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Narrow-Band Interference Suppression in
Spread-Spectrum CDMA Communications

Using Pipelined Recurrent Neural Networks
Po-Rong Chang,Member, IEEE,and Jen-Tsung Hu

Abstract—This paper investigates the application of pipelined
recurrent neural networks (PRNN’s) to the narrow-band interfer-
ence (NBI) suppression over spread-spectrum (SS) code-division
multiple-access (CDMA) channels in the presence of additive
white Gaussian noise (AWGN) plus non-Gaussian observation
noise. Optimal detectors and receivers for such channels are no
longer linear. A PRNN that consists of a number of simpler
small-scale recurrent neural network (RNN) modules with less
computational complexity is conducted to introduce best nonlin-
ear approximation capability into the minimum mean-squared
error nonlinear predictor model in order to accurately predict
the NBI signal based on adaptive learning for each module
from previous non-Gaussian observations. Once the prediction
of the NBI signal is obtained, a resulting signal is computed
by subtracting the estimate from the received signal. Thus, the
effect of the NBI can be reduced. Moreover, since those modules
of a PRNN can be performed simultaneously in a pipelined
parallelism fashion, this would lead to a significant improvement
in its total computational efficiency. Simulation results show that
PRNN-based NBI rejection provides a superior signal-to-noise
ratio (SNR) improvement relative to the conventional adaptive
nonlinear approximate conditional mean (ACM) filters, especially
when the channel statistics and exact number of CDMA users are
not known to those receivers.

I. INTRODUCTION

SPREAD-SPECTRUM communications are currently un-
der development for wireless mobile communication ap-

plications due to their efficient utilization of channel band-
width, the relative insensitivity to multipath interference, and
the potential for improved privacy [1]. In addition to providing
multiple-accessing capabilities and multipath rejection, spread-
spectrum (SS) communications also offer the possibility of
further increasing overall-spectrum capacity by overlaying a
code-division multiple-access (CDMA) network over narrow-
band users [1]. CDMA is a promising technique for radio
access in a variety of cellular mobile and wireless personal
communication networks. In an SS-CDMA system, several
independent users share simultaneously a common channel
using spreading code waveforms. In addition, it offers some
attractive features such as high flexibility, high capacity,
simplified frequency planning, and soft capacity. For ex-
ample, CDMA provides up to about four–six times more
capacity than first-generation time-division multiple access
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(TDMA). Cellular systems, mobile satellite networks, and per-
sonal communication networks (PCN’s) that use CDMA have
been proposed and are currently under design, construction,
or deployment [1]. Moreover, networks of low earth orbit
(LEO) and medium earth orbit (MEO) satellites for worldwide
(global) communications such as Loral/Qualcomm’s Glob-
alstar and TWR’s Odyssey that employ CDMA have been
developed [1].

The SS technique is inherently resistant to the narrow-band
interference (NBI) caused by coexistence with conventional
communications. However, it has been demonstrated that the
performance of SS systems in the presence of narrow-band
signals can be enhanced significantly through the use of active
NBI suppression prior to despreading [2]–[14]. In a direct-
sequence (DS) SS system, the transmitting spread signal is
realized by modulating the signal with a pseudonoise (PN)
sequence. At the receiver, the incoming signal is despread
by correlating it with the same PN sequence. Thus, it is
possible to reject interfering signals whose bandwidths are
small compared to that of the spread signal. Moreover, since
the spread signal has a nearly flat spectrum (white noise), it
cannot be predicted from its past values. The interfering signal
can be predicted accurately because it is narrowband. Once
the prediction of the interference is obtained, an error signal is
computed by subtracting the estimate from the received signal.
Using the resulting error signal as the input to the correlator,
the effect of the interfering signal can be reduced.

