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Summary & Conclusions - This paper investigates the 
problem of distributed-program reliability in various classes of 
distributed computing systems. This problem is computation- 
ally intractable for arbitrary distributed computing systems, 
even when it is restricted to the class of star distributed com- 
puting systems. One solvable case for star distributed com- 
puting systems is identified, in which data files are distributed 
with respective to a consecutive property; a polynomial-time 
algorithm is developed for this case. A linear-time algorithm is 
developed to test whether or not an arbitrary star distributed 
computing system has this consecutive file distribution prop- 
erty. Efficient algorithms may still be sought for computing 
lower & upper bounds on the distributed program reliability 
for arbitrary distributed computing systems. 

1. INTRODUCTION 
Acronyms & Abbreviations] 

DCS distributed computing system 
DPR distributed-program reliability 
KTR K-terminal reliability 
#EC number of edge covers 
FST file spanning tree 

Definitions (Star DCS) 
- Consecutive file distribution. A star DCS D has the 

consecutive file distribution property iff its nodes can be 
linearly ordered such that, for each distinct file fd, the 
nodes containing file fd occur consecutively. More for- 
mally, a star DCS D has the consecutive file distribution 
property iff there exists a permutation II (see Notation) 

- File cutset. A set c d  of edges of D is a file cutset for 
file fd if it consists of all edges (s,'ui) such that node vi 
contains file fd, ie, c d  = {(s ,vz)  : fd E Ai} .  

Minimal file cutset. A file cutset C is minimal if there 

lThe singular & plural of an acronym or abbreviation are always 
spelled the same. 

is no other file cutset C' such that C' C C. Without loss 
of generality, reorder the minimal file cutsets, if necessary, 
by their minimal component: ie, for two distinct minimal 
file cutsets Ci, Cj, i < j iff 
min{k : (s, 'u,(k)) E Ci} < min{k : ( s , 'u , (k ) )  E Cj} .  4 

A DCS, in general, is one in which the computing 
functions are distributed among several physically dis- 
tinct computing elements [4]. These elements or resources 
(eg, processing elements, data files, programs) can be ge- 
ographically separated or co-located. Thus, each pro- 
gram can run on one or more computers and can fre- 
quently access files stored in other sites. Banking sys- 
tems, travel agency systems, and power control systems 
are a few examples of a distributed computing environ- 
ment [15]. There are many measures to evaluate the per- 
formance of DCS. RRliability is an important issue [5]. For 
traditional networks, many reliability indices have been 
proposed, eg, 2-terminal reliability, all-terminal reliability, 
and K-terminal reliability [1, 7, 12, 13, 181. However, 
these measures do not apply to practical DCS since the 
reliability measure for DCS should capture the effects of 
redundant distribution of data files. 

Kumar et a1 [8, 91 introduced the new reliability mea- 
sure: DPR. to model accurately the reliability of DCS. 
DPR. is defined as the probability that a program with dis- 
tributed files can run successfully in spite of some faults 
occurring in the communication edges. A model used to 
represent such situations is a probabilistic graph. A prob- 
abilistic graph has a collection of nodes representing the 
processing elements (sites) which contain some data files 
and programs, together with a collection of edges repre- 
senting communication links. Each edge fails s-indepen- 
dently with known failure probability. For example, con- 
sider a possible DCS of a banking system [8, 151 shown 
in figure 1. Each local disk stores some of the following 
information: - consumer accounts file (CAF), 

- automated teller machine accounts file (TAF), - administrative aids file (ADF), - interest and exchange-rates file (IXF). 
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4 computer 

computer # 
Figure 1: A Distributed Banking System 

Mana.gement report generation (MR.G) in computer A 
indicates a query (program) to  be executed for report gen- 
eration. Figure 2 shows the graph model for this system. 
A node represents any computer location and the links 
show the communication network. We assume that: 

- the query (program) MRG requires data files CAF, TAF, 
ADF, IXF to complete its execution, 

MRG is running at node q , which holds data files CAF, 
ADF, IXF. 
Hence, MRG must access TAF, which is stored in both 
nodes 212,213. Therefore, the DPR. of MR.G in figure 2 can 
be formulated as: 
DPR. = Pr{(vl,212 are connected) OR (211,213 are con- 
nected)}. 

