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Dynamics of atomic pairs in a Lennard-Jones fluid: Mean relative displacement analysis

Ten-Ming Wu and S. L. Chang
Institute of Physics, National Chiao-Tung University, HsinChu, Taiwan 300, Republic of China

~Received 28 July 1998!

We have analyzed the dynamics of atomic pairs in a simple fluid in terms of the mean relative displacement
of two atoms with a given initial separation. The short-time expansion of the mean relative displacement has
been derived exactly beyond the constant acceleration approximation~CAA! ~up to the t4 order!. For a
Lennard-Jones fluid, the mean relative displacements calculated by either the CAA or thet4-order approxima-
tion have been compared with the results obtained from a molecular-dynamics simulation. Through studying
the relative motions of atomic pairs with different initial separations, we give a physical picture of the
dynamics of neighboring atoms beyond the CAA.@S1063-651X~99!08603-1#

PACS number~s!: 61.20.Lc, 82.20.Db, 61.20.Ja, 61.20.Ne
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I. INTRODUCTION

Many intermolecular spectroscopies in fluids are ess
tially related to the relative motions of particles. A rece
example is the time-resolved transient fluorescence use
study the short-time dynamics of solvation at a molecu
level @1–4#. For a probe molecule dissolved in a fluid, th
transition frequency between the ground and excited stat
affected by the difference of the solute-solvent interactio
corresponding to the two electronic states, and also fluctu
due to the solvent motions relative to the solute@5,6#. The
dynamics of these relative motions has strong effects on
autocorrelation function of the transition-frequency fluctu
tion, which is, within the linear response approximatio
equivalent to the solvent response function measured by
Stokes shift of the transient fluorescence@3,4#.

Using a molecular-dynamics~MD! simulation, Saven and
Skinner @7# presented the transition frequency autocorre
tion function of an atomic solvation model, in which on
atomic solute is dissolved in a low-density, high-temperat
Lennard-Jones~LJ! solvent fluid ~with equal masses of al
particles!. In their simulated results, the transition frequen
autocorrelation function, after being normalized, has a sm
bump arising at the time scale right after the rapid Gauss
decay, which is due to the ballistic motions of particles. Th
interpreted the occurrence of the bump as due to the vi
tional motion of the solvent particles caged in the first sh
around the solute. Their interpretation is based on the gen
concept of the potential of mean force@8#. However, it was
concluded that the effects of the potential of the mean fo
upon the dynamics of pairs in an atomic fluid were sign
cant only in the short-time regime@9,10#.

In this well studied model@7,11,12#, the interaction be-
tween particles in the ground state is described by a LJ
tential, and the interaction between an excited solute an
solvent particle is by another LJ potential which has
same diameter, but a well depth deeper than the ground-
value. Thus the well depth of the excited-state solute-solv
LJ potential serves as the only tunable parameter in t
model. However, due to this special model, the normaliz
transition frequency autocorrelation function is independ
of this parameter. It is easier to study the dynamical effe
PRE 591063-651X/99/59~3!/2993~8!/$15.00
n-
t
to
r

is
s
es

e
-
,
he

-

e

ll
n

y
a-
ll
ral

e
-

o-
a

e
ate
nt
ir
d
t

ts

of particle relative motions on this autocorrelation functi
in a limiting case through the MD simulation, in which th
model system has the same conditions as studied, but
well depth of the excited-state potential is infinitesima
close to the ground-state value. In such a limiting case,
dynamics of the model system is virtually identical to that
a pure simple LJ fluid. Therefore, with this motivation, w
think it is worth investigating the relative motions of atom
pairs in a simple fluid from a short-time regime up to a tim
scale beyond the ballistic motion of individual particle.

Usually, the relative motions of atomic pairs in a simp
fluid are described in terms of the time-dependent distri
tion functionG2(r ,r 8;t), which is the conditional probability
of finding a pair of atoms with separation vectorr 8 at timet,
given that they were separated byr at t50 @13,14#. The
quantities usually presented and analyzed were the mom
of this distribution@11–14#. In this paper, we suggest that th
mean relative displacementU(r ,t) of an atomic pair at time
t, given that its initial separation vector wasr , is an effective
quantity to manifest the dynamical and structural effects
the fluid on the relative motion of an atomic pair, especia
for those nearest-neighbor pairs. The mean relative displ
ment, which describes the average center of theG2 distribu-
tion at timet, is one of the moments of this distribution, an
is given by the equation

U~r ,t !5E dr 8G2~r ,r 8;t !~r 82r !. ~1!