Since the direct-sequence SS signal can be modeled as
an independent identically distributed (i.i.d.) binary sequence,
such a sequence is highly non-Gaussian. Optimal detectors and
receivers for predicting a narrow-band process in the presence
of such a sequence are therefore no longer linear. Vijayan
and Poor [11] proposed nonlinear methods of predicting the
narrow-band signal that led to a significant increase in the
signal-to-noise ratio (SNR) improvement due to filtering. This
nonlinear method was derived from a system model that takes
into account the non-Gaussian distribution of the observation
noise. The observation noise consists of additive white Gauss-
ian noise (AWGN) plus the SS data signal. Meanwhile, the
NBI signal is modeled as an autoregressive (AR) process.
Vijayan and Poor [11] applied a Masreliez-type approximate
conditional mean (ACM) filter [13] to the AR process whose
statistics are known to the receiver. The nonlinearity of ACM
filter takes the form of soft-decision feedback of an estimate of
the spread-spectrum signal. The performance of this approach
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Fig. 1. Estimator/subtractor model for NBI rejection in SS-CDMA systems.

is significantly better than the linear Kalman filter. However,
the problem with this approach is the difficulty of achieving the
NBI rejection when the AR parameters are not known to the
receiver. Therefore, Vijayan and Poor used the nonlinearity in
the ACM filter to develop adaptive nonlinear LMS algorithms
that do not need the AR parameters. Recently, Rusch and
Poor [12] have proposed an adaptive ACM filter based on the
residual less the soft-decision feedback in order to track the
performance as well as the ACM filter did when the statistics
are known. However, the performance of both adaptive ACM
filters becomes worse when the exact number of CDMA users
is not known to both filters. This is called the offset problem
due to improper referencing of the nonlinearity caused by the
number of users [12].

An alternative approach to the NBI rejection is based on
neural networks. Bijjani and Das [15] applied the multilayered
perceptron (MLP) neural network to NBI rejection in SS
communications. However, MLP’s suffer from drawbacks of
slow convergence and unpredictable solutions during learning.
To overcome this difficulty, an alternative architecture to the
prediction of an NBI signal with the flexibility to adapt to
changing non-Gaussian environment is based on recurrent neu-
ral networks (RNN’s) [16]. RNN is well suited for the adaptive
prediction of a nonstationary nonlinear time series [17], [19].
Several algorithms have been proposed for the training of the
RNN’s. The most widely known algorithm is the real-time re-
current learning (RTRL) algorithm, proposed by Williams and
Zipser [18], which can be used to update the synaptic weights
of the RNN in real time. However, a sufficiently large number
of neurons are required to maintain the prediction accuracy of
the RNN-based predictor, but also increase its computational
complexity. To tackle this difficulty, in Section III, a pipelined
recurrent neural network (PRNN), proposed by Haykin and Li
[20], is introduced to implement the adaptive nonlinear pre-
dictor for NBI rejection with low computational complexity.
Finally, in Section IV, we present an experimental study of
the PRNN applied to the NBI rejection in SS-CDMA systems.

II. CONVENTIONAL NONLINEAR TECHNIQUES

FOR INTERFERENCESUPPRESSION IN

MULTIPLE-USER SPREAD-SPECTRUM SYSTEMS

A. Estimator/Subtractor Model for NBI Suppression

Fig. 1 illustrates a received signal that is passed through
a filter matched to the chip waveform and chip-synchronously

sampled once during each chip interval. The equivalent dis-
crete time received signal has three components due to the SS
signal , the NBI , and the ambient white noise . The
observation at sample is given by

(1)

The ambient noise can be modeled as an AWGN with
variance , the interference having bandwidth much less
than the spread bandwidth, and the SS signalbeing the sum
of independent, equiprobable, binary, and antipodal random
variables and having the following binomial density function:

(2)

where is the number of users in the SS-CDMA system.
As noted in the preceding section, the three signals can be
assumed to be mutually independent.