TAF CAF 

v3 

TAF ADF 

ADF IXF 

Figure 2: Graph-Model for the Distributed Banking System 
in Figure 1 

Most network reliability problems (eg, K-terminal re- 
liability) are #P-complete. The class of #P-complete 
problems was introduced by Valiant [16]. The class # P  
contains those problems that involve counting the accept- 
ing computations for problems in NP; the class of #P- 
complete problems contains the hardest problems in #P. 
As widely recognized, all known exact algorithms for these 
problems have exponential time complexity, thereby mak- 

can be developed for this class of problems. Clearly, com- 
puting the DPR for general DCS is also #P-complete. 
This complexity can be averted by considering only a re- 
stricted class of DCS. Our objective is to examine the 
boundary o f  problem classes separating the polynomially 
solvable cases from the #P-complete cases. However, 
polynomial-time algorithms have been developed for com- 
puting the DPR. over the DCS with linear 8.1 ring topologies 
P O I .  

Classes of interest here include: 

2-tree, 
- star, 

- series-parallel, - planar topologies. 
Section 2 shows that most of them continue to be #P-  
complete. Section 3 presents a polynomially solvable case 
of the DPR problem for star topologies in which data files 
are restricted to a certain type of distribution. Section 4 
shows a linear-time algorithm to verify whether or not a 
star DCS has this restricted class of file distribution. 

Assumptions 

1. The nodes are perfect. 
2. The edges are s-independent and either function or 

fail with known probabilities. 

Notatzon (General2) 
G 
D a D C S  graph 
E set of edges 
V set of nodes 
e, a component of E 
U ,  a component of V 
K subset of V 
A, 
p ,  Pr{e, functions} 
q2 
f2 data file i 

a general graph (of a network) 

set of files available at 21, 

Pr{e, fails}: 1 - p ,  

Notation (Star DCS) 
D 

n 
ea 

t 

n 

m 

A;’ 

Q, 

T 

Ci 

4 

a star DCS with n + 1 nodes, {s, q ,  w2,. . . , w,} 

number of edges in D 
edge ( s , q ) ,  1 5 i 5 n 
number of distinct files in D 
total number of files in D 
set of indexes of nodes which contain f3 
[T(  l), 7~(2),  . . . ,7r(n)]: a permutation of numbers 

and nedges { ( % ~ l ) , ( S , ~ d , * * *  ,(S,?Jn)} 

{1,2,. . . , n} such that if fd E AT(,) and 
fd E & ( j ) ,  then fd E AT(k) for all k ,  i < k < j 

ordered set of all minimal file cutsets according 

number of minimal file cutsets in Q, 
H(ai ,P,):  minimal file cutset # i  in a; 1 5 i 5 T 

to  their minimal components 

20ther.  standard notation is given in “Information for Readers & 
ing it unlikely that efficient (polynomial time) algorithms Authors” at  the rear of each issue. 
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ai 

pi 

H ( i ,  j )  

X ( i ,  j )  

Wi 

min[k : e,(k) E Ci]: index of the minimal 

max[k : e,(k) E Ci]: index of the maximal 
component in Ci; 1 5 i 5 r 

component in Ci; 1 I i 5 r 

{e,(+ e,( i+l) , .  . . , e x ( j ) } ;  1 I i 5 j 5 R. 
event: all edges in H ( i ,  j )  fail 

i 

U X ( a j ,  pj ) ;  the DPR. of D can be expressed as 
,=1 

event: the star DCS D’ fails; it consists of 
1 - Pr{W,} 

Fi 
2 f nodes s, v7T(1)> v,(2), * * 7 %(i), 

- and i edges %(l), % ( 2 ) ,  . * , %(i) 
W complement of event W 

2. COMPUTATIONAL COMPLEXITY 
OF DPR. PROBLEM 

This section assumes that the reader is familiar with 
the basic notions of NP-completeness; [6] has an excellent 
exposition of the theory of NP-completeness. The strategy 
to show that a DPR problem L1 is #P-complete is: 

1. Pick a problem L2 already known to be #P-com- 
plete. 

2. Show how to obtain (in polynomial time) an instance 
11 of L1 from any instance 12 of L2 such that from the 
solution of I1 we can determine (in polynomial time) the 
solution to instance 12 of L2. 

