
IEEE TRANSACTIONS ON RELIABILITY, VOL. 48, NO. 1, 1999 MARCH 87

Distributed-Program Reliability Analysis:
Complexity and &Efficient Algorithms

M. S . Lin
Tamsui Oxford University College, Taipei

M. S . Chang
Chunghwa Telecommunication Training Institute, Taipej

D. J. Chen, Member IEEE
National Chiao-Tung University, Hsin-Chu

Key Words - Distributed computing system, Distributed-
program reliability, Computation complexity.

Summary & Conclusions - This paper investigates the
problem of distributed-program reliability in various classes of
distributed computing systems. This problem is computation-
ally intractable for arbitrary distributed computing systems,
even when it is restricted to the class of star distributed com-
puting systems. One solvable case for star distributed com-
puting systems is identified, in which data files are distributed
with respective to a consecutive property; a polynomial-time
algorithm is developed for this case. A linear-time algorithm is
developed to test whether or not an arbitrary star distributed
computing system has this consecutive file distribution prop-
erty. Efficient algorithms may still be sought for computing
lower & upper bounds on the distributed program reliability
for arbitrary distributed computing systems.

1. INTRODUCTION
Acronyms & Abbreviations]

DCS distributed computing system
DPR distributed-program reliability
KTR K-terminal reliability
#EC number of edge covers
FST file spanning tree

Definitions (Star DCS)
- Consecutive file distribution. A star DCS D has the

consecutive file distribution property iff its nodes can be
linearly ordered such that, for each distinct file fd, the
nodes containing file fd occur consecutively. More for-
mally, a star DCS D has the consecutive file distribution
property iff there exists a permutation II (see Notation)

- File cutset. A set c d of edges of D is a file cutset for
file fd if it consists of all edges (s,'ui) such that node vi
contains file fd, ie, c d = {(s ,vz) : fd E Ai} .

Minimal file cutset. A file cutset C is minimal if there

lThe singular & plural of an acronym or abbreviation are always
spelled the same.

is no other file cutset C' such that C' C C. Without loss
of generality, reorder the minimal file cutsets, if necessary,
by their minimal component: ie, for two distinct minimal
file cutsets Ci, Cj, i < j iff
min{k : (s, 'u,(k)) E Ci} < min{k : (s , 'u , (k)) E Cj} . 4

A DCS, in general, is one in which the computing
functions are distributed among several physically dis-
tinct computing elements [4]. These elements or resources
(eg, processing elements, data files, programs) can be ge-
ographically separated or co-located. Thus, each pro-
gram can run on one or more computers and can fre-
quently access files stored in other sites. Banking sys-
tems, travel agency systems, and power control systems
are a few examples of a distributed computing environ-
ment [15]. There are many measures to evaluate the per-
formance of DCS. RRliability is an important issue [5]. For
traditional networks, many reliability indices have been
proposed, eg, 2-terminal reliability, all-terminal reliability,
and K-terminal reliability [1, 7, 12, 13, 181. However,
these measures do not apply to practical DCS since the
reliability measure for DCS should capture the effects of
redundant distribution of data files.

Kumar et a1 [8, 91 introduced the new reliability mea-
sure: DPR. to model accurately the reliability of DCS.
DPR. is defined as the probability that a program with dis-
tributed files can run successfully in spite of some faults
occurring in the communication edges. A model used to
represent such situations is a probabilistic graph. A prob-
abilistic graph has a collection of nodes representing the
processing elements (sites) which contain some data files
and programs, together with a collection of edges repre-
senting communication links. Each edge fails s-indepen-
dently with known failure probability. For example, con-
sider a possible DCS of a banking system [8, 151 shown
in figure 1. Each local disk stores some of the following
information: - consumer accounts file (CAF),

- automated teller machine accounts file (TAF), - administrative aids file (ADF), - interest and exchange-rates file (IXF).

0018-9529/99/$10.00 01999 IEEE

88 IEEE TRANSACTIONS ON RELIABILITY, VOL. 48, NO. 1, 1999 MARCH

4 computer

computer #
Figure 1: A Distributed Banking System

Mana.gement report generation (MR.G) in computer A
indicates a query (program) to be executed for report gen-
eration. Figure 2 shows the graph model for this system.
A node represents any computer location and the links
show the communication network. We assume that:

- the query (program) MRG requires data files CAF, TAF,
ADF, IXF to complete its execution,

MRG is running at node q , which holds data files CAF,
ADF, IXF.
Hence, MRG must access TAF, which is stored in both
nodes 212,213. Therefore, the DPR. of MR.G in figure 2 can
be formulated as:
DPR. = Pr{(vl,212 are connected) OR (211,213 are con-
nected)}.