In an uniform simple fluid, the relative motion of a
atomic pair is anisotropic due to the initially specified sep
ration of the two atoms, including both their relative distan
and direction. Thus the mean relative displacementU(r ,t)
may be decomposed into two componentsU uu(r ,t) and
U'(r ,t), which are parallel and perpendicular to the initi
separation vectorr , respectively, and depend only onr. For
two atoms with a very large initial separation, these tw
components are certainly zero at all times, since the inte
tion between the two atoms is so small that each atom ca
thought to be free from the other. As the initial separation
the two atoms is of the order of the mean nearest-neigh
distance of the fluid,U uu(r ,t) is no longer zero, since the tw
atoms interact directly and through the medium; howev
2993 ©1999 The American Physical Society
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2994 PRE 59TEN-MING WU AND S. L. CHANG
U'(r ,t) is still zero at all times. Therefore, by analyzing th
parallel components of the mean relative displacement
the atomic pairs, we may obtain information about the
fects of the fluid structures on the relative motions of neig
boring atoms.

In the gas phase, the relative motion of a pair is ess
tially determined by the direct potentialf(r ) between the
two atoms. In a dense simple fluid, rather than the dir
potential, the relative motion of a pair is actually determin
by the averaged force between the two atoms, which
cludes both the direct force and the indirect forces interm
diate through the remaining atoms in the fluid. The ove
averaged force between two atoms in a fluid is given by
gradient of the potential of mean forcew(r )[
2kBT ln g(r), whereg(r ) is the radial distribution function
of the fluid. In the low density limit,w(r ) reduces tof(r ).
The short-time dynamics of atomic pairs in a fluid can
well described by the constant acceleration approxima
~CAA!, which was first introduced by Oppenheim an
Bloom in the theory of nuclear spin relaxation in fluids@15#.
In the CAA, the forces between atoms in a fluid are indep
dent of time, and thus the motions of particles are assume
be ballistic. U(r ,t) is, therefore, approximated to b
2t2¹w(r )/2m, with m to be the reduced mass of a pair. T
mean relative displacement of a pair in the CAA is just t
leading term of the short-time expansion ofU(r ,t).

Recently, there has been great interest in analyzing
short-time dynamics of liquids in terms of instantaneous n
mal modes~INM’s ! @16–18#. In the INM approach, the
forces between particles are approximated beyond the C
by including the Hessian matrix of the total interaction of t
system. Therefore, the dynamics of a liquid in the INM a
proximation includes some collective motions, rather th
the ballistic motions of individual particles. In terms o
INM’s, the particle displacements from an instantaneo
configuration are correct tot2; the velocity autocorrelation
function of a particle is correct tot4.

In the same spirit of the INM approach, in this paper w
expand the particle displacements from a configuration u
the t4 order by solving the equations of motion with th
iterating method. Instead of paying attention to the motio
of all particles as in the INM approach, we focus only on t
relative displacement of a single pair. After making an e
semble average, we obtain exactly the expansion of the m
relative displacement of a pair up to thet4 order. The deri-
vation is given in Sec. II. In Sec. III, for a LJ fluid, the mea
relative displacements of atomic pairs calculated in either
CAA or the t4-order approximation are compared with th
results obtained from MD simulation. By comparing th
mean relative displacements of two groups of atomic p
with an initial separation of one group atr max and initial
separations of the other group at less thanr max, wherer max is
the distance corresponding to the first maximum ofg(r ), we
show the dynamical and structural effects of the fluid on
relative motions of neighboring atoms. Our conclusion
given in Sec. IV.

II. MEAN RELATIVE DISPLACEMENT

Consider a system ofN particles each having a massm,
interacting via the pair potentialf(r ). With the initial sepa-
of
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ration r21[r22r1@r i[r i(0)# of a pair, indexed with 1 and 2
and their relative displacementu21(t)[u2(t)2u1(t)@ui(t)
[r i(t)2r i # at time t, we define the mean relative displac
ment of an atomic pair as

U~r ,t !5
^d~r2r21!u21~ t !&

^d~r2r21!&
, ~2!

where the angular brackets denote an equilibrium ensem
average. Since the system is in thermal equilibrium,^d(r
2r21)&5g(r )/V, whereV is the volume of the system.