3. Hence, if we have a polynomial-time algorithm for 
the DPR. problem L1, then we can obtain polynomial-time 
algorithms for L2 using step 2. 

4. Conclude that L1 is #P-complete. 4 

Two known #P-complete problems are: 
- KTR. [la] 

Input: An undirected graph G = (V, E) .  A set K V is 
distinguished with IKI 2 2. 
Output: R(GK) ,  probability that the set K of nodes of G 
is connected in G. 

* #EC PI 
Input: An undirected graph G = (V, E) .  
Output: The number of edge covers for G 

I{EC 5 E: each node of G is an end of some edge in 

- Theorem 1. The KTR. problem is polynomially reducible 
EC}I. 

to the DPR. problem. 4 

The proof is in appendix A . l  

By theorem 1, if we have a polynomial-time algorithm 
for computing the DPR. of D ,  then we can obtain a poly- 
nomial-time algorithm for computing the KTR of G using 
this construction. However, [12] showed that the prob- 
lem of computing the KTR. in general is #P-complete, 
so computing the DPR. in general is also #P-complete. 
Therefore, corollary #1 is proved. 
- Corollary 1. Computing the DPR. for a general DCS is 

# P-complete. 4 

. Corollary 2. Computing the DPR for a planar DCS is 
#P-complete. 4 

The proof is in appendix A.2 

For the KTR problem, polynomial-time (or linear-time) 
algorithms have been developed for other restricted net- 
works, such as a star network, a 2-tree network, and a 
series-parallel network [14]. If there are no replicated files 
in DCS, ze, if there is only one copy of each file in DCS, 
the DPR problem can be transformed into the equivalent 
KTR problem in which the K set is the set of nodes that 
contain the data files needed for the program under con- 
sideration. However, data files are usually replicated and 
distributed in DCS; so these two problems are different. 
The remainder of this section shows that computing the 
DPR over a star DCS, a tree DCS, or a series-parallel DCS 
in general, is still #P-complete. 

Theorem 2. The #EC problem is polynomially reducible 

The proof is in appendix A.3 
to the DPR problem over a star DCS. 4 

- Corollary 3. Computing the DPR for a star DCS is 
# P-complete . 4 

The proof is in appendix A.4 

Now we show that computing the DPR remains difficult 
for a 2-tree topology. A 2-tree is defined recursively as 
follows: - The complete graph K2 (a single edge) is a 2-tree. - Given any 2-tree G on n 2 2 nodes, let ( v , , ~ ~ )  be an 
edge of G. Adding a new node Vk and two edges (vk, U,) 
and (vk, vJ), produces a 2-tree on n + 1 nodes. 

. Corollary 4. Computing the DPR for a 2-tree DCS in 
general is #P-complete. 4 

The proof is in appendix A.5 

- Corollary 5. Computing the DPR over a series-parallel 
DCS is #P-complete. 4 

The proof is in appendix A.6 

3. POLYNOMIAL-TIME ALGORITHM FOR 
COMPUTING THE DPR OF STAR DCS 

Section 2 shows that computing the DPR over a star 
DCS is #P-complete. These results imply that poly- 
nomial algorithms are unlikely to exist for solving them. 
However, an efficient algorithm possibly exists for comput- 
ing the DPR over a star DCS with a certain restricted class 
of file distribution. This section presents a polynomial- 
time algorithm for computing the DPR of a star DCS with 
a consecutive file distribution. 