TAF CAF

v3

TAF ADF

ADF IXF

Figure 2: Graph-Model for the Distributed Banking System
in Figure 1

Most network reliability problems (eg, K-terminal re-
liability) are #P-complete. The class of #P-complete
problems was introduced by Valiant [16]. The class # P
contains those problems that involve counting the accept-
ing computations for problems in NP; the class of #P-
complete problems contains the hardest problems in #P.
As widely recognized, all known exact algorithms for these
problems have exponential time complexity, thereby mak-

can be developed for this class of problems. Clearly, com-
puting the DPR for general DCS is also #P-complete.
This complexity can be averted by considering only a re-
stricted class of DCS. Our objective is to examine the
boundary o f problem classes separating the polynomially
solvable cases from the #P-complete cases. However,
polynomial-time algorithms have been developed for com-
puting the DPR. over the DCS with linear 8.1 ring topologies
P O I .

Classes of interest here include:

2-tree,
- star,

- series-parallel, - planar topologies.
Section 2 shows that most of them continue to be #P-
complete. Section 3 presents a polynomially solvable case
of the DPR problem for star topologies in which data files
are restricted to a certain type of distribution. Section 4
shows a linear-time algorithm to verify whether or not a
star DCS has this restricted class of file distribution.

Assumptions

1. The nodes are perfect.
2. The edges are s-independent and either function or

fail with known probabilities.

Notatzon (General2)
G
D a D C S graph
E set of edges
V set of nodes
e, a component of E
U , a component of V
K subset of V
A,
p , Pr{e, functions}
q2
f2 data file i

a general graph (of a network)

set of files available at 21,

Pr{e, fails}: 1 - p ,

Notation (Star DCS)
D

n
ea

t

n

m

A;’

Q,

T

Ci

4

a star DCS with n + 1 nodes, {s, q , w2,. . . , w,}

number of edges in D
edge (s , q) , 1 5 i 5 n
number of distinct files in D
total number of files in D
set of indexes of nodes which contain f3
[T(l), 7~(2), . . . ,7r(n)]: a permutation of numbers

and nedges { (% ~ l) , (S , ~ d , * * * ,(S,?Jn)}

{1,2,. . . , n} such that if fd E AT(,) and
fd E & (j) , then fd E AT(k) for all k , i < k < j

ordered set of all minimal file cutsets according

number of minimal file cutsets in Q,
H(ai ,P,): minimal file cutset # i in a; 1 5 i 5 T

to their minimal components

20ther. standard notation is given in “Information for Readers &
ing it unlikely that efficient (polynomial time) algorithms Authors” at the rear of each issue.

LIN ET A L DISTRIBUTED-PROGRAM RELIABILITY-ANALYSIS: COMPLEXITY AND EFFICIENT ALGORITHMS 89

ai

pi

H (i , j)

X (i , j)

Wi

min[k : e,(k) E Ci]: index of the minimal

max[k : e,(k) E Ci]: index of the maximal
component in Ci; 1 5 i 5 r

component in Ci; 1 I i 5 r

{e,(+ e,(i+l) , . . . , e x (j) } ; 1 I i 5 j 5 R.
event: all edges in H (i , j) fail

i

U X (a j , pj) ; the DPR. of D can be expressed as
,=1

event: the star DCS D’ fails; it consists of
1 - Pr{W,}

Fi
2 f nodes s, v7T(1)> v,(2), * * 7 %(i),

- and i edges %(l), % (2) , . * , %(i)
W complement of event W

2. COMPUTATIONAL COMPLEXITY
OF DPR. PROBLEM

This section assumes that the reader is familiar with
the basic notions of NP-completeness; [6] has an excellent
exposition of the theory of NP-completeness. The strategy
to show that a DPR problem L1 is #P-complete is:

1. Pick a problem L2 already known to be #P-com-
plete.

2. Show how to obtain (in polynomial time) an instance
11 of L1 from any instance 12 of L2 such that from the
solution of I1 we can determine (in polynomial time) the
solution to instance 12 of L2.