From the equations of motion and the details given in
Appendix, the displacementui(t) can be expanded into
time series. Up to thet4 order,

ui~ t !5vi t1
t2

2!m
Fi2

t3

3!m (
j

K i j •vj

2
t4

4!m (
j ,k

S 1

m
K i j •Fj1vj•L i jk•vkD1•••, ~3!

Fi[2“ iV~R!uR5R0
, ~4!

K i j [“ i“ jV~R!uR5R0
, ~5!

L i jk[“ i“ j“kV~R!uR5R0
, ~6!

wherevi is the initial velocity of thei th particle, andFi is the
total force on thei th particle in the initial configuration
R0 . K i j and L i jk , respectively, are the second- and thir
order expansion coefficients of the total potentialV(R) of
the system in the initial configurationR0 . K i j , defined in
Ref. @18#, is actually a three-dimensional matrix. With a tot
potentialV assumed to be a pairwise summation of the p
potentialf(r ),

K i j 5H 2t~r i j ! for iÞ j

(
lÞ j

t~r l j ! for i 5 j ,
~7!

t~r !5
f8~r !

r
I31S f9~r !2

f8~r !

r D r̂ r̂ , ~8!

wheref8(r ) and f9(r ) denote the first and second deriv
tives of the pair potentialf(r ) with respect tor, r̂ is the unit
vector alongr , and I3 is the three-dimensional unit matrix
Thus theK i j matrices obey the following sum rule:

(
i 51

N

K i j 5(
j 51

N

K i j 50. ~9!

The sum rule is proof that the net force on the center of m
of the system is zero.

After substituting the expanded series of particle displa
ments given in Eq.~3! into Eq. ~2!, and averaging out the
initial velocities, we obtain a short-time expansion of t
mean relative displacement, which contains only even po
ers of time. Up tot4,
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U~r ,t !5
t2

2!
U2~r !2

t4

4!
U4~r !1•••, ~10!

U2~r !5
V

mg~r !
^d~r2r21!~F22F1!&, ~11!

U4~r !5
V

m2g~r !
(

j
^d~r2r21!$~K2 j2K1 j !3Fj

1kBT~L2 j j 2L1 j j !%&. ~12!

With the definition ofFi given in Eq.~4! and an identity due
to an integration by parts, it is easy to prove that

U2~r !5
kBT

mg~r !
“g~r !52

1

m
“w~r !, ~13!

wherem5m/2. Thus thet2 term in Eq.~10! is just the mean
relative displacement in the CAA.

With the following identity, which also involves a suit
able integration by parts@19#,

^d~r2r21!K i j •Fj&

5kBT$d j 2“•^d~r2r21!K i2&

2d j 1¹•^d~r2r21!K i1&2^d~r2r21!L i j j &%,

~14!

where the symbold i j denotes the Kroneckerd notation, and
the contraction of divergence on a matrix is defined betw
the differential operator and the column index of the matr
one can prove

U4~r !5
kBTV

m2g~r !
“•^d~r2r21!~K221K112K122K21!&.

~15!

Then, by the definitions ofK22 andK11 given in Eq.~7!, we
can separateU4(r ) into two terms U4

(2)(r ) and U4
(3)(r ),

where the former depends only on the pair with the init
separation at exactlyr , and the latter depends on three pa
ticles, two particles with the specified initial separationr and
a third one which can be any of the remaining particles in
system. Their expressions are given in the following:
n
,

l
-

e

U4
~2!~r !52

kBTV

m2g~r !
“•^d~r2r21!K12&, ~16!

U4
~3!~r !52

kBTV

m2g~r !
“• (

j Þ1,2
^d~r2r21!~K2 j1K1 j !&.

~17!

With the definition ofK12, we can prove

U4
~2!~r !5

kBT

m2g~r !
“•„g~r !t~r !…. ~18!

Using the definition of the three-particle distribution fun
tion,

r2g3~r ,r 8!5K (
iÞ j Þ1

d~r2r i1!d~r 82r j 1!L , ~19!