Let D be a star DCS with the consecutive file distri- 
bution property. Then, the minimal file cutsets can be 
ordered by their minimal component, %e, for two distinct 
minimal file cutsets C, and C,, i < j iff 
min[k : (s,v,(k)) E Cz] < min[k : (s,v,(k)) E C,]. 
By definition, D fails iff at least one event, 
X(az, ,Bz) ,  1 5 i 5 T ,  occurs. 



90 lEEE TRANSACTIONS ON RELIABILITY, VOL. 48, NO. 1, 1999 MARCH 

If r = 1, the unreliability of D is, 

If T 2 2, the unreliability of D with the first 2s file 

Before applying theorem 3, compute the values of 
Pr{Wl} = Pr{X(al,Pi)). 

cutsets is: 

Pr{Wt} = Pr{Wi-l U X ( C Y ~ , ~ ; ) )  

Pr{X(j + 1, P i ) }  and Pr{Fj-I} for 

By noting that ag < ah whenever g < h, the recursive 
formula is: 

I and a ~ - ~  ~ I ai - 

= Pr,[Cr/z-l} + Pr{W,-l nx(a,,p,)}, for i 5 T 

Consider w,-1 n X(CY,, P,), which implies: 
- El :  For each k, 1 5 k 5 i - 1, at least one edge, 

e E H ( a k ,  p k )  = c k  functions; - E2: All edges E H(a,,P,)  = C, fail. 
By event E2, event E1 can be rewritten: - E:: For each k, 1 5 k 5 z - 1, at least one edge, 
e E {H(CYk, p k )  - H ( a Z ,  ,&)} functions. 

A fundamental difficulty in calculating Pr{Ei} is that 
events in E; are not, in general, disjoint. However, we can 
define events S, that are disjoint: 
S, = {E;  occurs and edge en(,) is the last good one}, for 

(1) 

 CY,-^ 5 3 5 a, - 1. Thus 
ff,-1 

E inE2= U ( s , ~ E ~ ) ;  
3=ff.-1 

, = f f , - 1  3=ff,-1 

The event S, n E2, a,-1 5 J 5 a, - 1, can be decomposed 
into 3 s-independent events: - no file cutset fails between e , ( l )  and e,(,-1), 

- e,(,) functions, 
- all edges between 

so, 
Pr{S, n E z }  = 

Therefore, according to (1) - (4): 

Pr{W,} = Pr{W,-l} 

and e,(p,) fail. 

11 - Pr{F,-111 . P+) . Pr{X(3 + L P Z ) }  (4) 

a,-1 

+ c - Pr{F,-111 * P7r(,) . PI.{X(J + L P Z ) }  
,=a,-1 

Theorem 3 is now established. 

- Theorem 3. For 2 5 2 5 r :  

Pr{W,} = Pr{W,-l} 
ff,-l 

+ pr{~3-1)] . ~ n ( j )  P~{X(J + 1 , P a ) )  (5) 
3=a,-1 

with boundary conditions: 

W W l }  = Pr{X(a1,P1)), 
PT{Fk) = 0,  for 0 5 k 5 

Hence, while computing Pr{W,} by theorem 3, we can also 
obtain Pr{Fk}, for ,&-I 5 k 5 ,& - 1. 

3.1 A Polynomial-Time Algorithm 
The major algorithm-related strategies to compute the 

DPR of star DCS are outlined. Assume a given star DCS 
D and the file distributions A, for each node. By assuming 
that D has the property of consecutive file distribution, let 
II be a permutation of numbers {1,2,, . . , n} such that if 

z < k < j. All file cutsets can be enumerated from A, as 
follows: If 21, contains fd, then c d  contains e,. Then, CY,, pz 
values of C, can be determined from the permutation II 
such that: 
cy, = min[k : e , ( k )  E C,] and Pa = max[k : e,(k) E C,]. 
The next step removes the file cutsets which are not min- 
imal, and rearranges the remaining minimal file cutsets 
according to  their a, and ,Bz values. Finally theorem 3, 
( 6 ) ,  (7) are used to compute the DPR = 1 - Pr{W,}. 