3. Hence, if we have a polynomial-time algorithm for
the DPR. problem L1, then we can obtain polynomial-time
algorithms for L2 using step 2.

4. Conclude that L1 is #P-complete. 4

Two known #P-complete problems are:
- KTR. [la]

Input: An undirected graph G = (V, E) . A set K V is
distinguished with IKI 2 2.
Output: R(GK) , probability that the set K of nodes of G
is connected in G.

* #EC PI
Input: An undirected graph G = (V, E) .
Output: The number of edge covers for G

I{EC 5 E: each node of G is an end of some edge in

- Theorem 1. The KTR. problem is polynomially reducible
EC}I.

to the DPR. problem. 4

The proof is in appendix A . l

By theorem 1, if we have a polynomial-time algorithm
for computing the DPR. of D , then we can obtain a poly-
nomial-time algorithm for computing the KTR of G using
this construction. However, [12] showed that the prob-
lem of computing the KTR. in general is #P-complete,
so computing the DPR. in general is also #P-complete.
Therefore, corollary #1 is proved.
- Corollary 1. Computing the DPR. for a general DCS is

P-complete. 4

. Corollary 2. Computing the DPR for a planar DCS is
#P-complete. 4

The proof is in appendix A.2

For the KTR problem, polynomial-time (or linear-time)
algorithms have been developed for other restricted net-
works, such as a star network, a 2-tree network, and a
series-parallel network [14]. If there are no replicated files
in DCS, ze, if there is only one copy of each file in DCS,
the DPR problem can be transformed into the equivalent
KTR problem in which the K set is the set of nodes that
contain the data files needed for the program under con-
sideration. However, data files are usually replicated and
distributed in DCS; so these two problems are different.
The remainder of this section shows that computing the
DPR over a star DCS, a tree DCS, or a series-parallel DCS
in general, is still #P-complete.

Theorem 2. The #EC problem is polynomially reducible

The proof is in appendix A.3
to the DPR problem over a star DCS. 4

- Corollary 3. Computing the DPR for a star DCS is
P-complete . 4

The proof is in appendix A.4

Now we show that computing the DPR remains difficult
for a 2-tree topology. A 2-tree is defined recursively as
follows: - The complete graph K2 (a single edge) is a 2-tree. - Given any 2-tree G on n 2 2 nodes, let (v , , ~ ~) be an
edge of G. Adding a new node Vk and two edges (vk, U,)
and (vk, vJ), produces a 2-tree on n + 1 nodes.

. Corollary 4. Computing the DPR for a 2-tree DCS in
general is #P-complete. 4

The proof is in appendix A.5

- Corollary 5. Computing the DPR over a series-parallel
DCS is #P-complete. 4

The proof is in appendix A.6

3. POLYNOMIAL-TIME ALGORITHM FOR
COMPUTING THE DPR OF STAR DCS

Section 2 shows that computing the DPR over a star
DCS is #P-complete. These results imply that poly-
nomial algorithms are unlikely to exist for solving them.
However, an efficient algorithm possibly exists for comput-
ing the DPR over a star DCS with a certain restricted class
of file distribution. This section presents a polynomial-
time algorithm for computing the DPR of a star DCS with
a consecutive file distribution.

Let D be a star DCS with the consecutive file distri-
bution property. Then, the minimal file cutsets can be
ordered by their minimal component, %e, for two distinct
minimal file cutsets C, and C,, i < j iff
min[k : (s,v,(k)) E Cz] < min[k : (s,v,(k)) E C,].
By definition, D fails iff at least one event,
X(az, ,Bz) , 1 5 i 5 T , occurs.

90 lEEE TRANSACTIONS ON RELIABILITY, VOL. 48, NO. 1, 1999 MARCH

If r = 1, the unreliability of D is,

If T 2 2, the unreliability of D with the first 2s file

Before applying theorem 3, compute the values of
Pr{Wl} = Pr{X(al,Pi)).

cutsets is:

Pr{Wt} = Pr{Wi-l U X (C Y ~ , ~ ;))

Pr{X(j + 1, P i) } and Pr{Fj-I} for

By noting that ag < ah whenever g < h, the recursive
formula is:

I and a ~ - ~ ~ I ai -

= Pr,[Cr/z-l} + Pr{W,-l nx(a,,p,)}, for i 5 T

Consider w,-1 n X(CY,, P,), which implies:
- El : For each k, 1 5 k 5 i - 1, at least one edge,

e E H (a k , p k) = c k functions; - E2: All edges E H(a,,P,) = C, fail.
By event E2, event E1 can be rewritten: - E:: For each k, 1 5 k 5 z - 1, at least one edge,
e E {H(CYk, p k) - H (a Z , ,&)} functions.