U4
(3)(r ) can be expressed as

U4
~3!~r !5

rkBT

m2g~r !
“•E dr 8g3~r ,r 8!„t~r 8!1t~r 82r !….

~20!

So far, this expression forU4
(3)(r ) is exact. To facilitate the

further calculation, we use the Kirkwood superposition a
proximation@20#

g3~r ,r 8!'g~r !g~r 8!g~ ur2r 8u!. ~21!

After making this approximation, and then changing the
tegration variable of the second term in the integrand in
~20!, U4

(3)(r ) is reduced to the following formula:

U4
~3!~r !'

2rkBT

m2g~r !
“•E dr 8g~r !g~r 8!g~ ur2r 8u!t~r 8!.

~22!

From the above derivation, one can prove that the co
ponent ofU4(r ) perpendicular to the initial separationr is
zero, and the parallel component is given as the followin
U4
uu~r !'

1

m2H 2w8~r !f9~r !1kBTFf-~r !1
2

r S f9~r !2
f8~r !

r D G J 2
2r

m2
~ f 11 f 2!, ~23!

f 15w8~r !E dr 8g~r 8!g~a!Ff8~r 8!

r 8
1S f9~r 8!2

f8~r 8!

r 8
D ~ r̂ 8• r̂ !2G , ~24!

f 25E dr 8g~r 8!g~a!w8~a!Ff8~r 8!

r 8
~ â• r̂ !1S f9~r 8!2

f8~r 8!

r 8
D ~ â• r̂ 8!~ r̂ 8• r̂ !G , ~25!

wherea5r2r 8 and â is the unit vector alonga.
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In order to understand the above formula, we consider the relative motion of atomic pairs in a low-density~LD! fluid, in
which two particles only interact with the potentialf(r ) and have randomly initial relative velocities satisfied with t
Maxwell-Boltzmann distribution of temperatureT. By using the method described above~integrating the equations of motion
iterating the displacements, and averaging out the initial velocities!, up to thet4 order, the formula of the mean relativ
displacement in this low-density fluid is obtained, and given in the following:

ULD
uu ~r ,t !52

t2

2m
f8~r !2

t4

4!m2H 2f8~r !f9~r !1kBTS f-~r !1
2

r S f9~r !2
f8~r !

r D D J 1•••. ~26!
ce
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Compared to the formula of the mean relative displa
ments in the high- and low-density limits, it is clear that
to thet2 order the relative motion of an atomic pair in a flu
is governed by the potential of mean forcew(r ), rather than
the direct potentialf(r ). The potential of mean force be
tween two particles in a fluid depends only on the sta
structures of the fluid, and has nothing to do with the m
tions of the remaining particles. In thet4 order, only partially
affected by the potential of mean force owing to the evo
tion of the short-time dynamics to longer times, the relat
motion of an atomic pair is, however, dominated by the
rect potentialf(r ) and the two density-dependentf terms in
Eq. ~23!, which give the lowest-order effect due to the re
tive motions between the pair and the remaining particle
the fluid.

III. MOLECULAR-DYNAMICS SIMULATION
AND COMPARISON

A system of 864 particles in a cubic box, interacting w
the LJ potential

f~r !54eF S s

r D 12

2S s

r D 6G , ~27!

was simulated by the means of MD techniques with a vel
ity Verlet algorithm@21,22#. In our simulation, we have use
the periodic boundary conditions and the minimum ima
convention. Also, the LJ potential is truncated atr c53s,
and lifted by adding a termA(r /s)1B, such that both the

FIG. 1. The radial distribution functiong(r ) ~solid line!, the
potential of the mean forcew(r ) ~dot-dashed line!, and the pair
potential f(r ) ~dashed line! of the LJ fluid at r* 50.5 andT*
51.41.
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potential and the force atr c are zero. The time unit used i
this paper ist05(ms2/e)1/2, wheree is the well depth of the
potential ands is the effective diameter of the particle. T
obtain the thermal equilibrium, the system was propaga
with a time stepDt50.01. After another equilibration run o
5000 steps, we changed the time step to be 0.001, and st
to collect data. The chosen reduced densityr* [rs3 of the
simulated fluid is 0.5, and the reduced temperatureT*
[kBT/e is 1.41, which are the thermodynamic conditio
studied by Saven and Skinner@7#.

