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Abstract—The primary concern of this study deals with the prediction of thermal performance
of packed beds with variable porosity. Combined conduction and radiation heat transfer in
plane-parallel packed beds of spherical particles was investigated numerically. The effects of
variable porosity, effective thermal conductivity, and thermal radiation were taken into ac-
count. The method for radiative transfer equation was based on the P

3
-spherical harmonic

approximation, while the finite-difference scheme was employed to solve the energy equation.
Four different models of porosity distributions were tested. It was found that variable porosity
and effective thermal conductivity effects on the mean total effective thermal conductivity and
radiative heat flux distributions are important and should not be ignored. ( 1999 Elsevier
Science Ltd. All rights reserved.

1 . INTRODUCTION

Combined conduction and radiation heat transfer in packed beds has become an increasingly
important research because of its wide applications in thermal insulation systems designs. Numer-
ous studies have been reported in relation to this topic. Tien1 gave an overview of the existing
knowledge on radiative heat transfer on packed beds. In homogenous media such as gases,
absorption and emission are the major radiative mechanism. If the medium contains inhomgeneities,
such as the particles on packed beds, the addition mechanism of scattering is considered. Drolen and
Tien2 predicted the radiative extinction characteristics of independent and dependent scattering in
packed beds. The independent and dependent scattering regimes were shown over a wide range of
size parameter, nD

1
/j, and solid volume fraction, fv. Singh and Kaviany3 simulated the radiative

heat transfer through a packed beds of relatively large spherical particles by the Monte Carlo
method and indicated the failure and success of independent theory. Singh and Kaviany4 showed
that the dependent properties of packed beds of opaque spheres can be obtained from their
independent properties by scaling the optical thickness while leaving the albedo and the phase
function unchanged. The scaling factor is found to depend mainly on the porosity and is almost
independent of the emissivity. Nasr et al5 measured the temperature-dependent effective thermal
conductivity of packed beds of large particles and extracted the radiative conductivity from their
experimental data.

The variable porosity close to an impermeable boundary leads to a number of important effects
such as boundary, inertia, and channeling. In the experimental studies of Benenati and Brosilow6

and Ridway and Tarbuck,7 the porosity variation near the wall region of the random beds of
uniformly sized spheres shows an oscillatory behavior. The oscillation decreases going away from
the wall, and approximates to a constant value. While the oscillations decrease sufficiently after the
distance of approximately five particle diameters, variation of porosity with respect to volume is
large such that it cannot be ignored in the region within this distance. Vafai and Tien8 analyzed the
boundary and inertia effects on convective flow and heat transfer for constant porosity media and
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expressed them in terms of several governing parameters. These effects were further investigated by
an experiment9 for transient mass transfer through constant porosity. In some applications, such as
fixed-bed catalytic reactors, packed-bed heat exchangers, drying, chemical reaction engineering and
metal processing, the constant porosity assumption does not hold because of the influence of an
impermeable boundary. Vafai et al10 presented an experimental investigation on the effects of a solid
impermeable boundary and variable porosity on forced convection in porous media. The heat
transfer of packed beds containing a stagnant gas is a function of their solid and gas thermal
conductivities, the porosity of the bed, the local temperature, and the material, shape and size of the
particle. To determine heat transfer characteristics of packed beds, the radiative properties of the
packed beds such as its extinction coefficient, albedo, and phase function must also be described in
terms of porosity, particle size, and surface reflectivity. Lu et al11 presented a theoretical analysis for
the combined forced convection and radiation in packed beds along a flat plate. In this study, the
non-Darian effects were considered for the hydrodynamics and dependent scattering effects were
taken into account for the radiation transfer. The radiative and conductive properties were assumed
as functions of porosity which was considered to vary exponentially with the distance from the plate.
Recently, Kamiuto et al12 while modeling the heat transfer in packed beds, classified the theoretical
models into two categories: (1) the cell model, and (2) the quasi-homogeneous model. The former
model could not take into account the long-range effects of radiative transfer through the voids of
a packed bed, and therefore, led to serious errors on evaluating the heat transfer characteristics of
a comparatively thin packed bed. Moreover, the radiative transfer through a packed bed is governed
by the equation of transfer, and thus, radiative transports such as radiative heat flux may be
accurately evaluated even for a comparative thin packed bed by solving the equation of transfer
numerically. In their paper, the quasi-homogeneous model was developed for finding the heat
transfer characteristics of packed beds at high temperatures, experimentally and theoretically,
utilizing a correlated scattering theory that enables the calculation of the dependent properties of
large particles from their independent properties. In addition, they also showed that results based on
the uncorrelated-scattering theory always overestimate the total effective conductivities of such
beds.

