c(n)+m} \text{ for some } k \text{ with } 1 \leq k \leq n \}.$

It is straightforward to verify that each I_i is an independent set in $G(Z, D)$, and that every integer belongs to exactly n of the independent sets I_i $(1 \le i \le c(n) + m)$. Define a mapping $c' : \mathcal{I}(G(Z, D)) \to [0, 1]$ as

$$
c'(I) = \begin{cases} \frac{1}{n}, & \text{if } I = I_i \text{ for } 1 \le i \le c(n) + m; \\ 0, & \text{otherwise.} \end{cases}
$$

Then c' is a fractional coloring of $G(Z, D)$. This implies that for any positive integer n, $\chi_f(Z, D) \leqslant (c(n)+m)/n$. Hence, we have

$$
\chi_f(Z, D) \leq \lim_{n \to \infty} \frac{c(n) + m}{n} = \lim_{n \to \infty} \frac{\sigma_n}{n} = R(T).
$$

To show $\chi_f(Z, D) \ge R(T)$, let G_n be the subgraph of $G(Z, D)$ induced by the vertex set $\{0, 1, 2, ..., c(n)\};$ i.e., $G_n = G(\{0, 1, 2, ..., c(n)\}, D)$. Then the set of vertices $\{c(1), c(2), ..., c(n)\}\)$ is a maximum independent set in G_n . So, for any positive integer n , we have

$$
\chi_f(Z, D) \geq \chi_f(G_n) \geq \frac{|V(G_n)|}{\alpha(G_n)} = \frac{c(n)+1}{n}.
$$

This implies

$$
\chi_f(Z, D) \ge \lim_{n \to \infty} \frac{c(n) + 1}{n} = \lim_{n \to \infty} \frac{\sigma_n}{n} = R(T).
$$

Therefore, $R(T) = \chi_f(Z, D)$. Q.E.D

The theorem above provides new insights into the asymptotic T-coloring ratio $R(T)$. Some previous results concerning $R(T)$ can be obtained from this approach. For example, it is well known that $R(T) \ge 2$, provided $T \neq \{0\}$ (see [1, 16, 30]). This is straightforward when we consider fractional chromatic numbers, since the fractional chromatic number of any non-trivial graph is at least 2. Moreover, for a non-trivial graph G, $\chi_f(G)=2$ if and only if G is bipartite. Since $G(Z, D)$ is bipartite if and only if D contains no even integers (assuming that $gcd(T)=1$), we have the following result.

COROLLARY 2. For any T-set with $gcd(T) = 1$, $R(T) = 2$ if and only if T contains only odd integers except 0.

Theorem 1 can also be applied to some other known results about $R(T)$ which are closely related to an earlier number theory problem, namely, sequences with missing differences. Given a T-set, a T-sequence is an increasing sequence S of nonnegative integers such that $x - y \notin T$ for any x, $y \in S$. Motzkin [29] proposed studying the supremum $\mu(T)$ of the asymptotic upper densities of these sequences S. Cantor and Gordon [1] determined the exact values of $\mu(T)$ when $|T|=2$ and 3. Haralambis [19] gave partial solutions when $|T|=4$ or 5. It is known that $\mu(T)$ is equal to the reciprocal of $R(T)$ (see [16]). Therefore results on sequences with missing differences can be applied to T-colorings. Cantor and Gordon [1] and Rabinowitz and Proulx [30] proved that if $T = \{0, a, b\}$, gcd(a, b) = 1, and a and b are of different parity, then $R(T)=2(a+b)/(a+b-1)$. The original argument in proving the inequality $R(T) \geq 2(a+b)/(a+b-1)$ in [1] was quite complicated. However, applying some facts about fractional chromatic number, one can obtain the following simpler proof. Since a and b are of opposite parity, $G(Z, D)$ with $D = \{a, b\}$ contains an odd cycle C_{a+b} . As $\chi_f(C_{2m+1})=2+1/m$, it follows that $\chi_f(Z, D) \geq \chi_f(C_{a+b})=$ $2(a+b)/(a+b-1)$. Thus, by Theorem 1, $R(T) \ge 2(a+b)/(a+b-1)$. Indeed, combining Theorem 1 with the fact that $\chi_f(H) \leq \chi_f(G)$ if H is a subgraph of G, the following is obvious.

COROLLARY 3. If H is a subgraph of the distance graph $G(Z, D)$, then $\chi_f(H) \leq R(T)$, where $T = D \cup \{0\}$.

