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We discuss relationships among T-colorings of graphs and chromatic numbers,
fractional chromatic numbers, and circular chromatic numbers of distance graphs.
We first prove that for any finite integral set T that contains 0, the asymptotic
T-coloring ratio R(T ) is equal to the fractional chromatic number of the distance
graph G(Z, D), where D=T&[0]. This fact is then used to study the distance
graphs with distance sets of the form Dm, k=[1, 2, ..., m]&[k]. The chromatic
numbers and the fractional chromatic numbers of G(Z, Dm, k) are determined for all
values of m and k. Furthermore, circular chromatic numbers of G(Z, Dm, k) for
some special values of m and k are obtained. � 1999 Academic Press

1. INTRODUCTION

The T-coloring problem was formulated by Hale [18] as a model for the
channel assignment problem, in which an integer broadcast channel is
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assigned to each of several locations so that interference among nearby
locations is avoided. Interference is modeled by a non-negative integral set
T containing 0 (called a T-set) as forbidden channel separations. One can
construct a graph G=(V, E) such that each vertex represents a location;
two vertices are adjacent if their corresponding locations are nearby. There-
after a valid channel assignment or T-coloring is a mapping f from the
vertex set of V of G to the set of non-negative integers [0, 1, 2, ...] such
that | f (x)& f ( y)| � T whenever xy # E. The span of a T-coloring f is the
difference between the largest and the smallest numbers in f (V), i.e.,
max[ | f (u)& f (v)|: u, v # V]. Given T and G, the T-span of G, denoted by
spT (G), is the minimum span among all T-colorings of G.

T-coloring has been extensively studied in the literature (see [4, 5, 16,
23�26, 30�32, 35]). Let _n denote spT (Kn), where Kn is a complete graph
with n vertices. Griggs and Liu [16] proved that the difference optimum
sequence, 2_=(_n+1&_n)�

n=1 , is eventually periodic. This implies that for
any T-set, the asymptotic T-coloring ratio

R(T ) := lim
n � �

_n

n

exists and is a rational number. This result was also proven by Rabinowitz
and Proulx [30] and Cantor and Gordon [1] by different approaches.

The notion of distance graphs originated with the plane-coloring
problem: What is the smallest number of colors needed to color all points
of a Euclidean plane such that points at unit distances are colored with
different colors. It is well known that four colors are necessary [28] and
seven colors are sufficient [17]. However, the exact number of colors
needed remains unknown (see [6]). Motivated by this problem, Eggleton
[10] made the following generalization. Suppose S is a subset of a metric
space M with metic d, and D is a set of positive real numbers. The distance
graph G(S, D) with distance set D is the graph with vertex set S and edge
set [xy: d(x, y) # D]. The objective is to determine /(S, D), the chromatic
number of G(S, D). Note that the plane-coloring problem introduced
above is equivalent to finding /(R2, [1]).

Let D be a set of positive integers (called a D-set). The distance graph
to be studied in this article is G(Z, D), which has Z as the vertex set
and [uv: |u&v| # D] as the edge set. The problem of finding /(Z, D) for
different D-sets has been studied extensively (see [2, 7, 9, 11�14, 21, 37�41]).

A fractional coloring of a graph G is a mapping c from I(G), the
set of all independent sets of G, to the interval [0, 1] such that
�x # I # I(G) c(I)�1 for all vertices x in G. The fractional chromatic number
/f (G) of G is the infimum of the value �I # I(G) c(I ) of a fractional coloring
c of G ([15, 22, 33, 34]).
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For a given T-set, letting D=T&[0], Liu [26] proved that the
asymptotic T-coloring ratio R(T ) is a lower bound of /(Z, D). Hence,
T-colorings and distance graphs are closely related. We shall explore further
relationships between these two concepts. In Section 2, we prove that for
any T-set, R(T ) is equal to the fractional chromatic number of the distance
graph G(Z, D), if D=T&[0]. This relationship provides new insights
concerning the parameter R(T ), and can be used to simplify the proofs of
some known results regarding R(T).