The objective of this study was to investigate the effects of four different porosity distributions on
mean effective thermal conductivity and radiative heat flux distributions. In fact, each model has
different characteristics: model 1 represents the mean porosity in the bulk region; model 2 consists of
two principal equations, an order-3 polynomial expression and a damped cosine, along with the
addition of a constant; model 3 is an exponential function that ignores the oscillations in porosity in
the near-wall region; and model 4 uses the Bessel function as an oscillatory factor allowing
consideration of the effects of damped oscillations. It was found that variable porosity distribution
significantly affects the total effective thermal conductivity as well as the radiative heat flux near the
walls.

2 . ANALYSIS

Consider the combined conductive and radiative heat transfer in plane-parallel packed beds.
Local porosity within the packed beds varies with distance from the boundary, and four different
porosity distributions are symmetric with respect to the mid-plane of the packed beds. The radiative
heat transfer of the packed beds are assumed as the quasi-homogenous model. The packed spheres
are to be opaque with a gray diffuse surface. The radiative properties of packed beds do not depend
on wavelength as is predicted by the correlated-scattering theory.12 The two boundaries of packed
beds kept at two different constant temperatures with gray diffuse emitters and reflectors are
considered. The packed beds show continuous heat transfer and are in the steady state. The
mathematical formulation of this problem, in the dimensionless form, is given by

0"
L
LgCj.

Lh
LgD!+ )Q3 (g), (1)

where g is the dimensionless coordinate, j
.

the effective thermal conductivity and Q3 the dimension-
less radiative heat flux. The associated boundary conditions for Eq. (1) are taken as

h(0)"1, h(1)"0.5, (2)
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where h is the dimensionless temperature. The dimensionless intensity I satisfies the radiative
transfer equation which is written in the following form

k
LI(g, k)

Lg
#q(g)I (g, k)"q(g)(1!u)h4(g)#C

uq(g)

2 D P
4n

I )P(k, k@) dk@, (3)

where I is the dimensionless radiation intensity, u the scaled scattering albedo, P the phase function
and q the optical thickness.9 The boundary conditions for Eq. (3) are taken as

I (0, k)"e
)
h4 (0)#2(1!e

)
)P

1

0

I (0, !k@) dk@, k'0, (4a)

I(1,!k)"e
)
h4(1)#2(1!e

)
)P

1

0

I (1, k@ ) dk@, k'0, (4b)

where e
)
and e

#
are the total hemispherical emissivity of the hot and the cold wall, respectively, and

k the direction cosines in the Cartesian coordinate system.
The divergence of the dimensionless net radiative heat flux + )Q3(g) in Eq. (1) can be expressed as

+ )Q3(g)"
q (g)(1!u)

N Ch4(g)!
t

0
(g)

4 D , (5)

where N is the conduction-to-radiation parameter, defined as N"k
4
/4p¹3

)
¸.

Using the spherical-harmonic method for the solution of the radiative transfer equation for
packed beds, the intensity of radiantion I (g, k) and the scattering phase function P (k, k@) are
assumed to be present in a series of Legendre polynomials.13 Bayazitoglu and Higenyi14 have
discussed and compared the results of the P

3
approximation with exact solutions, and have shown

that the P
3

approximation is quite accurate. The P
3

approximation is therefore adopted in the
present investigation. For the P

3
approximation, four ordinary differential equations can be

obtained as
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where, by definition, t
0
(g) and t

1
(g) are the incident radiation and the radiative heat flux,

respectively. t
2
(g) and t

3
(g) are the dimensionless second and third moments of the incident

radiation, respectively. In the field of heat transfer, it is usually these two quantities that are of
interest rather than the intensity itself. Thus, only the solution for t

0
(g) and t

1
(g) is presented here.

To be compatible with the spherical harmonic approximation, the boundary conditions of
moments of the radiant intensity must be formulated using Marshak’s boundary conditions.
Therefore, Eqs. (4a) and (4b) become

P
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where l"1, 2, 3,2, (N#1)/2. Substituting Eq. (5) into Eq. (1), the energy equation becomes

0"
L
LgCj.