Algorithm REL 
Input: 

file fd E A,(,) and fd E An(,), then fd E Aa(k) for all k, 

a. A star DCS D with 
n + 1 nodes { s , q , w 2 , .  . . , wn}, 

/* e, edge (s ,w , )  */ 
- edges { ( s ,  VI), (s, Q), . . . , (s, U,)>. 
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b. A permutation II = [ ~ ( l ) ,  7r(2), . . . ,7r(n)] of numbers 
{1,2, .  . . ,n} such that if fd E A,(i), fd E AT(j) ,  then 
fd E A , ( k )  for all k, i < k < j .  

Output: The DPR of D 
Steps: 
1. /* find all file cutsets */ 

a. /* initialization step */ 
For i +- 1 to m Do 
ci +- 0 
End-For ; 

b. 
For i t 1 to n Do 
For each fd E Ai Do 
Cd + Cd U {.i} 
End -For ; 

End-For; 
/* set the values of ai, Pi for 1 5 i I m */ 
For i t 1 to m Do 
ai +- min{k : e,(k) E C;} 
Pi +- max{k : e,(k) E Ci} 
End-For; 

/* find all minimal file cutsets */ 

For i e 1 to m Do 

End-For ; 
For 1 5 i, j 2 m Do 
If (ai L aj and pi I pj)  
Then remove Cj from 
EndJf; /* this implies Ci C Cj */ 

End-For ; 
R.eorder the minimal file cutsets in CP for two distinct 
minimal file cutsets Ci and Cj, i < j iff ai < aj 

/* Compute Pr{X(j + l,Pi)} for 2 5 i 5 T and 

CI, + 0; 

@ U  {Ci} 

ai-1 5 j 5 ai - 1, by (6) */ 
P1 

pr{x(a l ,P l ) )  + n Q x ( k ) ;  
k = a i  

For i t 2 to T Do 
Pr(X(az-1 + 1, Pi)} +- 

Pi 

b. 
For i t- 2 to r Do 
For k +- pz-l to Pa - 1 Do 
Pr{Fk} +- Pr(Wa-11 
End-For ; 
W W Z )  +- Pr{Wz-i} 

a,-1 

+ [1 - Pr{F3--1}1 *P,(,) . Pr{X(.7 + l ,Pz)> 
3=a,-1 

End-For ; 
7. DPR +- 1 - Pr{Wr}; 

Output (DPR); 
End Algorithm REL 

3.2 Complexity Analysis 
The time complexity of Algorithm REL is analyzed. 
Step 1 takes 
/ m 

time (since m < t )  to identify all file cutsets; t denotes the 
total number of files in D. 

Step 2 takes 

time to set a, and pi, 1 5 i I m. 
Step 3 takes 0(m2)  time to obtain all minimal file cut- 

sets. 
Step 4 requires the reordering of all minimal file cutsets 

in a nondecreasing order of their index of the minimal 
component. This ordering can be executed in 0 (T . log(r)) 
using an efficient sorting algorithm; T denotes the number 
of minimal file cutsets. 

Step 5 evaluates Pr{X(j  + 1, P i ) }  by using (6); this re- 
quires that 

O Era - Pi-1 + 21 = 0 ( P r  - p1 + .) M qn + T ) ,  ) r i d  
for j = ai-l 

= O(T - 1) = ~ ( r ) ,  for ai-l I j I ai - 1 

Hence, the total time to evaluate all Pr{X( j  + l,Pi)} is 
O(n + r ) .  