Section 3 focuses on the family of distance graphs with D-sets of the form
Dm, k=[1, 2, ..., m]&[k]. The chromatic numbers of such distance graphs,
denoted as /(Z, Dm, k), have been investigated in the following articles.
In [11], Eggleton, Erdo� s and Skilton obtained the solution for k=1,
and partial solutions for k=2: /(Z, Dm, 1)=w(m+3)�2x for any m�2,
/(Z, Dm, 2)=w(m+4)�2x when m�3 (mod 4), and w(m+3)�2x�
/(Z, Dm, 2)�w(m+5)�2x for any m�4 with m#3 (mod 4). For 3�k<m,
the same authors provided the bounds

max {k, \1
2 \

m
k&1

+1+� t=�/(Z, Dm, k)�min {m, \1
2 \

m
k

+3+� k = ,

where t=2 if k=3, and t=k&2 if k�4. The same result for the case k=1
was also proven by Kemnitz and Kolberg in [21] by a different approach.
The lower bound of /(Z, Dm, k) in the above has been improved to
W(m+k+1)�2X by Liu ([26]), who also showed that the new bound is
sharp for all pairs of integers (m, k) where k is odd. Furthermore, complete
solutions for k=2 and 4, and partial solutions for other even integers k are
given in [26].

The main results of this paper are complete solutions for the chromatic
numbers and the fractional chromatic numbers of the distance graphs
G(Z, Dm, k) for all values m and k. These results are also applied to study
the circular chromatic number of distance graphs.

Suppose k and d are positive integers such that k�2d. A (k, d )-coloring
of a graph G=(V, E) is a mapping c from V to [0, 1, ..., k&1] such that
&c(x)&c( y)&k�d for any edge xy in G, where &a&k=min[a, k&a]. The
circular chromatic number /c (G) of G is the infimum of k�d for all (k, d )-
colorings of G. The circular chromatic number is also known as the
star-chromatic number in the literature (see [36, 42, 43]).

For any graph G, it is well known that

max {|(G),
|V(G)|
:(G) =�/f (G)�/c (G)�W/c (G)X=/(G). (V)
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The parameters involved in (V) for distance graphs are explored in this
paper. For simplicity, let |(Z, D), :(Z, D), /f (Z, D), and /c (Z, D) denote
the clique number, the independence number, the fractional chromatic
number, and the circular chromatic number of G(Z, D), respectively.

2. RELATIONSHIPS BETWEEN R(T ) AND /f (Z, D)

This section shows that for any T-set, the asymptotic T-coloring ratio
R(T ) is equal to the fractional chromatic number of the distance graph
G(Z, D), if D=T&[0]. Based upon this result, we give simpler and
different proofs of some known facts regarding R(T).

Theorem 1. For any finite T-set, if D=T&[0], then R(T )=/f (Z, D).

Proof. Suppose c is an optimal T-coloring of Kn , where 0=c(1)<
c(2)< } } } <c(n)=_n . Let m=1+maxd # D d. For 1�i�c(n)+m, let

Ii=[ j # Z : j#i+c(k) (mod c(n)+m) for some k with 1�k�n].

It is straightforward to verify that each Ii is an independent set in G(Z, D),
and that every integer belongs to exactly n of the independent sets Ii

(1�i�c(n)+m). Define a mapping c$: I(G(Z, D)) � [0, 1] as

c$(I)={
1
n

, if I=Ii for 1�i�c(n)+m;

0, otherwise.

Then c$ is a fractional coloring of G(Z, D). This implies that for any
positive integer n, /f (Z, D)�(c(n)+m)�n. Hence, we have

/f (Z, D)� lim
n � �

c(n)+m
n

= lim
n � �

_n

n
=R(T ).

To show /f (Z, D)�R(T ), let Gn be the subgraph of G(Z, D) induced by
the vertex set [0, 1, 2, ..., c(n)]; i.e., Gn=G([0, 1, 2, ..., c(n)], D). Then the
set of vertices [c(1), c(2), ..., c(n)] is a maximum independent set in Gn . So,
for any positive integer n, we have

/f (Z, D)�/f (Gn)�
|V(Gn)|
:(Gn)

=
c(n)+1

n
.
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This implies

/f (Z, D)� lim
n � �

c(n)+1
n

= lim
n � �

_n

n
=R(T ).