3. VALUES OF $\chi_f(Z, D_{m,k}), \chi(Z, D_{m,k}),$ AND $\chi_c(Z, D_{m,k})$

In this section, we first calculate $\chi_f(Z, D_{m,k})$, which, according to (*), is a lower bound of $\chi(Z, D_{m,k})$. We then determine $\chi(Z, D_{m,k})$ for all values of m and k. Using this approach, circular chromatic numbers of $G(Z, D_{m,k})$ for special values of m and k are obtained as well.

The values of $R(T)$ as $T = D_{m,k} \cup \{0\}$ are given in [26]. Thus, the following two results can also be obtained by using Theorem 1. Here we include methods of calculating $\chi_f(Z, D_{m,k})$ directly.

THEOREM 4. If $2k > m$, then

$$
\omega(Z, D_{m,k}) = \chi_f(Z, D_{m,k}) = \chi_c(Z, D_{m,k}) = \chi(Z, D_{m,k}) = k.
$$

Proof. Since the set of vertices $\{1, 2, ..., k\}$ forms a clique in $G(Z, D_{m,k}), k \leq \omega(Z, D_{m,k}).$

By (*), it is sufficient to show $\chi(Z, D_{m,k}) \le k$. Define a vertex-coloring f on Z as $f(i) = (i \mod k)$. Then f is a proper coloring, since $D_{m,k}$ contains no multiple of k . Q.E.D

THEOREM 5. If $2k \leq m$, then $\chi_f(Z, D_{m,k})=(m+k+1)/2$.

Proof. For any i with $0 \le i \le m + k$, $I_i = \{ j \in \mathbb{Z} : j - i \equiv 0 \text{ or } k \}$ (mod $m+k+1$)} is an independent set in $G(Z, D_{m,k})$. Furthermore, each integer is contained in exactly two such independent sets. Define a mapping $c: \mathcal{I}(G(Z, D_{m,k})) \to [0, 1]$ as

$$
c(I) = \begin{cases} \frac{1}{2}, & \text{if } I = I_i \text{ for } 0 \le i \le m + k; \\ 0, & \text{otherwise.} \end{cases}
$$

It is easy to check that c is a fractional coloring of $G(Z, D_{m,k})$. Thus, $\chi_f(Z, D_{m,k}) \leq (m+k+1)/2.$

Since $\alpha({0, 1, ..., m+k}, D_{m,k})=2$ for $2k \leq m$, by $(*)$, $\chi_f({0, 1, ..., k})$ $m+k$, $D_{m,k}$) $\geq (m+k+1)/2$. Therefore, the proof is complete. Q.E.D

Because $\chi(G)$ is an integer, Theorem 5 and ($*$) imply the following:

COROLLARY 6 [26]. If $2k \leq m$ then $\chi(Z, D_{m,k}) \geq \lceil (m+k+1)/2 \rceil$.

We are now in a position to given the complete solutions to $\chi(Z, D_{m,k})$ for all values of m and k . This is accomplished in the next two results. As will be shown, $\chi(Z, D_{m,k})$ is either $\lceil (m+k+1)/2 \rceil$ or $\lceil (m+k+1)/2 \rceil+1$.

LEMMA 7. Suppose $2k \le m$. Write $m + k + 1 = 2^rm'$ and $k = 2^sk'$, where r and s are non-negative integers and m' and k' are odd integers. If $1 \le r \le s$, then $\chi(Z, D_{m,k}) > (m+k+1)/2$.

Proof. Since $1 \le r$, $m+k+1$ is even. Assume to the contrary that $\chi(Z, D_{m,k}) \leq (m+k+1)/2$. By Corollary 6, $\chi(Z, D_{m,k})=(m+k+1)/2$. Color $G(Z, D_{m,k})$ by using $(m+k+1)/2$ colors.

For each integer *i*, consider the subgraph of $G(Z, D_{m,k})$ induced by the $m+k+1$ vertices $\{i, i+1, ..., i+m+k\}$. This subgraph has independence number 2. Hence, each of $(m+k+1)/2$ colors is used at most, and hence exactly, twice in this subgraph. Thus, each color is used exactly twice in any consecutive $m+k+1$ vertices. Consequently, vertices i and $i+m+$ $k+1$ have the same colors for all $i \in \mathbb{Z}$. Therefore, for each $i \in \mathbb{S} :=$ $\{0, 1, ..., m+k\}$, the only possible vertices in S having the same color as i are $i+k$ and $i-k$ (mod $m+k+1$).