A fundamental difficulty in calculating Pr{Ei} is that
events in E; are not, in general, disjoint. However, we can
define events S, that are disjoint:
S, = {E; occurs and edge en(,) is the last good one}, for

(1)

 CY,-^ 5 3 5 a, - 1. Thus
ff,-1

E inE2= U (s , ~ E ~) ;
3=ff.-1

, = f f , - 1 3=ff,-1

The event S, n E2, a,-1 5 J 5 a, - 1, can be decomposed
into 3 s-independent events: - no file cutset fails between e , (l) and e,(,-1),

- e,(,) functions,
- all edges between

so,
Pr{S, n E z } =

Therefore, according to (1) - (4):

Pr{W,} = Pr{W,-l}

and e,(p,) fail.

11 - Pr{F,-111 . P+) . Pr{X(3 + L P Z) } (4)

a,-1

+ c - Pr{F,-111 * P7r(,) . PI.{X(J + L P Z) }
,=a,-1

Theorem 3 is now established.

- Theorem 3. For 2 5 2 5 r :

Pr{W,} = Pr{W,-l}
ff,-l

+ pr{~3-1)] . ~ n (j) P~{X(J + 1 , P a)) (5)
3=a,-1

with boundary conditions:

W W l } = Pr{X(a1,P1)),
PT{Fk) = 0, for 0 5 k 5

Hence, while computing Pr{W,} by theorem 3, we can also
obtain Pr{Fk}, for ,&-I 5 k 5 ,& - 1.

3.1 A Polynomial-Time Algorithm
The major algorithm-related strategies to compute the

DPR of star DCS are outlined. Assume a given star DCS
D and the file distributions A, for each node. By assuming
that D has the property of consecutive file distribution, let
II be a permutation of numbers {1,2,, . . , n} such that if

z < k < j. All file cutsets can be enumerated from A, as
follows: If 21, contains fd, then c d contains e,. Then, CY,, pz
values of C, can be determined from the permutation II
such that:
cy, = min[k : e , (k) E C,] and Pa = max[k : e,(k) E C,].
The next step removes the file cutsets which are not min-
imal, and rearranges the remaining minimal file cutsets
according to their a, and ,Bz values. Finally theorem 3,
(6) , (7) are used to compute the DPR = 1 - Pr{W,}.

Algorithm REL
Input:

file fd E A,(,) and fd E An(,), then fd E Aa(k) for all k,

a. A star DCS D with
n + 1 nodes { s , q , w 2 , . . . , wn},

/* e, edge (s ,w ,) */
- edges { (s , VI), (s, Q), . . . , (s, U,)>.

LIN ET AL: DISTRIBUTED-PROGRAM RELIABILITY-ANALYSIS: COMPLEXITY AND EFFICIENT ALGORITHMS 91

b. A permutation II = [~ (l) , 7r(2), . . . ,7r(n)] of numbers
{1,2, . . . ,n} such that if fd E A,(i), fd E AT(j) , then
fd E A , (k) for all k, i < k < j .

Output: The DPR of D
Steps:
1. /* find all file cutsets */

a. /* initialization step */
For i +- 1 to m Do
ci +- 0
End-For ;

b.
For i t 1 to n Do
For each fd E Ai Do
Cd + Cd U {.i}
End -For ;

End-For;
/* set the values of ai, Pi for 1 5 i I m */
For i t 1 to m Do
ai +- min{k : e,(k) E C;}
Pi +- max{k : e,(k) E Ci}
End-For;

/* find all minimal file cutsets */

For i e 1 to m Do

End-For ;
For 1 5 i, j 2 m Do
If (ai L aj and pi I pj)
Then remove Cj from
EndJf; /* this implies Ci C Cj */

End-For ;
R.eorder the minimal file cutsets in CP for two distinct
minimal file cutsets Ci and Cj, i < j iff ai < aj

/* Compute Pr{X(j + l,Pi)} for 2 5 i 5 T and

CI, + 0;