Therefore, R(T )=/f (Z, D). Q.E.D

The theorem above provides new insights into the asymptotic T-coloring
ratio R(T ). Some previous results concerning R(T ) can be obtained from
this approach. For example, it is well known that R(T )�2, provided
T{[0] (see [1, 16, 30]). This is straightforward when we consider
fractional chromatic numbers, since the fractional chromatic number of any
non-trivial graph is at least 2. Moreover, for a non-trivial graph G,
/f (G)=2 if and only if G is bipartite. Since G(Z, D) is bipartite if and only
if D contains no even integers (assuming that gcd(T )=1), we have the
following result.

Corollary 2. For any T-set with gcd(T )=1, R(T )=2 if and only if T
contains only odd integers except 0.

Theorem 1 can also be applied to some other known results about R(T )
which are closely related to an earlier number theory problem, namely,
sequences with missing differences. Given a T-set, a T-sequence is an
increasing sequence S of nonnegative integers such that x& y � T for any
x, y # S. Motzkin [29] proposed studying the supremum +(T ) of the
asymptotic upper densities of these sequences S. Cantor and Gordon [1]
determined the exact values of +(T ) when |T |=2 and 3. Haralambis [19]
gave partial solutions when |T |=4 or 5. It is known that +(T ) is equal to
the reciprocal of R(T ) (see [16]). Therefore results on sequences with
missing differences can be applied to T-colorings. Cantor and Gordon [1]
and Rabinowitz and Proulx [30] proved that if T=[0, a, b], gcd(a, b)=1,
and a and b are of different parity, then R(T)=2(a+b)�(a+b&1). The
original argument in proving the inequality R(T )�2(a+b)�(a+b&1) in
[1] was quite complicated. However, applying some facts about fractional
chromatic number, one can obtain the following simpler proof. Since a and
b are of opposite parity, G(Z, D) with D=[a, b] contains an odd cycle
Ca+b . As /f (C2m+1)=2+1�m, it follows that /f (Z, D)�/f (Ca+b)=
2(a+b)�(a+b&1). Thus, by Theorem 1, R(T )�2(a+b)�(a+b&1).
Indeed, combining Theorem 1 with the fact that /f (H)�/f (G) if H is a
subgraph of G, the following is obvious.

Corollary 3. If H is a subgraph of the distance graph G(Z, D), then
/f (H)�R(T), where T=D _ [0].
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3. VALUES OF /f (Z, Dm, k), /(Z, Dm, k), AND /c(Z, Dm, k)

In this section, we first calculate /f (Z, Dm, k), which, according to (V), is
a lower bound of /(Z, Dm, k). We then determine /(Z, Dm, k) for all values
of m and k. Using this approach, circular chromatic numbers of G(Z, Dm, k)
for special values of m and k are obtained as well.

The values of R(T ) as T=Dm, k _ [0] are given in [26]. Thus, the
following two results can also be obtained by using Theorem 1. Here we
include methods of calculating /f (Z, Dm, k) directly.

Theorem 4. If 2k>m, then

|(Z, Dm, k)=/f (Z, Dm, k)=/c (Z, Dm, k)=/(Z, Dm, k)=k.

Proof. Since the set of vertices [1, 2, ..., k] forms a clique in
G(Z, Dm, k), k�|(Z, Dm, k).

By (V), it is sufficient to show /(Z, Dm, k)�k. Define a vertex-coloring f
on Z as f (i)=(i mod k). Then f is a proper coloring, since Dm, k contains
no multiple of k. Q.E.D

Theorem 5. If 2k�m, then /f (Z, Dm, k)=(m+k+1)�2.

Proof. For any i with 0 � i � m + k, Ii = [ j # Z : j & i # 0 or k
(mod m+k+1)] is an independent set in G(Z, Dm, k). Furthermore, each
integer is contained in exactly two such independent sets. Define a mapping
c: I(G(Z, Dm, k)) � [0, 1] as

c(I )={
1
2 ,
0,

if I=Ii for 0�i�m+k;
otherwise.

It is easy to check that c is a fractional coloring of G(Z, Dm, k). Thus,
/f (Z, Dm, k)�(m+k+1)�2.

Since :([0, 1, ..., m+k], Dm, k)=2 for 2k�m, by (V), /f ([0, 1, ...,
m+k], Dm, k)�(m+k+1)�2. Therefore, the proof is complete. Q.E.D

Because /(G) is an integer, Theorem 5 and ( V ) imply the following:

Corollary 6 [26]. If 2k�m then /(Z, Dm, k)�W(m+k+1)�2X.