Consider the *circulant graph* $C(m+k+1, k)$, with vertex set S and in which vertex *i* is adjacent to vertex *j* if and only if $j = i + k$ or $i - k$ (mod $m+k+1$). It follows from the discussion in the preceding paragraph that two vertices x and y of S have the same color only if xy is an edge of the circulant graph $C(m+k+1, k)$. Since the intersection of each color class with S contains exactly two vertices, the coloring induces a perfect matching of $C(m+k+1, k)$. However, $C(m+k+1, k)$ is the disjoint union of d cycles of length $(m+k+1)/d$, where $d = \gcd(m+k+1, k)$. Since $C(m+k+1, k)$ has a perfect matching, each cycle has an even length. This implies that $r > s$, contrary to the assumption $r \leq s$. Q.E.D

The next theorem determines the chromatic number $\chi(Z, D_{m,k})$ for all values of m and k . Incidentally, it also shows that the converse of Lemma 7 is true.

THEOREM 8. Suppose $2k \le m$. Write $m+k+1=2^r m'$ and $k=2^s k'$, where r and s are non-negative integers and m' and k' are odd integers. Then

$$
\chi(Z, D_{m,k}) = \begin{cases} \frac{m+k+1}{2}, & \text{if } r > s; \\ \left\lfloor \frac{m+k+2}{2} \right\rfloor, & \text{otherwise.} \end{cases}
$$

Proof. It follows from Corollary 6 and Lemma 7 that if $r > s$, then $\chi(Z, D_{m,k}) \geq (m+k+1)/2$; if $r \leq s$, then $\chi(Z, D_{m,k}) \geq \lceil (m+k+2)/2 \rceil$. Therefor it suffices to show that $G(Z, D_{m,k})$ is $(m+k+1)/2$ -colorable, if $r>s$; and $G(Z, D_{m,k})$ is $\lceil (m+k+2)/2\rceil$ -colorable, if $r\le s$. It is known that $\chi(Z, D) = \chi(Z^+ \cup \{0\}, D)$ [14]. Therefore, it is sufficient to find a proper

coloring for the subgraph of $G(Z, D_{m,k})$ induced by all non-negative integers.

We first decompose k into the sum of an odd number of integers, $k=a_1+a_2+\cdots+a_n$, as follows:

Case 1. For
$$
r > s
$$
 or $s = 0$, let $p = k'$ and $a_j = 2^s$ for $1 \le j \le p$.

Case 2. For
$$
r \le s \ne 0
$$
, let $p = k - 1$ and $a_j = 1$ for $1 \le j < p$ and $a_p = 2$.

Next, partition the set Z into consecutive blocks of sizes $a_1, a_2, ..., a_p$ periodically. Then "pre-color" the blocks, alternating RED and BLUE. We call a vertex RED (or BLUE) if it falls within a RED (or BLUE) block.

Define a coloring f on the vertices of all non-negative integers of $G(Z, D_{m,k})$ according to the following three rules:

$$
(R1) \quad f(i) = i, \text{ if } 0 \le i \le k - 1;
$$

(R2) $f(i) = f(i-k)$, if i is BLUE and $i \ge k$;

 $(R3)$ $f(i)$ = the smallest non-negative integer that has not been used as a color in the *m* vertices preceding *i*, if *i* is RED and $i \ge k$.

To show that f is a proper coloring, we claim that for any vertex i , $f(i) \neq f(j)$ for all $j \neq i-k$ with $i-m \leq j < i$. It is easy to see that the claim is true when $(R1)$ or $(R3)$ is performed. Suppose $(R2)$ is executed, i.e., *i* is BLUE, $i \ge k$, and $f(i) = f(i - k)$. Since k is divided into an odd number of blocks, $i-k$ is a RED vertex. By (R1) or (R3), $f(i-k)$ is different from any of the colors of the m vertices preceding $i-k$. Thus, it is sufficient to show that $f(i) \neq f(j)$ for all j with $i-k < j < i$.

If j is RED, by (R1) or (R3), $f(j) \neq f(i-k)$ and so $f(i) \neq f(j)$. If j is BLUE, by (R1) of (R2), $f(j) = f(j-k)$. One has $i-k-m < j-k < i-k$ (because $2k \le m$), so $f(i-k) \ne f(j-k)$. This implies $f(i) \ne f(j)$.

To complete the proof of the theorem, it is sufficient to show that f is an $((m+k+1)/2)$ -coloring if $r>s$; and f is an $\lceil (m+k+2)/2 \rceil$ -coloring if $r \leq s$. One can accomplish this by counting the number of colors that have been used for the *m* vertices preceding a RED vertex *i* for which $i \ge k$. The first k vertices need at most k colors. For the remaining $m-k$ vertices, only those RED vertices need new colors.