Step 6 takes 

6. /* Apply theorem 3 and (7) to compute Pr{Wi} and 
P r W }  */ 

a. /* boundary conditions */ 

For k t 0 to p1 - 1 Do 
Pr{Fk} + 0 
End-For; 

to compute all Pr{Fk}; and takes 

o C[1+ 3 (ai - ai-111 = 0(1+ 3 .  [ar - all) x o(n) r i=2  ) W W l }  + Pr{X(% P d ;  

to compute all Pr{Wi}. Therefore, the total time is O(n).  
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Step 7 performs in constant time. 
Thus the entire algorithm has time complexity 

~ ( t  + t + m2 + r .  log(r) + (n + r)  + n). 
Since t 5 m + n, and r 5 m, the time complexity of 
Algorithm REL is O(m2 + m . n). 

3.3 An Application of Algorithm REL 

Figure 3: Star DCS with Consecutive-File-Distribution 

Consider the star DCS in figure 3; it has the consecutive 
file distribution property and the associated permutation 

= [3,6,4,2,5,1,7]; section 4 shows how to identify the 
associated permutation when the star DCS has the con- 
secutive file distribution property. 

Procedure 
Find the file cutsets: 
c1 = {e2,e5), c2 = {el,e5,e7}, (73 = {el,e2,e5}, 
C4 = {e3,e6), C5 = {e2,e4,e5). 

According to the permutation: 
~ ( 1 )  = 3, ~ ( 2 )  = 6, ~ ( 3 )  = 4, ~ ( 4 )  = 2, ~ ( 5 )  = 5, 

and to the results of step 1: 

a 4  = 1, p4 = 2, a 5  = 3, 0 5  = 5. 

~ ( 6 )  = 1, ~ ( 7 )  = 7; 

01 = 4, = 5, = 5, P2 = 7, a 3  = 4, /33 = 6, 

4. LINEAR.-TIME ALGORITHM: TESTING FOR THE 
CONSECUTIVE FILE DISTR.IBUTION PROPERTY 

IN A STAR. DCS 

Section 3 presented a polynomial-time algorithm for 
computing the DPR. of a star DCS when it has the consec- 
utive file distribution property. This section tests whether 
or not a star DCS has the consecutive file distribution 
property. The problem statement is: 
Input: A star DCS D with n + 1 nodes s, W I , V ~ , .  . . ,w,, 
and file distributions Ai, 1 5 i 5 n. 
Output: A permutation II = [ ~ ( l ) ,  ~ ( 2 ) ,  . . . ,7r(n)] of num- 
bers {1 ,2 , .  . . , n} such that if fd E AT(%) and fd E 
then fd E Aa(k) for all k ,  i < k < j .  

A solution does not always exist. To facilitate searching 
for the correct ordering of II, use a data structure of a 
PQ-tree [3]. A PQ-tree is a rooted tree that has two 
varieties of nodes: P-nodes and Q-nodes. A P-node 
is a node whose children can be arbitrarily permuted. A 
Q-node is a node whose children are ordered or reverse- 
ordered. The frontier of a PQ-tree is the permutation of 
leaves from left to right. Two PQ-trees are equivalent 

Because C1 c C3 and C1 C C5, remove C3 and C5. iff one can be transformed into the other by applying a 
sequence of the transformation rules: - arbitrarily permute the children of a P-node; - reverse the children of a Q-node. 

Thus, the set of minimal file cutsets is: Q, = 
{Cl, c2, C4). 

Reorder the minimal file cutsets in so that for, 
The algorithm uses a PQ-tree data structure. 

Algorithm Check-Consecutive-File-Distribution 

Input: A star DCS D with n + 1 nodes s, v1,u2,. , . ,un, 
n edges e l ,  e2 , .  . . ,e,,  where ei = (s, q) for 1 5 i 5 n; 
and file-available set, 
Ai = {fj: for each fj stored in node vi} for 1 5 i 5 n. 

Output: A permutation II = [ ~ ( l ) ,  7r(2), . . . , ~ ( n ) ]  of 
numbers { 1,2,  . . . , n} such that if fd E A,(i) and 
fd E Aa(j), then fd E Aa(k)  for all k ,  i < k < j .  
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0. 

1. 

