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Dynamics of atomic pairs in a Lennard-Jones fluid: Mean relative displacement analysis
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We have analyzed the dynamics of atomic pairs in a simple fluid in terms of the mean relative displacement
of two atoms with a given initial separation. The short-time expansion of the mean relative displacement has
been derived exactly beyond the constant acceleration approxim@iiaA) (up to thet* ordep. For a
Lennard-Jones fluid, the mean relative displacements calculated by either the CAA botder approxima-
tion have been compared with the results obtained from a molecular-dynamics simulation. Through studying
the relative motions of atomic pairs with different initial separations, we give a physical picture of the
dynamics of neighboring atoms beyond the CA81063-651X%99)08603-1

PACS numbe(s): 61.20.Lc, 82.20.Db, 61.20.Ja, 61.20.Ne

I. INTRODUCTION of particle relative motions on this autocorrelation function
in a limiting case through the MD simulation, in which the
Many intermolecular spectroscopies in fluids are essenmodel system has the same conditions as studied, but the
tially related to the relative motions of particles. A recentwell depth of the excited-state potential is infinitesimally
example is the time-resolved transient fluorescence used fose to the ground-state value. In such a limiting case, the
study the short-time dynamics of solvation at a moleculaidynamics of the model system is virtually identical to that of
level [1—4]. For a probe molecule dissolved in a fluid, the @ Pure simple LJ fluid. Therefore, with this motivation, we
transition frequency between the ground and excited states f8inK it is worth investigating the relative motions of atomic
affected by the difference of the solute-solvent interactiond@s in @ simple fluid from a short-time regime up to a time
corresponding to the two electronic states, and also ﬂuctuate$§ale beyond the b"’.‘”'suc ”?0“0” of |nd|y|duql pgrtlcle:
due to the solvent motions relative to the sol{g5]. The _Usually, the_ relat_|ve motions of atomic pairs in a s_lmple
dynamics of these relative motions has strong effects on thféwdfare _desgnbed, n ter;?sho_f ”;]e tlmec;_d_e perrdeng dtl)_slfcrlbu-
autocorrelation function of the transition-frequency ﬂuctua-tlon. unction ?(r,r 0, w ich Is the conditional probability
tion, which is, within the linear response approximation,Of finding a pair of atoms with separation vectdrat timet,

equivalent to the solvent response function measured by t lven that they were separated byat t=0 [13,14. The
. . antities usually presented and analyzed were the moments
Stokes shift of the transient fluoresceri8ed. yp y

i X ) X of this distribution[11-14. In this paper, we suggest that the
Using a molecular-dynamid#/D) simulation, Saven and 64 relative displacemebk(r,t) of an atomic pair at time
Skinner[7] presented the transition frequency autocorrelay given that its initial separation vector wasis an effective
tion function of an atomic solvation model, in which one guantity to manifest the dynamical and structural effects of
atomic solute is dissolved in a low-density, high-temperaturgne fluid on the relative motion of an atomic pair, especially
Lennard-JonegLJ) solvent fluid (with equal masses of all  for those nearest-neighbor pairs. The mean relative displace-
particles. In their simulated results, the transition frequencyment, which describes the average center ofGhalistribu-
autocorrelation function, after being normalized, has a smaliion at timet, is one of the moments of this distribution, and
bump arising at the time scale right after the rapid Gaussiafs given by the equation
decay, which is due to the ballistic motions of particles. They

interpreted the occurrence of the bump as due to the vibra- ) s

tional motion of the solvent particles caged in the first shell U(r,t):f dr'Go(r,rst(r' =r). @
around the solute. Their interpretation is based on the general

concept of the potential of mean forf®]. However, it was In an uniform simple fluid, the relative motion of an

concluded that the effects of the potential of the mean forc@&tomic pair is anisotropic due to the initially specified sepa-
upon the dynamics of pairs in an atomic fluid were signifi-ration of the two atoms, including both their relative distance
cant only in the short-time reginm®,10]. and direction. Thus the mean relative displacemét,t)