The radial distribution functiong(r ) was obtained di-
rectly from the simulation, and then the potential of the me
forcew(r ) was calculated according to its definition given
Sec. I. The calculatedg(r ) andw(r ), and the truncated-and
shifted LJ potential, are shown in Fig. 1. Forr smaller than
r max'1.1s, which corresponds to the first maximum o
g(r ), the function ofw(r ) is almost identical to the origina
pair potential; forr larger thanr max, the function is oscilla-
tory, rather than monotonically increasing as in the LJ pot
tial.

The mean-square displacementR(t)[^ur1(t)2r1(0)u2&
of the single-particle motions in the LJ fluid we simulated
presented in Fig. 2. Att* [t/t050.05, 0.1, 0.15, 0.2, 0.25

FIG. 2. The mean-square displacementsR(t) of the single-
particle motions vs time plotted on a log-log scale for the LJ fluid
r* 50.5 andT* 51.41. The MD simulation data are represented
filled squares att/t05 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, and
stars at other times. The dashed line is the short-time asymptoti
the simulation data.
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FIG. 3. The parallel components of the mean relative displacement as a function of the initial relative separationr at four different times.
The open circles represent the simulation results. The solid and the dashed lines are the theoretical calculations by the CAA and tht4-order
approximation, respectively.
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and 0.3, the simulation data ofR(t) in Fig. 2 are manifested
by filled squares. Generally speaking, fort* less than 0.1,
R(t) is proportional tot2, and thus the single-particle mo
tions within this time regime are ballistic. SinceR(t) gradu-
ally deviates from its short-time asymptotics, the sing
particle motions are no longer ballistic beyondt* 50.1.
However, up tot* 50.3, the single-particle motions have y
to enter into the diffusion region.

In Fig. 3, we present the parallel component of the me
relative displacement as a function of the initial separatior
at t* 50.1, 0.15, 0.2, and 0.25, calculated by either the M
simulation, the CAA or thet4-order approximation, through
Eqs. ~10!, ~13!, ~23!, ~24! and ~25!. The value ofU uu(r ,t)
obtained from MD calculation represents the average of
parallel relative displacement at timet for pairs of atoms
with their initial separations betweenr 2dr /2 andr 1dr /2.
In this paper, we setdr to be 0.05s. We have checked the
perpendicular componentU'(r ,t), which indeed has an av
erage value of zero with a fluctuation less than 0.1%.
comparison, we found that att* 50.1 there is a good agree
ment between the simulation results and those of theore
calculations forr larger thanr max; however, there is a large
deviation forr less thanr max. The smaller the initial separa
tion of a pair, the larger the deviation. The deviation resu
from the fact that the force between two atoms of suc
small separation is strong and changes rapidly. The sh
time approximation for a mean relative displacement witr
smaller thanr max, therefore, breaks down even att* 50.1.
As time evolves, the region where the theoretical calcu
tions deviate from the simulation results grows from the fi
shell of g(r ) toward largerr. In general, results calculate
with the t4-order approximation indeed improve the pred
tions of the CAA. However, ast* is larger than 0.15, the
curve calculated by thet4-order approximation has a sha
peak occuring atr smaller thanr max. The occurrence of this
sharp peak arises from thew8(r )f9(r ) term in Eq. ~23!,
which dominates over other terms, forw(r ) is of the same
order of magnitude as the pair potentialf(r ) in this region.
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For two atoms in a fluid, the component of the averag
pair separation at timet, parallel to their initial separationr ,
is given by d(r ,t)[r 1U uu(r ,t). In Fig. 4, we show the
quantityd(r ,t) as a function of time, with initial pair sepa
rations at r a'0.92s,r max, and r min'1.67s, respectively,
wherer min corresponds to the first minimum ofg(r ) shown
in Fig. 1. Since w8(r ) at r max and r min are zero, both
U uu(r max,t) and U uu(r min ,t) in the CAA vanish at all times.
However, the simulated results ofd(r max,t) and d(r min ,t)
shown in Fig. 4 actually have small variations with time. U
to t* 50.3, the general trend of the variations is consist
with the theoretical predictions given by thet4-order ap-
proximation ofU uu(r ,t). According tog(r ), a pair with ini-
tial separation atr a can be recognized as two atoms bei
almost nearest neighbors in the fluid. For such a pair,