In this section, we describe nonlinear methods that offer
improved NBI suppression capability over linear methods in
the estimator/subtractor configuration of Fig. 1. This work
was developed in [11]–[14]. The estimator/subtractor imple-
mentation essentially forms a replica of the NBI which can
be subtracted from the received signal to enhance the wide-
band components. A method of producing such a replica is to
exploit the disparity in the predictability of the NBI, i.e.,
and the SS signal, i.e., . In particular, the SS signal cannot
be predicted from its past values since it has a nearly flat
spectrum (white noise). Meanwhile, the interfering signal can
be predicted accurately because it is narrowband. Hence, a
prediction of the received signal using the estimating
filter based on previously received values will, in effect, be
an estimate of the interfering signal. In other words, the
estimating filter removes the white-noise-like SS signal from
the received signal. Thus, by subtracting predicted values
of the received signal obtained in this way from the actual
received signal and using the resulting prediction erroras
the input to the SS detector, i.e., PN correlator, the effect of
the NBI can be reduced significantly. In addition, Vijayan and
Poor [11] showed that the NBI can be modeled as a Gaussian
autoregressive (AR) process of order, i.e.,

(3)

where is a white Gaussian process and
are AR parameters.

From (1) and (3), a state-space representation for the re-
ceived signal and the interference is given by

(4)

(5)

where
and is the companion matrix of the AR
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parameters given by

(6)

The observation noise in the state-space system () is a
sum of the white Gaussian measurement noiseand the SS
signal .

It is noted that the first component of the state vectoris
the interference . Hence, an estimate of the interference can
be obtained by estimating the state from the received signal.
Then, the interference rejection is performed by subtracting the
estimate from the received signal. The estimate ofbased
on observations until time is called the filtered estimate, and
the estimate of based on observations until time is
called the predicted estimate. It is known that the optimums
of such estimates, in the mean-square error (MSE) sense,
at time are the conditional means
and , where
denotes the set of observations recorded up to time. The
optimal filtered and predicted estimates may be obtained from
the Kalman–Bucy filtering equations when and
are Gaussian processes. However, the observation noise
is highly non-Gaussian [11]. For example, for a SS-CDMA
system with a single user, the probability density function (pdf)
of is a weighted sum of two Gaussian densities since
is the sum of a Gaussian random variable and one that takes
values of 1 with equal probability, i.e.,

(7)

where is the zero-mean Gaussian probability density.
From (7), its expression shows that the pdf ofis highly

non-Gaussian. In [13], Masreliez developed an ACM filter
to estimate the state of a linear system with non-Gaussian
observation noise. Moreover, Vijayan and Poor [11] have
applied the Masreliez concept to NBI rejection in SS-CDMA
systems.

B. Approximate Conditional Mean (ACM) Filters for
SS-CDMA Channels with Known Statistics

Assume that the AR parameters are constant
and known to the receiver. Using the Masreliez assumption
that the state prediction density is Gaussian
with mean and covariance matrix , the optimal predicted
estimate and its covariance can be recursively calculated
as

(8)

(9)

(10)

(11)

where

(12)

(13)

and and denotes the observa-
tion prediction density.

Consider a system with one CDMA user. The pdf of
observation noise is a Gaussian mixture of (7). Vijayan and
Poor [11] have shown that the score function and its
derivative are expressed as

(14)

(15)

where denotes the innovation signal and is its variance,
that is,

(16)

It can be seen that without the nonlinear terms tanh and sech,
the ACM filter reduces to the Kalman–Bucy filter. From (14),
the ACM filter provides decision feedback in the tanh, that is,
it corrects the measurement by a factor in range that
estimates the SS signal.

The previous systems with users have a very similar
structure. In this case, the observation noise is a more compli-
cated Gaussian mixture than that given in (7). The expression
of the pdf of the current observation is in a form of Gaussian
mixture, i.e.,

(17)

According to (17), Rusch and Poor [12] have shown that the
Masreliez nonlinearities can be derived as follows:

(18)

(19)

where is given by

(20)

Equation (18) is a smooth quantizer used to produce an
estimate of the total SS signal. The nonlinearity in the smooth
quantizer reduces to the tanh function when is unity.
Moreover, the performance of the ACM filter will degrade
as the number of users increases since the increased power of
the SS signal causes the observation noise to be even more
highly non-Gaussian when the filter employs the tanh term.
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Fig. 2. Adaptive linear predictor.