In this well studied mode|7,11,17, the interaction be- may be decomposed into two componerlu{cl(r,t) and
tween particles in the ground state is described by a LJ paJ=*(r,t), which are parallel and perpendicular to the initial
tential, and the interaction between an excited solute and separation vector, respectively, and depend only onFor
solvent particle is by another LJ potential which has thetwo atoms with a very large initial separation, these two
same diameter, but a well depth deeper than the ground-statemponents are certainly zero at all times, since the interac-
value. Thus the well depth of the excited-state solute-solvertion between the two atoms is so small that each atom can be
LJ potential serves as the only tunable parameter in theithought to be free from the other. As the initial separation of
model. However, due to this special model, the normalizedhe two atoms is of the order of the mean nearest-neighbor
transition frequency autocorrelation function is independentistance of the quidU”(r,t) is no longer zero, since the two
of this parameter. It is easier to study the dynamical effectatoms interact directly and through the medium; however,
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U*(r,t) is still zero at all times. Therefore, by analyzing the rationr,;=r,—r,[r;=r;(0)] of a pair, indexed with 1 and 2,
parallel components of the mean relative displacements qind their relative displacemeniy;(t)=u,(t)—uy(t)[u;(t)

the atomic pairs, we may obtain information about the ef-=r;(t)—r,] at timet, we define the mean relative displace-
fects of the fluid structures on the relative motions of neigh-ment of an atomic pair as

boring atoms.

In the gas phase, the relative motion of a pair is essen- (S(r—ropup(t))
tially determined by the direct potentig(r) between the u(r,t)= Tty 2
two atoms. In a dense simple fluid, rather than the direct 2

potential, the relative motion of a pair is actually determined,here the angular brackets denote an equilibrium ensemble
by the averaged force between the two atoms, which ingyerage. Since the system is in thermal equilibrig@(r
c[udes both the direct fprpe and the_ indirect _forces |nterme—_r21)>:g(r)/\/, whereV is the volume of the system.

diate through the remaining atoms in the f_Iw_d. The overall  Erom the equations of motion and the details given in the
averaged force between two atoms in a fluid is given by th%ppendix, the displacement,(t) can be expanded into a

gradient of the potential of mean forcew(r)= time series. Up to thée* order
—kgT Ing(r), whereg(r) is the radial distribution function ’
of the fluid. In the low density limitw(r) reduces top(r). t2 t3

The short-time dynamics of atomic pairs in a fluid can be ui(t)y=vit+ mFi— 3m E Kij -V
well described by the constant acceleration approximation ' S
(CAA), which was first introduced by Oppenheim and t4 1
Bloom in the theory of nuclear spin relaxation in fluijds]. ~ 2 4 —Kij-Fj+vj-Lige- v | +---, ()
In the CAA, the forces between atoms in a fluid are indepen- Mk \m
dent of time, and thus the motions of particles are assumed to
be ballistic. U(r,t) is, therefore, approximated to be FiE_ViV(RHR:Ro' 4)
—t2Vw(r)/2u, with « to be the reduced mass of a pair. The
mean relative displacement of a pair in the CAA is just the KijEViVjV(R)|R:RO, 5)
leading term of the short-time expansionldfr,t).

Recently, there has been great interest in analyzing the Li=V;V:VV(R)|p-r (6)
short-time dynamics of liquids in terms of instantaneous nor- e T R’
mal modes(INM’s) [16—18. In the INM approach, the
forces between particles are approximated beyond the CA
by including the Hessian matrix of the total interaction of the
system. Therefore, the dynamics of a liquid in the INM ap-
proximation includes some collective motions, rather tha
the ballistic motions of individual particles. In terms of
INM’s, the particle displacements from an instantaneou
configuration are correct tt?; the velocity autocorrelation
function of a particle is correct ttf.