T c universal tree; /* a single P-node 
connected to all the leaf nodes of { 1 ,2 , .  . . , n} */ 

For j +- 1 to m Do 
AY' +- 0 
End-For ; 

For i +- 1 to n Do 
For each f j  E Ai Do 
A;' +- {i} 
EndPor; 

End-For ; 
For j +- 1 to m Do 
T +- REDUCE(T, AY') 
End-For ; 

If T is a null tree 
Then print out " D  has no consecutive file 

Else print out the Frontier of T ,  
EndJf; 

End Check-Consecutive-File-Distribution 

distribution property" 

The routine REDUCE attempts to apply a set of 11 
templates. Each template consists of a pattern to be 
matched against the current PQ-tree and the set A;', 
and a replacement to be substituted for the pattern. The 
templates are applied from the bottom to the top of the 
tree. The null tree is returned when no template applies. 
See [3] for details of the algorithm. 

Complexity Analysis 

For A;', 1 5 j 5 m, it can be obtained in 
/ n \  

o ( m + [ A * / )  steps. 
\ i=l 1 

The loop of the R.EDUCE routine can be computed in 
m 

0 ( m  +n  + [A;'])  steps [3]. Further, 
j=l 1 

m 
\ 
[Ail = IAi'l = t (the total number of files in 0). 

i=l j=l 
Therefore, the time complexity for 
Check-Consecutive-File-Distribution is: 
O ( m + t ) + O ( m + n + t )  = O(m+n+t) .  

Example 

Apply Check-Consecutive-File-Distribution; then: 
AT1 = {2,5}, AT' = {1,5,7},  AT1 = {1,2,5},  
AT1 = {3,6}, AS' = {2,4,5}. 

Figure 4 displays the reduction steps; for the PQ-tree, 
a P-node is drawn as a circle and a Q-node as a rectan- 
gle. Figure 4 shows that: 

- the star DCS D of figure 3 has the consecutive file dis- 
tribution property; 

I I=[3 ,6 ,4 ,2 ,5 ,1 ,7 ] .  

Consider the star DCS D in figure 3. 

one of the associative permutations is: 

(1,5,7) 
Templates P3, PI a 

Templates P3,Q2 

3 4 6  
I O I  
2 5 1 1  

Template P4 

3 6 4 2 5 1 7  3 6 2 5 1 1  

Figure 4: Reduction Steps, Using a PQ-Tree 

APPENDIX 

A.1 Proof of Theorem 1 
Let G = (V ,E)  be a network graph with a subset of 

nodes K V .  Construct a DCS graph D = (V, E )  from 
G such that vi of D contains fi iff vi E K in G. All 
distinct files in D are interconnected iff all nodes of K are 
connected in G. Also, let each edge of D have the same 
operational probability as the corresponding edge of G. 
Then, the DPR. of D is equal to the KTR. of G. In this 
case the DCS D can be obtained from G in polynomial 
time. 

A.2 Proof of Corollary 2 
The proof of theorem 1 shows that the KTR. prob- 

lem is just a special case of the DPR. problem. It has 
been shown that computing the KTR. over a planar net- 
work is #P-complete [ll]. This also immediately im- 
plies that computing the DPR. over a planar DCS is still 
# P-complete. 

A.3 Proof of Theorem 2 
Given a graph G with n edges e1,eq , . . .  ,e,, we con- 

struct a star DCS D such that the number of edge covers 
in G can be expressed as a function of the DPR. of D. 
Construct a star DCS D = (V', E ' )  where 
V' = { s , u ~ , u ~ ,  . . . ,U;} ,  E' = {(s,~;), ( s ,u$ ) ,  . . . , (s ,u;)}  
and node U: contains files fg & fh iff ei = (wg,vh) in G. 
We now consider a file spanning tree (FST) T, which is a 
subgraph of D and its nodes hold all the needed data files: 

U {jj : U: contains file fj} 
v:ET 

= U {fj : contains file fj}. 
V:EV' 
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Thus there is a one-to-one correspondence between one of 
the sets of edge covers in G and one FST in D. The DPR 
of D can be expressed as: 
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