If $r>s$, then $m-k+1$ is a multiple of 2^{s+1} . Any consecutive 2^{s+1} vertices have 2^s BLUE vertices and 2^s RED ones, so there are exactly $(m-k-1)/2$ RED vertices in the remaining $m-k$ vertices. Therefore, the total number of colors used in f is at most $k+(m-k-1)/2+1=$ $(m+k+1)/2$.

If $r \leq s$ (with $s=0$ in Case 1 and $s \neq 0$ in Case 2), then there are at most $\lceil (m-k)/2 \rceil$ RED vertices in the remaining $m-k$ vertices. Thus, the total number of colors used in f is at most $k + \lceil (m-k)/2 \rceil + 1 =$ $\lceil (m+k+2)/2 \rceil$. This completes the proof of Theorem 8.

We now present the following two results concerning the circular chromatic number of $G(Z, D_{m,k})$. The first one follows from (*) and Theorems 5 and 8.

COROLLARY 9. Suppose $2k \le m$. Write $m + k + 1 = 2^rm'$ and $k = 2^sk'$, where r and s are non-negative integers and m' and k' are odd integers. If $r>s$, then $\chi_f(Z, D_{m,k}) = \chi_c(Z, D_{m,k}) = \chi(Z, D_{m,k})=(m+k+1)/2.$

THEOREM 10. If $2k \le m$ and k is relatively prime to $m+k+1$, then $\chi_f(Z, D_{m,k}) = \chi_c(Z, D_{m,k}) = (m+k+1)/2.$

Proof. Since k is relatively prime to $m+k+1$, there exists an integer n such that $nk = 1 \pmod{m+k+1}$. Consider the mapping c defined by $c(i) = (in \mod m+k+1)$ for all $i \in \mathbb{Z}$. For any edge ij in $G(Z, D_{m,k})$, we shall prove that $||c(i)-c(j)||_{m+k+1}\geq 2$. Suppose to the contrary, that $||c(i)-c(j)||_{m+k+1}\leq 1$; i.e., $c(i)-c(j) \equiv 0$ or 1 or -1 (mod $m+k+1$). Then $i - j \equiv 0$ or k or $-k \pmod{m+k+1}$, which contradicts the fact that i is adjacent to j. Thus c is an $(m+k+1, 2)$ -coloring of $G(Z, D_{m,k})$. This along with Theorem 5 and $(*)$ implies the theorem. Q.E.D

Remarks. Many new results related to this topic have been obtained since the submission of this paper. In [3], the circular chromatic numbers of all the graphs $G(Z, D_{m,k})$ are determined. The chromatic number, circular chromatic number and fractional chromatic number of distance graphs with distance sets of the form $D_{m,k,s} = \{1, 2, ..., m\} - \{k, 2k, ..., sk\}$ have been studied in [8, 20, 27, 44]. (Accordingly, the distance graphs discussed in this paper are $G(Z, D_{m,k, 1})$. In [27], the chromatic numbers of all the graphs $G(Z, D_{m,k, 2})$ are determined. The same paper also determined the fractional chromatic numbers of all the graphs $G(Z, D_{m,k,s})$. In [8], the following was proved:

$$
\lceil (m+sk+1)/(s+1)\rceil \leq \chi(G(Z, D_{m,ks})) \leq \lceil (m+sk+1)/(s+1)\rceil + 1.
$$

Moreover, both the upper bound and the lower bound are attainable. Then in [20], the chromatic numbers of all the graphs $G(Z, D_{m,k,s})$ are completely determined. Finally and most recently, [44] determines the circular chromatic numbers of all the graphs $G(Z, D_{m,k,s})$.

ACKNOWLEDGMENT

The authors thank the referee for many useful suggestions.