FIG. 4. d(r ,t)[r 1U uu(r ,t) component of the pair separatio
parallel to the initial separation vectorr , as a function of time with
the initial distancer[ur u of two atoms at 0.92s ~open circles!, 1.1s
~open squares!, and 1.67s ~open triangles!, respectively. The sym-
bols are the simulation results. The solid and the dashed lines
the theoretical calculations by the CAA and thet4-order approxi-
mation, respectively.
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2998 PRE 59TEN-MING WU AND S. L. CHANG
theoretical calculation ofU uu(r a ,t) given by either the CAA
or the t4-order approximation gives a good prediction on
within a period less than 0.05t0 , and breaks down as th
separation of the pair approachesr max. By comparing the
simulated results ofd(r a ,t) andd(r max,t), we give a physi-
cal picture of the relative motions of neighboring atoms
the LJ fluid we simulated. In general, for an atom in the flu
its nearest neighbors are outwardly repelled very quickly
to the strong repulsive force from that atom. After penetr
ing through the first shell created by the central atom, th
strongly repelled atoms keep moving outwardly in avera
within the time scale we study. On the other hand, the ato
originally staggering within the first shell tend to retain the
separations with respect to the central atom within the t
scales of ballistic motions, since the mean forces acting
them are almost zero. However, they are inclined to m
outwardly, after those atoms originally attaching to the c
tral atom pass through them.

One possible quantity to support this picture is the zero
angular moment of theG2(r ,r 8;t) distribution@10#, obtained
by integrating over the solid anglesV̂ andV̂8 corresponding
to r andr 8, respectively. The zeroth-angular moment ofG2 ,
denoted byg(r ,r 8;t), is defined as

g~r ,r 8;t !5
1

4pE dV̂8E dV̂G2~r ,r 8;t !. ~28!

The normalization of this function is*0
`dr r 2g(r ,r 8;t)51.

In Fig. 5, we present theg(r ,r 8;t) functions with three ini-
tial pair separations as in Fig. 4 at five different times. In o
calculation forg(r ,r 8;t) from the simulation data, the reso
lutionsdr anddr 8 for r andr 8, respectively, were both set t
be 0.05s. The g(r ,r 8;t) function with the initial separation
at r a moves out radially more quickly than that with an in
tial separation atr max. At t* 50.1, the atoms which are
originally at r a have almost passed throughr max; however,
those originally within the first shell of the central atom te
to remain there, with only part of them diffusing outwardl
On the other hand, theg(r ,r 8;t) function with an initial
separation atr min spreads out faster. Att* 50.25, some at-
oms originally atr min relative to the central atom have m
grated into the first shell. Basically, the information about
relative motions of neighboring atoms provided by t
g(r ,r 8;t) function is consistent with the picture obtaine
above from analyzing the mean relative displacement.

It is well known that in the short-time limit theG2(r ,r 8;t)
distribution can be predicted well with the so-called sho
time approximation@13#, which is a Gaussian function ofr 8
with center atr2t2¹w(r )/2m. With the mean relative dis
placementU(r ,t), theG2 distribution beyond the short-tim
regime can be approximated with a Gaussian ansatz as g
in the following:

G2~r ,r 8;t !'S 1

2pA~ t ! D
3/2

expH 2
@r 82r2U~r ,t !#2

2A~ t ! J ,

~29!

whereA(t)5kBTt2/m. This Gaussian ansatz predicts the a
erage center ofG2(r ,r 8;t) correctly, though not the spread
ing. With Eq. ~29!, theg(r ,r 8;t) function can be calculated
analytically to be:
,
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FIG. 5. g(r ,r 8;t) as a function ofr 8 at five different times with

the initial pair separationr 50.92s ~filled circles! and 1.1s ~open
squares! in ~A!, andr 51.67s ~filled triangles! in ~B!. The solid and
dashed lines are calculated with the Gaussian ansatz as describ
the text. Note that the vertical scales in~A! and ~B! are different.
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g~r ,r 8;t !'
1

„2pA~ t !…1/2r 8d~r ,t !