In the same spirit of the INM approach, in this paper we

X/herevi is the initial velocity of thda th particle, and~; is the
total force on theith particle in the initial configuration
Ro. Kj; andLj, respectively, are the second- and third-
order expansion coefficients of the total poteni§R) of
the system in the initial configuratioR,. Kj;, defined in
4?ef. [18], is actually a three-dimensional matrix. With a total
potentialV assumed to be a pairwise summation of the pair
potential ¢(r),

expand the particle displacements from a configuration up to triy)  for i#]

the t* order by solving the equations of motion with the Kij= E t(r,) for i=] (7
iterating method. Instead of paying attention to the motions B3 I =)

of all particles as in the INM approach, we focus only on the

relative displacement of a single pair. After making an en- &' (1) &' (1)) -

semble average, we obtain exactly the expansion of the mean t(r)= ; I3+ ( @"(r)— ; )rr, (8)

relative displacement of a pair up to tkfeorder. The deri-
vation is given in Sec. Il. In Sec. lll, for a LJ fluid, the mean where ¢'(r) and ¢"(r) denote the first and second deriva-
relative displacements of atomic pairs calculated in either the ) ) ) ~ .
CAA or the t*-order approximation are compared with the V€S of the pair potentiap(r) with respect ta, r is the unit
results obtained from MD simulation. By comparing the vector alongr, andl3 is the three—dlmensmnal unit matrix.
mean relative displacements of two groups of atomic paird hus theK;; matrices obey the following sum rule:

with an initial separation of one group at,,, and initial N N
separations of the other group at less thag,, wherer 4 is 2 K. — 2 K.
the distance corresponding to the first maximung@f), we = s
show the dynamical and structural effects of the fluid on the

relative motions of neighboring atoms. Our conclusion isThe sum rule is proof that the net force on the center of mass
given in Sec. IV. of the system is zero.

After substituting the expanded series of particle displace-
ments given in Eq(3) into Eq. (2), and averaging out the
initial velocities, we obtain a short-time expansion of the

Consider a system dfl particles each having a mass = mean relative displacement, which contains only even pow-
interacting via the pair potentiah(r). With the initial sepa- ers of time. Up tat*,

=0. 9

Il. MEAN RELATIVE DISPLACEMENT
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t2 t*
U(r,t)= 57 Ua(n) = 27 Ua(n) + -+, (10
Vv
Uy(r)= mg(r)<5 —r)(F2—Fyp)), (11)
Uy(r)= v K. XF
4( _ng(r) 1j ]
+kgT(Lgj;—Lajh)- (12)

With the definition off; given in Eq.(4) and an identity due
to an integration by parts, it is easy to prove that

1
Up(r)=——=Vg(r )_—;VW(F), 13

g(r)

whereu=m/2. Thus thet? term in Eq.(10) is just the mean
relative displacement in the CAA.

With the following identity, which also involves a suit-
able integration by partsl9],

(8(r—ryKj;-Fp)
=kgT{6;2V - (S(r—r,)Kiz)
=81V (8(r=r20Kip) = (8(r—ra)Lijj)},
(14

where the symbob;; denotes the Kroneckeft notation, and

the contraction of divergence on a matrix is defined betwee
the differential operator and the column index of the matrix,

one can prove

V- (8(r—r20) (Koot Kig— Kip—Kp9)).
(15

Then, by the definitions dK,, andK 14 given in Eq.(7), we
can separatdJ,(r) into two termsU?(r) and US(r),

o) ks TV
r=
a( a(r)

where the former depends only on the pair with the initial
separation at exactly, and the latter depends on three par-

ticles, two particles with the specified initial separatioand
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2 kgTV
U4 (r):_ > V(5(I’—I’2]_)K12>, (16)

pg(r)

kgTV
FN==— =V 3 (8r=ra)(Kg+Ky)).

m g(r i#1,

17)
With the definition ofK (,, we can prove

(r)— (18)

)V (9(r)t(r)).

Using the definition of the three-particle distribution func-
tion,

p?gs(r,r')= <I o(r=rip)o(r’' = )>, (19

#1#1

UR)(r) can be expressed as
kgT
U@ =2 V-fdr’g3(r,r’)(t(r’)+t(r’—r)).
m?g(r)
(20)
So far, this expression fddﬁf)(r) is exact. To facilitate the

further calculation, we use the Kirkwood superposition ap-
r[:])roximation[ZO]

ga(r,r’)=~g(r)g(r")g(|r—r’(). (21)

After making this approximation, and then changing the in-
tegration variable of the second term in the integrand in Eq.
(20), U)(r) is reduced to the following formula:

U (1)~ V-fdr'g(r)g(r')g(lr—r'l)t(r'>.
22

From the above derivation, one can prove that the com-

a third one which can be any of the remaining particles in thgponent ofU,(r) perpendicular to the initial separationis

system. Their expressions are given in the following:

zero, and the parallel component is given as the following:

lepym " ; ¢'<r> 2p
VD=5 W (04" (1) +kaT| & <r>+ ¢"(r)— -ttt (23)
f1= w(r)fdr or)g(a)| (<¢>"<r'>—¢:,r ))<F'~F>2], (24
fz—fdr o(ra@w (a) 2 )<‘-‘>+(¢"<r ) d’r(,r ))<é r(r’ F)}, (25)

wherea=r—r’ anda is the unit vector along.
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In order to understand the above formula, we consider the relative motion of atomic pairs in a low-@dbsiflyid, in
which two particles only interact with the potentigi(r) and have randomly initial relative velocities satisfied with the
Maxwell-Boltzmann distribution of temperatuffe By using the method described abdugegrating the equations of motion,
iterating the displacements, and averaging out the initial velogitigs to thet* order, the formula of the mean relative
displacement in this low-density fluid is obtained, and given in the following:

t! $'(r)

r

¢"(r)— teee (26)

t2 2
Ullp(r,ty=— ﬂdf(r)— —¢’(r)¢>”(r)+kBT< @"(r)+ m

412

Compared to the formula of the mean relative displacepotential and the force ai, are zero. The time unit used in
ments in the high- and low-density limits, it is clear that upthis paper ig,=(mao?/ €)%, wheree is the well depth of the
to thet? order the relative motion of an atomic pair in a fluid potential ando is the effective diameter of the particle. To
is governed by the potential of mean fonwér), rather than  obtain the thermal equilibrium, the system was propagated
the direct potentiakp(r). The potential of mean force be- with a time stepAt=0.01. After another equilibration run of
tween two particles in a fluid depends only on the static5000 steps, we changed the time step to be 0.001, and started
structures of the fluid, and has nothing to do with the mo-to collect data. The chosen reduced dengity=po® of the
tions of the remaining particles. In th&order, only partially ~ simulated fluid is 0.5, and the reduced temperatiife
affected by the potential of mean force owing to the evolu-=kgT/e is 1.41, which are the thermodynamic conditions
tion of the short-time dynamics to longer times, the relativestudied by Saven and Skinnff].
motion of an atomic pair is, however, dominated by the di- The radial distribution functiorg(r) was obtained di-
rect potentialg(r) and the two density-dependdnierms in  rectly from the simulation, and then the potential of the mean
Eq. (23), which give the lowest-order effect due to the rela-forcew(r) was calculated according to its definition given in
tive motions between the pair and the remaining particles irgec. I. The calculateg(r) andw(r), and the truncated-and-

the fluid. shifted LJ potential, are shown in Fig. 1. Fosmaller than
I max~1.1o, which corresponds to the first maximum of

Ill. MOLECULAR-DYNAMICS SIMULATION g(r), the function ofw(r) is almost identical to the original

AND COMPARISON pair potential; forr larger thanr .., the function is oscilla-

. . . , i _._tory, rather than monotonically increasing as in the LJ poten-
A system of 864 particles in a cubic box, interacting with tial.
the LJ potential The mean-square displacemeR(t)={(|r,(t)—r,(0)|?)
o\12 [ 5\6 of the single-particle motions in the LJ fluid we simulated is
7 (7]

d(r)=4e , (27) presented in Fig. 2. At*=t/t;=0.05, 0.1, 0.15, 0.2, 0.25,

was simulated by the means of MD techniques with a veloc-
ity Verlet algorithm[21,22. In our simulation, we have used 10 |
the periodic boundary conditions and the minimum image
convention. Also, the LJ potential is truncatedrat 3o,
and lifted by adding a termd\(r/o) + B, such that both the o'l
N /‘*
— 9 g y
----- w(r)/e —_ 107k P 4
------ olr)fe = v
o yd
. ~
10°F /S
I,/
. 10" . -
ST e A e 10—2 10‘1 10
t /1
"o fal fmex  mn 2 3 4

FIG. 2. The mean-square displacemeR&) of the single-
particle motions vs time plotted on a log-log scale for the LJ fluid at