@ U {Ci}

ai-1 5 j 5 ai - 1, by (6) */
P1

pr{x(a l ,P l)) + n Q x (k) ;
k = a i

For i t 2 to T Do
Pr(X(az-1 + 1, Pi)} +-

Pi

b.
For i t- 2 to r Do
For k +- pz-l to Pa - 1 Do
Pr{Fk} +- Pr(Wa-11
End-For ;
W W Z) +- Pr{Wz-i}

a,-1

+ [1 - Pr{F3--1}1 *P,(,) . Pr{X(.7 + l ,Pz)>
3=a,-1

End-For ;
7. DPR +- 1 - Pr{Wr};

Output (DPR);
End Algorithm REL

3.2 Complexity Analysis
The time complexity of Algorithm REL is analyzed.
Step 1 takes
/ m

time (since m < t) to identify all file cutsets; t denotes the
total number of files in D.

Step 2 takes

time to set a, and pi, 1 5 i I m.
Step 3 takes 0(m2) time to obtain all minimal file cut-

sets.
Step 4 requires the reordering of all minimal file cutsets

in a nondecreasing order of their index of the minimal
component. This ordering can be executed in 0 (T . log(r))
using an efficient sorting algorithm; T denotes the number
of minimal file cutsets.

Step 5 evaluates Pr{X(j + 1, P i) } by using (6); this re-
quires that

O Era - Pi-1 + 21 = 0 (P r - p1 + .) M qn + T) ,) r i d
for j = ai-l

= O(T - 1) = ~ (r) , for ai-l I j I ai - 1

Hence, the total time to evaluate all Pr{X(j + l,Pi)} is
O(n + r) .

Step 6 takes

6. /* Apply theorem 3 and (7) to compute Pr{Wi} and
P r W } */

a. /* boundary conditions */

For k t 0 to p1 - 1 Do
Pr{Fk} + 0
End-For;

to compute all Pr{Fk}; and takes

o C[1+ 3 (ai - ai-111 = 0(1+ 3 . [ar - all) x o(n) r i=2) W W l } + Pr{X(% P d ;

to compute all Pr{Wi}. Therefore, the total time is O(n).

92 IEEE TRANSACTIONS ON RELIABILITY, VOL. 48, NO. 1, 1999 MARCH

Step 7 performs in constant time.
Thus the entire algorithm has time complexity

~ (t + t + m2 + r . log(r) + (n + r) + n).
Since t 5 m + n, and r 5 m, the time complexity of
Algorithm REL is O(m2 + m . n).

3.3 An Application of Algorithm REL

Figure 3: Star DCS with Consecutive-File-Distribution

Consider the star DCS in figure 3; it has the consecutive
file distribution property and the associated permutation

= [3,6,4,2,5,1,7]; section 4 shows how to identify the
associated permutation when the star DCS has the con-
secutive file distribution property.

Procedure
Find the file cutsets:
c1 = {e2,e5), c2 = {el,e5,e7}, (73 = {el,e2,e5},
C4 = {e3,e6), C5 = {e2,e4,e5).

According to the permutation:
~ (1) = 3, ~ (2) = 6, ~ (3) = 4, ~ (4) = 2, ~ (5) = 5,

and to the results of step 1:

a 4 = 1, p4 = 2, a 5 = 3, 0 5 = 5.

~ (6) = 1, ~ (7) = 7;

01 = 4, = 5, = 5, P2 = 7, a 3 = 4, /33 = 6,

4. LINEAR.-TIME ALGORITHM: TESTING FOR THE
CONSECUTIVE FILE DISTR.IBUTION PROPERTY

IN A STAR. DCS

Section 3 presented a polynomial-time algorithm for
computing the DPR. of a star DCS when it has the consec-
utive file distribution property. This section tests whether
or not a star DCS has the consecutive file distribution
property. The problem statement is:
Input: A star DCS D with n + 1 nodes s, W I , V ~ , . . . ,w,,
and file distributions Ai, 1 5 i 5 n.
Output: A permutation II = [~ (l) , ~ (2) , . . . ,7r(n)] of num-
bers {1 ,2 , . . . , n} such that if fd E AT(%) and fd E
then fd E Aa(k) for all k , i < k < j .