We are now in a position to given the complete solutions to /(Z, Dm, k)
for all values of m and k. This is accomplished in the next two results. As
will be shown, /(Z, Dm, k) is either W(m+k+1)�2X or W(m+k+1)�2X+1.
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Lemma 7. Suppose 2k�m. Write m+k+1=2rm$ and k=2sk$, where r
and s are non-negative integers and m$ and k$ are odd integers. If 1�r�s,
then /(Z, Dm, k)>(m+k+1)�2.

Proof. Since 1�r, m+k+1 is even. Assume to the contrary that
/(Z, Dm, k)�(m+k+1)�2. By Corollary 6, /(Z, Dm, k)=(m+k+1)�2.
Color G(Z, Dm, k) by using (m+k+1)�2 colors.

For each integer i, consider the subgraph of G(Z, Dm, k) induced by the
m+k+1 vertices [i, i+1, ..., i+m+k]. This subgraph has independence
number 2. Hence, each of (m+k+1)�2 colors is used at most, and hence
exactly, twice in this subgraph. Thus, each color is used exactly twice in
any consecutive m+k+1 vertices. Consequently, vertices i and i+m+
k+1 have the same colors for all i # Z. Therefore, for each i # S :=
[0, 1, ..., m+k], the only possible vertices in S having the same color as i
are i+k and i&k (mod m+k+1).

Consider the circulant graph C(m+k+1, k), with vertex set S and in
which vertex i is adjacent to vertex j if and only if j#i+k or i&k
(mod m+k+1). It follows from the discussion in the preceding paragraph
that two vertices x and y of S have the same color only if xy is an edge
of the circulant graph C(m+k+1, k). Since the intersection of each color
class with S contains exactly two vertices, the coloring induces a perfect
matching of C(m+k+1, k). However, C(m+k+1, k) is the disjoint union
of d cycles of length (m+k+1)�d, where d=gcd(m+k+1, k). Since
C(m+k+1, k) has a perfect matching, each cycle has an even length. This
implies that r>s, contrary to the assumption r�s. Q.E.D

The next theorem determines the chromatic number /(Z, Dm, k) for all
values of m and k. Incidentally, it also shows that the converse of Lemma 7
is true.

Theorem 8. Suppose 2k�m. Write m+k+1=2rm$ and k=2sk$,
where r and s are non-negative integers and m$ and k$ are odd integers. Then

/(Z, Dm, k)={
m+k+1

2
,

\m+k+2
2 � ,

if r>s;

otherwise.

Proof. It follows from Corollary 6 and Lemma 7 that if r>s, then
/(Z, Dm, k)�(m+k+1)�2; if r�s, then /(Z, Dm, k)�W(m+k+2)�2X.
Therefor it suffices to show that G(Z, Dm, k) is (m+k+1)�2-colorable, if
r>s; and G(Z, Dm, k) is W(m+k+2)�2X-colorable, if r�s. It is known that
/(Z, D)=/(Z+ _ [0], D) [14]. Therefore, it is sufficient to find a proper
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coloring for the subgraph of G(Z, Dm, k) induced by all non-negative
integers.

We first decompose k into the sum of an odd number of integers,
k=a1+a2+ } } } +ap , as follows:

Case 1. For r>s or s=0, let p=k$ and aj=2s for 1� j�p.

Case 2. For r�s{0, let p=k&1 and aj=1 for 1� j<p and ap=2.

Next, partition the set Z into consecutive blocks of sizes a1 , a2 , ..., ap

periodically. Then ``pre-color'' the blocks, alternating RED and BLUE. We
call a vertex RED (or BLUE) if it falls within a RED (or BLUE) block.

Define a coloring f on the vertices of all non-negative integers of
G(Z, Dm, k) according to the following three rules:

(R1) f (i)=i, if 0�i�k&1;

(R2) f (i)= f (i&k), if i is BLUE and i�k;

(R3) f (i)= the smallest non-negative integer that has not been used
as a color in the m vertices preceding i, if i is RED and i�k.