FIG. 1. The radial distribution functiog(r) (solid line), the  p*=0.5 andT* =1.41. The MD simulation data are represented by
potential of the mean force/(r) (dot-dashed ling and the pair filled squares at/ty= 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, and by
potential ¢(r) (dashed ling of the LJ fluid atp*=0.5 andT* stars at other times. The dashed line is the short-time asymptotics of
=1.41. the simulation data.
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(c)t=021, 4

0.9r (@) t=0.11g

1
T
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(b) t=0.15ty .
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1 1 1
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r/o

FIG. 3. The parallel components of the mean relative displacement as a function of the initial relative sepatdtion different times.
The open circles represent the simulation results. The solid and the dashed lines are the theoretical calculations by the C#{Aoaderthe
approximation, respectively.

and 0.3, the simulation data 8t) in Fig. 2 are manifested For two atoms in a fluid, the component of the averaged
by filled squares. Generally speaking, fidr less than 0.1, pair separation at timg parallel to their initial separation
R(t) is proportional tot?, and thus the single-particle mo- is given by d(r,t)EH—U”(r,t). In Fig. 4, we show the
tions within this time regime are ballistic. Sin€&t) gradu- quantityd(r,t) as a function of time, with initial pair sepa-
ally deviates from its short-time asymptotics, the single-rations atr,~0.920,r ., and r.,~1.670, respectively,
particle motions are no longer ballistic beyoni=0.1.  wherer ., corresponds to the first minimum gfr) shown
However, up ta* =0.3, the single-particle motions have yet in Fig. 1. Sincew’(r) at rp.x and rp, are zero, both

to enter into the diffusion region. UI(r aet) @nd Ull(r i0,t) in the CAA vanish at all times.

In Fig. 3, we present the parallel component of the mearHowever, the simulated results dfr .x,t) and d(r min,t)
relative displacement as a function of the initial separation shown in Fig. 4 actually have small variations with time. Up
att*=0.1, 0.15, 0.2, and 0.25, calculated by either the MDto t* = 0.3, the general trend of the variations is consistent
simulation, the CAA or the*-order approximation, through with the theoretical predictions given by thé-order ap-
Egs. (10), (13), (23), (24) and (25). The value ofU”(r,t) proximation ofU”(r,t). According tog(r), a pair with ini-
obtained from MD calculation represents the average of théial separation at, can be recognized as two atoms being
parallel relative displacement at timefor pairs of atoms almost nearest neighbors in the fluid. For such a pair, the
with their initial separations between- 6r/2 andr + r/2.
In this paper, we sefr to be 0.0%r. We have checked the
perpendicular componett*(r,t), which indeed has an av-
erage value of zero with a fluctuation less than 0.1%. In 18
comparison, we found that & =0.1 there is a good agree-
ment between the simulation results and those of theoretical 16|
calculations for larger thamr ,,; however, there is a large  ©
deviation forr less tharr 5. The smaller the initial separa- =
tion of a pair, the larger the deviation. The deviation results @
from the fact that the force between two atoms of such a
small separation is strong and changes rapidly. The short- 12

time approximation for a mean relative displacement with 1/
1

2

-

-
-

smaller thanr ., therefore, breaks down even tt=0.1.
As time evolves, the region where the theoretical calcula-
tions deviate from the simulation results grows from the first 0 0.05 0.1 0.15 0.2 0.25 03
shell of g(r) toward largerr. In general, results calculated /%

. 4 . . . . .
with the t*-order approximation indeed improve the predic- g 4. d(r,ty=r+Ull(r,t) component of the pair separation