A solution does not always exist. To facilitate searching
for the correct ordering of II, use a data structure of a
PQ-tree [3]. A PQ-tree is a rooted tree that has two
varieties of nodes: P-nodes and Q-nodes. A P-node
is a node whose children can be arbitrarily permuted. A
Q-node is a node whose children are ordered or reverse-
ordered. The frontier of a PQ-tree is the permutation of
leaves from left to right. Two PQ-trees are equivalent

Because C1 c C3 and C1 C C5, remove C3 and C5. iff one can be transformed into the other by applying a
sequence of the transformation rules: - arbitrarily permute the children of a P-node; - reverse the children of a Q-node.

Thus, the set of minimal file cutsets is: Q, =
{Cl, c2, C4).

Reorder the minimal file cutsets in so that for,
The algorithm uses a PQ-tree data structure.

Algorithm Check-Consecutive-File-Distribution

Input: A star DCS D with n + 1 nodes s, v1,u2,. , . ,un,
n edges e l , e2 , . . . ,e,, where ei = (s, q) for 1 5 i 5 n;
and file-available set,
Ai = {fj: for each fj stored in node vi} for 1 5 i 5 n.

Output: A permutation II = [~ (l) , 7r(2), . . . , ~ (n)] of
numbers { 1,2, . . . , n} such that if fd E A,(i) and
fd E Aa(j), then fd E Aa(k) for all k , i < k < j .

LIN ET AL: DISTRIBUTED-PROGRAM RELIABILITY-ANALYSIS: COMPLEXITY AND EFFICIENT ALGORITHMS

~

93

0.

1.

T c universal tree; /* a single P-node
connected to all the leaf nodes of { 1 ,2 , . . . , n} */

For j +- 1 to m Do
AY' +- 0
End-For ;

For i +- 1 to n Do
For each f j E Ai Do
A;' +- {i}
EndPor;

End-For ;
For j +- 1 to m Do
T +- REDUCE(T, AY')
End-For ;

If T is a null tree
Then print out " D has no consecutive file

Else print out the Frontier of T ,
EndJf;

End Check-Consecutive-File-Distribution

distribution property"

The routine REDUCE attempts to apply a set of 11
templates. Each template consists of a pattern to be
matched against the current PQ-tree and the set A;',
and a replacement to be substituted for the pattern. The
templates are applied from the bottom to the top of the
tree. The null tree is returned when no template applies.
See [3] for details of the algorithm.

Complexity Analysis

For A;', 1 5 j 5 m, it can be obtained in
/ n \

o (m + [A * /) steps.
\ i=l 1

The loop of the R.EDUCE routine can be computed in
m

0 (m +n + [A;']) steps [3]. Further,
j=l 1

m
\
[Ail = IAi'l = t (the total number of files in 0).

i=l j=l
Therefore, the time complexity for
Check-Consecutive-File-Distribution is:
O (m + t) + O (m + n + t) = O(m+n+t) .

Example

Apply Check-Consecutive-File-Distribution; then:
AT1 = {2,5}, AT' = {1,5,7}, AT1 = {1,2,5},
AT1 = {3,6}, AS' = {2,4,5}.

Figure 4 displays the reduction steps; for the PQ-tree,
a P-node is drawn as a circle and a Q-node as a rectan-
gle. Figure 4 shows that:

- the star DCS D of figure 3 has the consecutive file dis-
tribution property;

I I=[3 ,6 ,4 ,2 ,5 ,1 ,7] .

Consider the star DCS D in figure 3.

one of the associative permutations is:

(1,5,7)
Templates P3, PI a

Templates P3,Q2

3 4 6
I O I
2 5 1 1

Template P4

3 6 4 2 5 1 7 3 6 2 5 1 1

Figure 4: Reduction Steps, Using a PQ-Tree

APPENDIX

A.1 Proof of Theorem 1
Let G = (V ,E) be a network graph with a subset of

nodes K V . Construct a DCS graph D = (V, E) from
G such that vi of D contains fi iff vi E K in G. All
distinct files in D are interconnected iff all nodes of K are
connected in G. Also, let each edge of D have the same
operational probability as the corresponding edge of G.
Then, the DPR. of D is equal to the KTR. of G. In this
case the DCS D can be obtained from G in polynomial
time.

A.2 Proof of Corollary 2
The proof of theorem 1 shows that the KTR. prob-

lem is just a special case of the DPR. problem. It has
been shown that computing the KTR. over a planar net-
work is #P-complete [ll]. This also immediately im-
plies that computing the DPR. over a planar DCS is still
P-complete.