REFERENCES

- 1. D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281-287.
- 2. J. J. Chen, G. J. Chang, and K. C. Huang, Integral distance graphs, J. Graph Theory 25 $(1997), 287 - 294.$
- 3. G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers and fractional chromatic numbers of distance graphs, *European J. Combin.* **19** (1998), 423–431.
- 4. M. B. Cozzens and F. S. Roberts, T-colorings of graphs and the channel assignment problem, *Congr. Numer.* **35** (1982), 191-208.
- 5. M. B. Cozzens and F. S. Roberts, Greedy algorithms for T-colorings of complete graphs and the meaningfulness of conclusions about them, J. Combin. Inform. System Sci. 16 (1991) , 286-299.
- 6. H. T. Croft, K. J. Falconer, and R. K. Guy, "Unsolved Problems in Geometry," Springer-Verlag, New York, 1991.
- 7. W. Deuber and X. Zhu, The chromatic number of distance graphs, Discrete Math. 165/166 (1997), 195-204.
- 8. W. Deuber and X. Zhu, Chromatic numbers of distance graphs with distance sets missing multiples, manuscript, 1997.
- 9. R. B. Eggleton, New results on 3-chromatic prime distance graphs, Ars Combin. 26B $(1988), 153-180.$
- 10. R. B. Eggleton, Distance graphs and their chromatic numbers, Workshop Notes of the Conference of Graph Theory and Combinatorics, Manila, 1991.
- 11. R. B. Eggleton, P. Erdős, and D. K. Skilton, Coloring the real line, J. Combin. Theory Ser. B 39 (1985), 86-100.
- 12. R. B. Eggleton, P. Erdős, and D. K. Skilton, Research problem 77, Discrete Math. 58 (1986), 323.
- 13. R. B. Eggleton, P. Erdős, and D. K. Skilton, Update information on research problem 77, Discrete Math. 69 (1988), 105.
- 14. R. B. Eggleton, P. Erdős, and D. K. Skilton, Coloring prime distance graphs, Graphs Combin. 32 (1990), 17-32.
- 15. D. Fisher, Fractional coloring with large denominators, J. Graph Theory 20 (1995), 403409.
- 16. J. R. Griggs and D. D.-F. Liu, The channel assignment problem for mutually adjacent sites, *J. Combin. Theory Ser. A* 68 (1994), 169-183.
- 17. H. Hadwiger, H. Debrunner, and V. Klee, "Combinatorial Geometry in the Plane," Holt, Rinehard, Winston, New York, 1964.
- 18. W. K. Hale, Frequency assignment: theory and applications, *Proc. IEEE* 68 (1980), 1497-1514.
- 19. N. M. Haralambis, Sets of integers with missing differences, *J. Combin. Theory Ser. A* 23 $(1977), 22-33.$
- 20. L. Huang and G. J. Chang, Circular chromatic number of distance graphs with distance set missing multiples, *European J. Combin.*, to appear.
- 21. A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 $(1998), 113-123.$
- 22. I. Leader, The fractional chromatic number of infinite graphs, J. Graph Theory 20 (1995), 411417.
- 23. D. D.-F. Liu, T-colorings of graphs, Discrete Math. 101 (1992), 203-212.
- 24. D. D-F. Liu, On a conjecture of T-colorings, Congr. Numer. 103 (1994), $27-31$.
- 25. D. D.-F. Liu, T-graphs and the channel assignment problem, *Discrete Math.* 161 (1996), 197-205.
- 26. D. D.-F. Liu, T-coloring and chromatic number of distance graphs, Ars Comb., to appear.
- 27. D. D.-F. Liu and X. Zhu, Distance graphs with missing multiples in the distance sets, J. Graph Theory, to appear.
- 28. L. Moser and W. Moser, Solution to problem 10, Canad. Math. Bull. 4 (1961), 187-189.
- 29. T. S. Motzkin, unpublished problem collection.
- 30. J. H. Rabinowitz and V. K. Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Algebraic Discrete Math. 6 (1985), 507-518.
- 31. A. Raychaudhuri, Further results on T-coloring and frequency assignment problem, SIAM J. Discrete Math. 7 (1994), 605-613.
- 32. F. Roberts, T-colorings of graphs: recent results and open problems, Discrete Math. 93 (1991) , 229-245.
- 33. E. R. Scheinerman and D. H. Ullman, "Fractional Graph Theory," Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 1997.
- 34. S. H. Scott, "Multiple Node Colourings of Finite Graphs," Doctoral dissertation, University of Reading, England, March, 1975.
- 35. B. A. Tesman, "T-Colorings, List T-Colorings and set T-Colorings of Graphs," Ph.D. dissertation, Dept. Math., Rutgers University, 1989.
- 36. A. Vince, Star chromatic number, *J. Graph Theory* 12 (1988), 551-559.
- 37. M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math. 51 (1994), 197-209.
- 38. M. Voigt, Coloring of distance graphs, Ars Comb., to appear.
- 39. X. Zhu, Distance graphs on the real line, manuscript, 1996.
- 40. X. Zhu, Non-integral distance graphs on the real line, manuscript, 1996.
- 41. X. Zhu, Pattern-periodic coloring of distance graphs, *J. Combin. Theory Ser. B* 73 (1998), 195-206.
- 42. X. Zhu, Circular chromatic number: a survey, manuscript, 1997.
- 43. X. Zhu, The star chromatic number and graph product, J. Graph Theory 16 (1992), 557-569.
- 44. X. Zhu, Circular chromatic numbers of a class of distance graphs, manuscript, 1988.