tions of the CAA. However, as* is larger than 0.15, the paraiel to the initial separation vector as a function of time with
curve calculated by the*-order approximation has a sharp the initial distance =|r| of two atoms at 0.92 (open circle} 1.1o
peak occuring at smaller tharr ,,,. The occurrence of this  (open squargsand 1.6 (open triangles respectively. The sym-
sharp peak arises from the'(r)¢"(r) term in Eq.(23),  bols are the simulation results. The solid and the dashed lines are
which dominates over other terms, fa(r) is of the same the theoretical calculations by the CAA and ttfeorder approxi-
order of magnitude as the pair potenti&(r) in this region.  mation, respectively.
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theoretical calculation ob!l(r,,t) given by either the CAA
or the t*-order approximation gives a good prediction only
within a period less than 0.65 and breaks down as the
separation of the pair approaches,,. By comparing the
simulated results ofi(r ,,t) andd(r na.t), we give a physi-
cal picture of the relative motions of neighboring atoms in
the LJ fluid we simulated. In general, for an atom in the fluid,
its nearest neighbors are outwardly repelled very quickly due
to the strong repulsive force from that atom. After penetrat-
ing through the first shell created by the central atom, those
strongly repelled atoms keep moving outwardly in average
within the time scale we study. On the other hand, the atoms
originally staggering within the first shell tend to retain their
separations with respect to the central atom within the time
scales of ballistic motions, since the mean forces acting on
them are almost zero. However, they are inclined to move
outwardly, after those atoms originally attaching to the cen-
tral atom pass through them.

One possible quantity to support this picture is the zeroth-
angular moment of th&,(r,r’;t) distribution[10], obtained

by integrating over the solid anglés and{}’ corresponding
tor andr’, respectively. The zeroth-angular momentf,
denoted byy(r,r’;t), is defined as

y(r,r’;t)=ij dﬁ’j dQG,(r,r';t). (28

4

The normalization of this function iggdr r2y(r,r’;t)=1.

In Fig. 5, we present the(r,r’;t) functions with three ini-
tial pair separations as in Fig. 4 at five different times. In our
calculation fory(r,r’;t) from the simulation data, the reso-
lutions ér andér' for r andr’, respectively, were both set to
be 0.0%. The y(r,r’;t) function with the initial separation
at r, moves out radially more quickly than that with an ini-
tial separation af .. At t*=0.1, the atoms which are
originally atr, have almost passed through.y; however,
those originally within the first shell of the central atom tend
to remain there, with only part of them diffusing outwardly.
On the other hand, the(r,r’;t) function with an initial
separation at ., spreads out faster. At =0.25, some at-
oms originally atr ., relative to the central atom have mi-
grated into the first shell. Basically, the information about the
relative motions of neighboring atoms provided by the
v(r,r’;t) function is consistent with the picture obtained
above from analyzing the mean relative displacement.

It is well known that in the short-time limit th&,(r,r’;t)
distribution can be predicted well with the so-called short-
time approximatiorj13], which is a Gaussian function of
with center atr —t2Vw(r)/2u. With the mean relative dis-
placement(r,t), the G, distribution beyond the short-time
regime can be approximated with a Gaussian ansatz as given
in the following:

312 [r'—r—U(r,t)]?
) exp[—T(t) y
(29

GZ(r’r,;t)%(ZwA(t)

)

o y(r,r
QO N RN © N e N O N RO N RN O NN O

; 1
y(r,r;t)
o 0O Ok P OO O RF R OOOPR RF OO O MRPEOOOR

o3
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(a) t=0.05t,

(b) t=0.11,

(=)

[ (€) t=0.151,

[ (d) t=0.21y

1 (a) t=0.05t,

X (b) t=0.11g

N

[ (€) t=0.15 1,

T (d) t=0.2ty

s (e) t=0.25ty

OO & O DN O O B OO 0NN ONO 0N O DN

r'l'o

FIG. 5. y(r,r’;t) as a function of ' at five different times with
whereA(t) =kgTt?/ . This Gaussian ansatz predicts the av-the initial pair separation=0.92s (filled circles and 1.1 (open
erage center o6,(r,r’;t) correctly, though not the spread- squaresin (A), andr =1.670 (filled triangleg in (B). The solid and
ing. With Eq.(29), the y(r,r’;t) function can be calculated dashed lines are calculated with the Gaussian ansatz as described in
analytically to be: the text. Note that the vertical scales(#) and (B) are different.
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1 ing through the first shell, the nearest neighbors of a given
y(r,r’;t)= atom are trapped within the first shell before the shell spreads
(wA())Y2r'd(r,t) out.
' 2 Our results suggest that, rather than the potential of the
(r'—d(r,t)) : . ;
xlexg - ——— 77 mean force, a mean relative displacement analysis of the
2A(1) relative motions of atomic pairs in a fluid may provide an
(t' +d(r )2 alternative to studying solvent effects on the transition fre-
- ;{— —} ] , (30) quency autocorrelation function. This will be the subject of a
2A() future work.
whered(r,t) is the function shown in Fig. 4. With the simu- ACKNOWLEDGMENT