A.3 Proof of Theorem 2
Given a graph G with n edges e1,eq , . . . ,e,, we con-

struct a star DCS D such that the number of edge covers
in G can be expressed as a function of the DPR. of D.
Construct a star DCS D = (V', E ') where
V' = { s , u ~ , u ~ , . . . ,U;} , E' = {(s,~;), (s ,u$) , . . . , (s ,u;)}
and node U: contains files fg & fh iff ei = (wg,vh) in G.
We now consider a file spanning tree (FST) T, which is a
subgraph of D and its nodes hold all the needed data files:

U {jj : U: contains file fj}
v:ET

= U {fj : contains file fj}.
V:EV'

IEEE TRANSACTIONS ON RELIABILITY, VOL. 48, NO. 1, 1999 MARCH 94

Thus there is a one-to-one correspondence between one of
the sets of edge covers in G and one FST in D. The DPR
of D can be expressed as:

REFERENCES

[l] K.K. Agrawal, S. Rai, “Reliability evaluation in computer-
communication networks”, IEEE Trans. Relzabzlzty, vol
R-30, 1981 Apr, pp 32 - 35.

[2] M.O. Ball, J.S. Provan, D.R. Shier, “Reliability covering
problems”, Networks, vol 21, 1991, pp 345 - 357.

[3] K.S. Booth, G.S. Leuker, “Testing for the consecutive
ones property, interval graphs, and graph planarity us-
ing PQ-tree algorithms”, J . Computzng System Sczence,
V O ~ 13, 1976, pp 335 - 379.

[4] T.C.K. Chou, J.A. Abraham, “Load redistribution under
failure in distributed systems”, IEEE Trans. Computer,
vol 32, 1983 Sep, pp 799 - 808.

[5] J. Garcia-Molina, “Reliability issues for fully replicated
distributed database”, IEEE Trans. Computer, vol 16,
1982 Sep, pp 34 - 42.

DPR ==

[(n h A)) * ((vo,v: n)ET’ ..)]
for all FST (vo,v:)EE’-T‘

T In D

p , = reliability of edge (s , w:) of D, 1 5 i 5 n.

Set p , = $, for all 1 5 i 5 n, then:

DPR = (i)”. or
for a!l FST

T in D

DPR . 2 ” = 1 = #of FST in D
for a!l FST

T in D
= # of edge covers in G

Since D can be constructed from G in polynomial time, the
number of edge covers in G can be solved in polynomial
time if we have a polynomial-time algorithm for computing
the DPR of D.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, 1979; nee-
man.

[7] A.P. Grnarov, M. Gerla, “Multi-terminal reliability anal-
ysis of distributed processing system”, Proc. 1981 Int’l
Conf. Parallel Processing, 1981 Aug, pp 79 - 86.

[8] A. Kurnar, S. Rai, D.P. Agrawal, “On computer commu-
nication network reliability under program execution con-
straints”, IEEE JSAC, vol 6, 1988 Oct, pp 1393 - 1399.

[9] V.K.P. Kumar, S. Hariri, C.S. Raghavendra, “Distributed
program reliability analysis”, IEEE Trans. Software
Eng’g, vol SE-12, 1986 Jan, pp 42 - 50.

[lo] M.S. Lin, D. J. Chen, “Two polynomial-time algorithms

A.4 Proof of Corollary 3

been shown to be #P-complete [2].
This follows from theorem 2 and the fact that #EC have

A.5 Proof of Corollary 4
Let D be a star DCS with n + 1 nodes s, v1, “2,. . . , v,,

and n edges (s , q), (s , w2), . . . , (s, w”). Construct from D
a 2-tree DCS D’ such that D and D’ have the same DPR..
Embed the 2-tree DCS D’ into the star DCS D by adding
some virtual edges (ui,wi+I), 1 5 i 5 n - 1. Now, D’ is a
2-tree DCS on n + l nodes. If we stipulate that each virtual
edge has operational-probability = 0, then the DPR. of D is
reduced to the DPR. of D’. By corollary 3, since computing
the DPR. over a star topology in general is #P-complete,
then computing the DPR. over a 2-tree topology is also
#P-complete.