Lh
LgD!

q(g)

N
(1!u)Ch4 (g)!

t
0
(g)

4 D . (8)
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Fig. 1. Profiles of the porosity distribution function for the four models (¸/D
1
"10).

Four ordinary differential equations, Eqs. (6a)— (6d), can be solved by using the BVPFD subrou-
tine of a commercially available software package called IMSL. The BVPFD subroutine has been
used to solve a (parameterized) system of differential equations with boundary conditions at two
points, using a variable-order, variable-step-size, finite-difference method with deferred corrections.
The energy equation is also solved by the finite-difference method.

2.1. Porosity distribution function

The porosity distribution within a packed bed must be determined explicitly because the optical
thickness and effective thermal conductivity involve the porosity as a parameter. Four porosity
distribution functions are outlined below and shown in Fig. 1:

(1) The first porosity distribution model is the bulk porosity of the packed beds, /
=

.
(2) The second model is derived from the experimental data of Ridgeway and Turback7

for 04f40.6,

/(f)"1!3.10036f#3.70243f2!1.24612f3,
for 0.64f40.5f

0
,

/ (f)"!0.1865 exp(!0.22f1.5
1

)cos(7.66f
1
)#0.39, (9)

where f"z/D
1
, f

0
"¸/D

1
and f

1
"f!0.6. D

1
is the mean diameter of packed beds, ¸ the

thickness of packed beds and z represents the distance from the wall.
(3) The third porosity distribution model is assumed to vary exponentially with the distance

from the boundary surface. Damped oscillations in porosity are ignored in determining the
exponential function:

/ (f)"/
=

[1#D exp(!D*f)], (10)

where the constants D and D* are experimental parameters taken as D*"!6 and
D"(1!/

=
)//

=
.15

(4) The fourth model is also derived from the experimental data of Mueller:16

/ (f)"/
"
#(1!/

"
)J

0
(af)e~"f for 2.614¸/D

1
, (11)

where

a"8.243!
12.98

(¸/D
1
#3.156)

for 2.614¸/D
1
413.0,

a"7.383!
2.932

(¸/D
1
!9.864)

for 13.04¸/D
1
,
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b"0.304!
0.724

¸/D
1

,

/
"
"0.379#

0.078

(¸/D
1
!1.8)

,

and J
0
(af) is a Bessel function of the first kind.

2.2. Effective thermal conductivity

Bruggeman’s effective medium theory12 is utilized in this paper. According to this theory, j
.

is
given by

j
.
"(k

!
/k

4
)M(i!1)i1@3/[3J(JA!1)/2!3J(JA#1)/2]#iN, (12)

where A"1#4/27/3 (i!1)3/i2, and i"k
4
/k

!
, here k

4
and k

!
are thermal conductivities of the

dispersed and continuous phase of a packed bed, respectively.

2.3. Radiative properties
According to the correlated-scattering theory,12 the scaled radiative properties for a packed bed

can be described as

q"b¸"

nD2
1
n
1
¸(2c

2
!1)

4

"1.5(¸/D
1
)(1!/) (2c

2
!1), (13)

u"o
4
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where c
2
"1#1.5(1!/)!(3/4)(1!/)2, b is the scaled extinction coefficient, o

4
the hemispherical

reflectivity of a packing sphere, and n
1

the number density of packed spheres.
The phase function of a diffuse sphere is assumed to be represented as a series of Lengendre

polynomials in the following form

P (k, k@)"
3
+
n/0

(2f
n
#1) f

n
P
n
(k)P

n
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2.4. Heat transfer characteristics

The dimensionless total heat flux across a packed bed is calculated from

Q
5
"!j

.
(g)

dh
dg

#

1

2N P
1

~1

I (g, k) dk"!K
%&&

dh
dg

, (16)

where K
%&&

represents the total effective thermal conductivity. This dimensionless total heat flux can
be readily computed, once both the energy equation and the P

3
equations are solved. Moreover, the

mean total effective thermal conductivity of a packed bed between two boundaries can be evaluated
from

K
%&&
"P

1

0

K
%&&

dg, (17)

where K
%&&

represents the mean total effective thermal conductivity.