lated data ofd(r,t), a comparison of the/(r,r’;t) function . i
calculated with Eq(30) and the simulated results is pre- .. T'M'W.' would like t.o ackn_owledge support from the Na
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sented in Fig. 5 for the three initial pair separations consids SC 88-2112-M-009-010
ered above. Through this comparison, it seems that pairs ol\# '
atoms with initial separations aroung,,, in general, un-

dergo more freely mutual diffusion than those pairs with APPENDIX

smaller initial separations. For=r, or r ., the spreading . . .
Al ; : : The total potential energy of a system dfparticles in a
of the y(r,r ;1) function predicted by E¢30) is too fast, for onfigurationR is V(R). From the equations of motion, the

this Gaussian ansatz takes no account of effects due to cog-.S lacement of théth particle can be expressed as
lision with the core of the central atom. ISp parti xp

IV. CONCLUSION

11t T

In this paper, we have defined the mean relative displace- Ui(t) =vit+ Efodeo dr'Fi(7'), (A1)
ment of an atomic pair, which, we think, is an effective
guantity to manifest the dynamics of atomic pairs in a fluid,
especially for those pairs of neighboring atoms beyond the . - . . .
time regime described well in terms of the potential of meanv_vhere vi is the |_n|t|a| velocity of the|.th part!cle. Fi(.T)
force. The short-time expansion of the mean relative dis-z_ViV(R”R:RT is the total fgrce o_n thith particle at tlme_
placement has been derived exactly up tottherder. Fora 7 and depends on the configuration of the syst(_am at time
LJ fluid, the mean relative displacements calculated by eithef: R,=(1+U1(7),r2+Ux(7), ... Fy+tun(7)). As in the
the CAA or thet*-order approximation have been compared!NM theory, the force;(7) is expanded in the terms of the
with the results obtained from the MD simulation. particle displacements from the initial configuratidRy

In the short-time regime, within which single-particle mo- =(r1.r2, - .. fn). Up to the second order of displacements,
tions are still recognized to be ballistic, the dynamics of
atomic pairs in a fluid is well described by the CAA, and
generally governed by the potential of mean force, which N
depends on the static structures of the fluid. Beyond this Fi(T):Fi_zj: Kij-uj(m)—2 % Uj(7) - Lijic- U(7),
short-time regime, the relative motion of an atomic pair in a ' (A2)
fluid is dominated by the direct pair potential between two
atoms, and also influenced by the relative motions between

the pair and the remaining particles. where the expressions & ,K;;, andL;j are given in Egs.

By studying the relative motions of atomic pairs with ini- 4)—(6) in the text. After substituting EA2) into Eq. (A1)
tial separations either less than or at the distance correspo e obtain '

ing to the first maximum of the radial distribution function,

we have given a physical picture of the dynamics of atoms

neighboring a central one. In the fluid we studigéalv den- 5

sity and high temperatuyethe nearest neighbors to a given u(t)=vt+ t_

atom are repelled from the first shell created by that atom ! " 2Im

within the short-time regime mentioned above. Beyond this

short-time regime, those atoms originally in the first shell 1 t -

diffuse away from that atom. - Lijkf drf dr'uj(7)u(7" )+ - -
For LJ fluids with higher densities and lower temperatures 2m 7k 0 0

[23] (at p*=0.85 andT*=1.41 andp*=0.85 and T*

=1.0), the comparison between the mean relative displace- (A3)

ments calculated with thé*-order approximation and the

simulation results are similar to the corresponding resultd\fter iterating the displacementg(7’) and u(7') in Eq.

presented in this paper, but the time regime for agreements {#3) with Eq. (A1), we may obtain the expansion gf(t) in

even smaller, since the time scale for ballistic motions inhigher orders of time. The expansion @{t) up to thet*

such a fluid is shorter. Roughly speaking, instead of penetratrder is given in Eq(3) in the text.

1 t T
Fi— = 2 Kij fodTJOdT’Uj(T/)
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