A.6 Proof of Corollary 5
From [17], a 2-tree graph is a maximal series-parallel

graph. A maximal series-parallel graph is a series-parallel
graph with neither loops nor parallel edges. Since com-
puting the DPR over a 2-tree topology is #P-complete,
computing the DPR. over a series-parallel DCS is also
#P-complete.

for computing reliability in a linear and a circular dis-
tributed system”, PDPTA’97, 1997 Jun, Las Vegas.

[ll] J.S. Provan, “The complexity of reliability computations
in planar and acyclic graphs”, SIAM J. Computing, vol

[la] A. Rosenthal, “A computer scientist looks at reliabil-
ity computations in: reliability and fault tree analysis”,

[13] A. Satyanarayana, J.N. Hagstrom, “A new algorithm for
the reliability analysis of multi-terminal networks”, IEEE
Trans. Reliability, vol R-30, 1981 Oct, pp 325 - 334.

[14] A. Satyanarayana, R.K Wood, “A linear-time algorithm
for computing k-terminal reliability in series-parallel net-
works”, SIAM J. Computing, vol 14, 1985 Nov, pp 818 -
832.

[15] D.A. Sheppard, “Standard for banking communication
Computer, vol 21, 1987 Nov, pp

[16] L.G. Valiant, “The complexity of enumeration and relia-
bility problems”, SIAM J. Computing, vol 8, 1979, pp 410

[17] P. Winter, “Steiner problem in networks: A survey”, Net-

[18] R.K. Wood, “Factoring algorithms for computing k-
terminal network reliability”, IEEE Trans. Reliability, vol

15, 1986, pp 694 - 702.

SIAM, 1975, pp 133 - 153.

system”, IEEE Trans.
92 - 95.

- 421.

works, V O ~ 17, 1987, pp 129 - 167.

R-35, 1986 Aug, pp 269 - 278.

LIN ET A L DISTRIBUTED-PROGRAM RELIABILITY-ANALYSIS: COMPLEXITY AND EFFICIENT ALGORITHMS 95

AUTHORS
Dr. Min-Sheng Lin; Dep’t of Information Management; Tam-
sui Oxford University College; 32 Chen Li Rd; Tamsui,

Internet (e-mail): mlin@jupiter.touc.edu.tw (e-mail): djchen@csie.nctu.edu.tw
Min-Sheng Lin received his MS (1991) & PhD (1994)

Computer Science & Information Engineering from N
Chiao Tung University (HsinChu, Taiwan). He is an Associate
Professor at Tamsui Oxford University College. His research
interests include reliability and performance evaluation of dis-
tributed computing systems.

Dr. Deng-Jyi Chen; Dep’t of Computer Science & Informa-
g; National Chiao Tung Univ; 1001 Ta Hsueh Rd.;

25103 TAIWAN - R.O.C. 30050 TAIWAN - R.O.C.

-Jyi Chen received the BS (1983) in Computer sci-
Missouri State University (Cape Girardeau), and MS

(1985) and PhD (1988) in Computer Science from the Univer-
sity of Texas (Arlington). He is a Professor at National Chiao
Tung University. He has published more than 80 referred jour-
nal and conference papers in reliability and performance model-
ing of distributed systems, computer networks, object-oriented
systems, and software reuse. Dr. Chen works very closely
with industrial companies and consults for many local (both
for software & hardware companies. He h a been a chief leader
of designing & implementing two commercial products which
are now marketing around the world. Dr. Chen has received
research awards each year from the National Science Council,
Taiwan for the past nine years, and serves as a committee mem-
ber in

Ming-Sang Chang; Chunghwa Telecommunication Training
Inst; 168 Min Chu Rd; Pan Chiao; Taipei 22077 TAIWAN -
R.O.C.
Internet (e-mad): mschang@chtti.com.tw

Ming-Sang Chang received BS (1979) in Electronic En@-
neering from National Taiwan University of Science and Tech-
nology (Taipei, Taiwan) and MS (1982) in Information En-
gineering from TamKang University (Taipei, Taiwan). He is a
PhD candidate in the Dep’t of Computer Science & Information
Engineering, National Chiao Tung Univ. His research interests
include computer network, performance evaluation, distributed
system, and reliability evaluation.

academic & industrial organization.

Manuscript TR98-006 received: 1998 January 21;
revised: 1998 June 20, NOvember 30

Responsible editor: A. von MaYrhauser
Publisher Item Identifier S 0018-9529(99)04899-X