To show that f is a proper coloring, we claim that for any vertex i,
f (i){ f ( j) for all j{i&k with i&m� j<i. It is easy to see that the claim
is true when (R1) or (R3) is performed. Suppose (R2) is executed, i.e., i is
BLUE, i�k, and f (i)= f (i&k). Since k is divided into an odd number of
blocks, i&k is a RED vertex. By (R1) or (R3), f (i&k) is different from
any of the colors of the m vertices preceding i&k. Thus, it is sufficient to
show that f (i){ f ( j) for all j with i&k< j<i.

If j is RED, by (R1) or (R3), f ( j){ f (i&k) and so f (i){ f ( j). If j is
BLUE, by (R1) of (R2), f ( j)= f ( j&k). One has i&k&m<j&k<i&k
(because 2k�m), so f (i&k){ f ( j&k). This implies f (i){ f ( j).

To complete the proof of the theorem, it is sufficient to show that f is an
((m+k+1)�2)-coloring if r>s; and f is an W(m+k+2)�2X-coloring if
r�s. One can accomplish this by counting the number of colors that have
been used for the m vertices preceding a RED vertex i for which i�k. The
first k vertices need at most k colors. For the remaining m&k vertices, only
those RED vertices need new colors.

If r>s, then m&k+1 is a multiple of 2s+1. Any consecutive 2s+1

vertices have 2s BLUE vertices and 2s RED ones, so there are exactly
(m&k&1)�2 RED vertices in the remaining m&k vertices. Therefore, the
total number of colors used in f is at most k+(m&k&1)�2+1=
(m+k+1)�2.

If r�s (with s=0 in Case 1 and s{0 in Case 2), then there are at most
W(m&k)�2X RED vertices in the remaining m&k vertices. Thus, the total
number of colors used in f is at most k+W(m&k)�2X+1=
W(m+k+2)�2X. This completes the proof of Theorem 8.
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We now present the following two results concerning the circular
chromatic number of G(Z, Dm, k). The first one follows from (V) and
Theorems 5 and 8.

Corollary 9. Suppose 2k�m. Write m+k+1=2rm$ and k=2sk$,
where r and s are non-negative integers and m$ and k$ are odd integers. If
r>s, then /f (Z, Dm, k)=/c (Z, Dm, k)=/(Z, Dm, k)=(m+k+1)�2.

Theorem 10. If 2k�m and k is relatively prime to m+k+1, then
/f (Z, Dm, k)=/c (Z, Dm, k)=(m+k+1)�2.

Proof. Since k is relatively prime to m+k+1, there exists an integer n
such that nk#1 (mod m+k+1). Consider the mapping c defined by
c(i)=(in mod m+k+1) for all i # Z. For any edge ij in G(Z, Dm, k), we
shall prove that &c(i)&c( j)&m+k+1�2. Suppose to the contrary, that
&c(i)&c( j)&m+k+1�1; i.e., c(i)&c( j)#0 or 1 or &1 (mod m+k+1).
Then i& j#0 or k or &k (mod m+k+1), which contradicts the fact that
i is adjacent to j. Thus c is an (m+k+1, 2)-coloring of G(Z, Dm, k). This
along with Theorem 5 and ( V ) implies the theorem. Q.E.D

Remarks. Many new results related to this topic have been obtained
since the submission of this paper. In [3], the circular chromatic numbers
of all the graphs G(Z, Dm, k) are determined. The chromatic number,
circular chromatic number and fractional chromatic number of distance
graphs with distance sets of the form Dm, k, s=[1, 2, ..., m]&[k, 2k, ..., sk]
have been studied in [8, 20, 27, 44]. (Accordingly, the distance graphs
discussed in this paper are G(Z, Dm, k, 1).) In [27], the chromatic numbers
of all the graphs G(Z, Dm, k, 2) are determined. The same paper also deter-
mined the fractional chromatic numbers of all the graphs G(Z, Dm, k, s). In
[8], the following was proved:

W(m+sk+1)�(s+1)X�/(G(Z, Dm, ks))�W(m+sk+1)�(s+1)X+1.

Moreover, both the upper bound and the lower bound are attainable. Then
in [20], the chromatic numbers of all the graphs G(Z, Dm, k, s) are com-
pletely determined. Finally and most recently, [44] determines the circular
chromatic numbers of all the graphs G(Z, Dm, k, s).
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