3 . RESULTS AND DISCUSSION

In order to check the accuracy of the numerical method presented here, the uniform grid test for
model 2 was made. The results were presented in Table 1. As is shown, the 111 uniform grid points
are sufficiently accurate and can be used in all cases for the consideration of the CPU time. The
predictions for different porosity models based on the P

3
approximation are compared with the

experimental data by Kamiuto et al9 in Fig. 2. The theoretical results are shown to be in good
agreement with experimental results that account for the variable porosity effects. The temperature
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Table 1

Grid
g Temp. 91 111 131 151 171 191

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.9345 0.9343 0.9342 0.9340 0.9338 0.9335
0.4 0.8699 0.8699 0.8697 0.8695 0.8691 0.8687
0.6 0.7872 0.7874 0.7873 0.7870 0.7865 0.7860
0.8 0.6869 0.6876 0.6878 0.6877 0.6874 0.6869
1.0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

CPU time 365.1 871.9 1655.4 2275.9 3094.9 4581.2

Fig. 2. Steady temperature distributions for different models when i"781.7, N"2.95, u"0.35, and
¸/D

1
"9.82.

profile obtained from model 4 is closer to the experimental data and obviously, that obtained from
model 1 leads to a slight underprediction. Having thus gained confidence in the present numerical
analysis, attempts were made to predict the effects of combined conductive and radiative heat
transfer in plane-parallel packed beds of spherical particles. As shown in this figure, each model has
different characteristics: model 1 represents the mean porosity in the bulk region; model 2 consists of
two principal equations, an order-3 polynomial expression and a damped cosine, along with the
addition of a constant; model 3 is an exponential function that ignores the oscillations in porosity in
the near-wall region; and model 4 uses the Bessel function as an oscillatory factor allowing
consideration of the effects of damped oscillations. A model that consists of only one principal
equation would be more convenient to use in analytical packed bed transport models than one
having a set of equations. As this figure shows, we cannot ignore the effects of variable porosity and
conductivity in packed beds.

Figure 3 depicts the effects of i on the effective thermal conductivity j
.
, total (radiative plus

conductive) effective thermal conductivity K
%&&

and dimensionless radiative heat flux Q3 profiles with
N"0.1, u"0.5, and ¸/D

1
"20 for i"10, i"100, and i"1000. In Fig. 3a, the profiles of j

.
of

Models 2 and 4 are close to each other and so are those in models 1 and 3, but large differences occur
near the hot surface because all the profiles are symmetric with respect to the mid-plane and have
different characteristics. In addition, with increasing i the effective thermal conductivity decreases
sharply and becomes less sensitive to local porosity distributions, especially for the case in which
i"1000. Here the value of i is the ratio of the thermal conductivity of the dispersed phase to that of
the continuous phase. For the influence of radiation effects, the profiles of K

%&&
shown in Fig. 3b have

higher values near the hot wall than near the cold wall. The values of K
%&&

increase as i decreases but
radiation effects become stronger as i increases. Here, the i increase could be treated as the increase
in the thermal conductivity of the dispersed phase if the thermal conductivity of continuous phase is
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Fig. 3. (a) Effective thermal conductivity for different models when u"0.5, N"0.1, and ¸/D
1
"20.

(b) Total effective thermal conductivity for different models when u"0.5, N"0.1, and ¸/D
1
"20.

(c) Dimensionless radiative heat flux for different models when u"0.5, N"0.1, and ¸/D
1
"20.

fixed. When the thermal conductivity of the dispersed phase increases the temperature of the hot
wall also increases at the same time because the conduction-to-radiation parameter is fixed as 0.1.
This is the reason why radiative heat transfer becomes more important as increases. Figure 3c
presents the dimensionless radiative heat flux. As seen in this figure, for large values of i, radiation is
the dominant mode of energy transfer and for small values of conduction dominates the heat transfer
mode. The profiles for model 1 always predicts opposite results near both the surfaces because we set
the porosity functions of the surface at unity except for model 1, as seen in Fig. 1. The differences
between the four models are small for small values of i because the effects of damped oscillations
cause models 2 and 4 to become less sensitive.

The relationships among the mean total effective thermal conductivity K
%&&

and for all the four
models are shown in Fig. 4. When i is increased, the mean total effective thermal conductivity
decreases sharply along the log scale coordinate especially from i"1 to i"100 and finally
(i'1000) becomes a constant value of (+0.197), and the differences among of the four models are
small.