3H expF2
„r 82d~r ,t !…2

2A~ t ! G
2expF2

„r 81d~r ,t !…2

2A~ t ! G J , ~30!

whered(r ,t) is the function shown in Fig. 4. With the simu
lated data ofd(r ,t), a comparison of theg(r ,r 8;t) function
calculated with Eq.~30! and the simulated results is pre
sented in Fig. 5 for the three initial pair separations cons
ered above. Through this comparison, it seems that pair
atoms with initial separations aroundr min , in general, un-
dergo more freely mutual diffusion than those pairs w
smaller initial separations. Forr 5r a or r max, the spreading
of theg(r ,r 8;t) function predicted by Eq.~30! is too fast, for
this Gaussian ansatz takes no account of effects due to
lision with the core of the central atom.

IV. CONCLUSION

In this paper, we have defined the mean relative displa
ment of an atomic pair, which, we think, is an effectiv
quantity to manifest the dynamics of atomic pairs in a flu
especially for those pairs of neighboring atoms beyond
time regime described well in terms of the potential of me
force. The short-time expansion of the mean relative d
placement has been derived exactly up to thet4 order. For a
LJ fluid, the mean relative displacements calculated by ei
the CAA or thet4-order approximation have been compar
with the results obtained from the MD simulation.

In the short-time regime, within which single-particle m
tions are still recognized to be ballistic, the dynamics
atomic pairs in a fluid is well described by the CAA, an
generally governed by the potential of mean force, wh
depends on the static structures of the fluid. Beyond
short-time regime, the relative motion of an atomic pair in
fluid is dominated by the direct pair potential between t
atoms, and also influenced by the relative motions betw
the pair and the remaining particles.

By studying the relative motions of atomic pairs with in
tial separations either less than or at the distance corresp
ing to the first maximum of the radial distribution functio
we have given a physical picture of the dynamics of ato
neighboring a central one. In the fluid we studied~low den-
sity and high temperature!, the nearest neighbors to a give
atom are repelled from the first shell created by that at
within the short-time regime mentioned above. Beyond t
short-time regime, those atoms originally in the first sh
diffuse away from that atom.

For LJ fluids with higher densities and lower temperatu
@23# ~at r* 50.85 and T* 51.41 and r* 50.85 and T*
51.0), the comparison between the mean relative displa
ments calculated with thet4-order approximation and th
simulation results are similar to the corresponding res
presented in this paper, but the time regime for agreemen
even smaller, since the time scale for ballistic motions
such a fluid is shorter. Roughly speaking, instead of pene
-
of

ol-

e-

,
e
n
-

er

f

h
is

n

nd-

s

s
ll

s

e-

ts
is

n
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ing through the first shell, the nearest neighbors of a giv
atom are trapped within the first shell before the shell spre
out.

Our results suggest that, rather than the potential of
mean force, a mean relative displacement analysis of
relative motions of atomic pairs in a fluid may provide a
alternative to studying solvent effects on the transition f
quency autocorrelation function. This will be the subject o
future work.
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APPENDIX

The total potential energy of a system ofN particles in a
configurationR is V(R). From the equations of motion, th
displacement of thei th particle can be expressed as

ui~ t !5vi t1
1

mE
0

t

dtE
0

t

dt8Fi~t8!, ~A1!

where vi is the initial velocity of the i th particle. Fi(t)
[2“ iV(R)uR5Rt

is the total force on thei th particle at time

t, and depends on the configuration of the system at t
t, Rt[„r11u1(t),r21u2(t), . . . ,rN1uN(t)…. As in the
INM theory, the forceFi(t) is expanded in the terms of th
particle displacements from the initial configurationR0
[(r1 ,r2 , . . . ,rN). Up to the second order of displacemen

Fi~t!5Fi2(
j

K i j •uj~t!2 1
2 (

j ,k
uj~t!•L i jk•uk~t!,

~A2!

where the expressions ofFi ,K i j , andL i jk are given in Eqs.
~4!–~6! in the text. After substituting Eq.~A2! into Eq.~A1!,
we obtain

ui~ t !5vi t1
t2

2!m
Fi2

1

m (
j

K i j E
0

t

dtE
0

t

dt8uj~t8!

2
1

2m (
j ,k

L i jkE
0

t

dtE
0

t

dt8uj~t8!uk~t8!1••• .

~A3!

After iterating the displacementsuj (t8) and uk(t8) in Eq.
~A3! with Eq. ~A1!, we may obtain the expansion ofui(t) in
higher orders of time. The expansion ofui(t) up to thet4

order is given in Eq.~3! in the text.
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