Figure 5 illustrate the effects of conduction-to-radiation parameter N on the total effective
thermal conductivity K

%&&
and dimensionless radiative heat flux Q3 with i"100, u"0.5, and

¸/D
1
"20 for, N"0.1, 1, and 10. The conduction-to-radiation parameter represents the relative

magnitudes of the conductive and radiative modes of heat transfer. For low values of N, radiation
dominates. However, for large values of N, conduction dominates. In Fig. 5a, the K

%&&
profiles tend to

approach horizontal lines for the case in which N"10, when conduction dominates. Figure 5b
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Fig. 4. Mean total effective thermal conductivity for different models when u"0.5, N"0.1, and
¸/D

1
"20.

Fig. 5. (a) Effective thermal conductivity for different models when i"100, u"0.5, and ¸/D
1
"20.

(b) Dimensionless radiative heat flux for different models when i"100, u"0.5, and ¸/D
1
"20.

presents the dimensionless radiative heat flux. As expected, dimensionless radiative heat fluxes
increase as N is decreased. For the case N"10, radiation account for less than 5% and can be
ignored. However, the differences among the four models apparently increase as N is decreased.

The relationships between the mean total effective thermal conductivity K
%&&

and N are shown in
Fig. 6. When N becomes larger (N'1), the mean total effective thermal conductivity decreases
sharply especially over the range of N"0.01 to 0.1 and at last we can get a constant value of the
mean total effective thermal conductivity (+0.128). The differences among the four models are not
evident for large N but for the case in which N"0.01, the relative error is about 3.2%.

Figure 7 presents the edge effects on the profiles of K
%&&

and Q3 distributions when i"100,
u"0.5, and N"0.1 for ¸/D

1
"10, ¸/D

1
"20, and ¸/D

1
"100. In Fig. 7a, the mean total effective

thermal conductivity near the hot wall increases as the ratio of thickness to particle diameter
decreases. As the value of ¸/D

1
is decreased, the effects of radiation become more pronounced. In

case when ¸/D
1
"100, the profiles tend to become horizontal lines, implying that the radiation

effects and edge effects become less important. Figure 7b shows the radiative heat flux distributions
which, as expected, have higher values because of the increase in forward scattering relative to the
small value of ¸/D

1
("10), and we can treat the small value of ¸/D

1
as the particle diameter becomes

larger for constant ¸ and the number of damped oscillations decrease as the amplitude becomes
larger in this case for models 2 and 4. From another point of view, increasing ¸/D

1
means increasing
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Fig. 6. Mean total effective thermal conductivity for different models when i"100, u"0.5, and
¸/D

1
"20.

Fig. 7. (a) Total effective thermal conductivity for different models when i"100, u"0.5, and N"0.1.
(b) Dimensionless radiative heat flux for different models when i"100, x"0.5, and N"0.1.

Fig. 8. Mean total effective thermal conductivity for different models when i"100, u"0.5, and N"0.1.

optical thickness, as defined by Eq. (13), the media tends to absorb and emit more radiation resulting
in decreasing radiation effects.

The relationships between the mean total effective thermal conductivity K
%&&

and ¸/D
1
are shown

in Fig. 8. When ¸/D
1
becomes larger (¸/D

1
'100), the mean effective thermal conductivity decreases
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and finally we get a constant value of mean total effective thermal conductivity (+0.154). The
differences among the four models are evident for ¸/D

1
"10. The largest differences occur at

¸/D
1
"10, the relative error is about 8.89%. Due to the different characteristics of each model, the

results from model 1 are closest to mode 3 and those from model 2 are closest to model 4. We believe
that according to the continuous model the range of ¸/D

1
that was 10—100 in our work was

acceptable.

4 . CONCLUSION

The problem of combined conduction and radiation heat transfer in plane-parallel packed beds of
spherical particles has been investigated in this work. The effects of variable porosity, effective
thermal conductivity, and thermal radiation were taken into account. The P

3
approximation

method was used to obtain the solutions of the equation of transfer. Four different models of
porosity distribution were tested in this study. It was found that variable porosity distribution
significantly affect the total effective thermal conductivity as well as the radiative heat flux near the
walls. In addition, the results show that the effects of radiation become more pronounced when ¸/D

1
decrease. When the value of ¸/D

1
is larger than 40, the edge effects can be ignored.
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