C. Adaptive ACM Filters for SS-CDMA Channels
Whose Statistics Are Unknown

In the previous section, the ACM filter performs appreciably
better than the optimal linear Kalman filter when the AR
parameters of the interference are known to the receiver.
However, in practice, these AR parameters are random and not
known to the receiver. Therefore, an effective suppression filter
should be able to adapt itself to variations in the interference
characteristics. In [8] and [9], Iltis, Li, and Milstein have
applied simple linear transversal filters to the problem of NBI
rejection. Fig. 2 illustrates the system diagram of ath-order
linear filter. Their tap weights are adjusted
using the Widrow LMS algorithm as follows:

(21)

where is the estimated tap weight
at time , denotes the obser-
vation vector, is the prediction error
or the residual of the prediction, and is a normalized step
size. Note that is the predicted value of
the received signal based on the immediate past values.
Finally, the prediction error is sent to the SS detector, i.e.,
PN correlator. In order to both speed convergence and ensure
the stability, the value of can be determined by

(22)

where is chosen small enough to ensure the convergence
and is an estimate of the input power, which is obtained by

(23)

and is a forgetting factor chosen to yield a
compromise between the prediction accuracy and the tracking
capability.

Unfortunately, the noise in this LMS algorithm is the
observation noise which is the sum of Gaussian and non-
Gaussian noise. This would severely degrade the performance
of LMS-based interference rejection. Therefore, the nonlin-
earilty derived from the ACM filter can be incorporated into
this LMS structure and thereby substantially remove the SS
signal from the adaptation process. Fig. 3 depicts this concept.

Fig. 3. Adaptive nonlinear ACM predictor.

The appropriate nonlinearity is given by

(24)

Vijayan and Poor [11] developed an adaptive nonlinear
LMS algorithm based on the ACM nonlinearity. Its tap-weight
update equations can be expressed as

(25)

where ,
, the nonlinear prediction of is given by

(26)

, and can be estimated by

(27)

where is a sample estimate of the prediction error variance,
which can be obtained by , and

is a forgetting factor with value between zero and one.
Recently, Rusch and Poor [12] have proposed the second

adaptive ACM filter structure based on the residual less the
soft-decision feedback to improve the performance of the
above-mentioned LMS-based ACM filter and provide better
results. By altering the weight update equation of (25) to be
based on the residual less the soft-decision feedback, the new
update equation is written as

(28)

Similarly, the outputs of both the adaptive ACM filters are the
residual signals of their predictions, i.e.,. The residual signal
contains both the SS signal and an AWGN. After inputting
the residual signal into the detector, it is possible to obtain
the desired user data. Rusch and Poor [12] have shown that
this new adaptive filter was able to track the interference
as well as the ACM filter did when statistics are known.



CHANG AND HU: NARROW-BAND INTERFERENCE SUPPRESSION IN CDMA COMMUNICATIONS 471

Adaptive ACM filtering for the case of multiple CDMA users
follows directly from the case of a single user. However, there
is an offset problem present due to improper referencing of
the nonlinearity in (24) since the receiver actually does not
know the exact number of CDMA users in the system. As
the number of CDMA users increases, the offset becomes
larger. Then its performance will degrade when the number of
users increases. To tackle this difficulty, the next section will
present an alternative approach based on RNN’s which is able
to provide the satisfactory results that are almost independent
of the number of CDMA users.

III. N ONLINEAR ADAPTIVE FILTERS

FOR NBI SUPPRESSIONUSING PRNN’s

RNN’s are neural networks that have feedback. RNN’s are
highly nonlinear dynamical systems which exhibit a rich and
complex dynamical behavior. Moreover, RNN allows any neu-
ron in the network to be connected to any other neuron in the
network. They have been proven better than traditional signal
processing methods in modeling and predicting nonlinear and
chaotic time series [17]. Connoret al. [19] have indicated that
RNN’s are well suited for the nonlinear prediction of nonlinear
AR process. There are a number of types of recurrent networks
that have been proposed by several researchers [16], [18]. In
this paper, we are trying to apply the most widely known
architecture proposed by Williams and Zipser [18] to time
series prediction. A network with this particular architecture
is also called the fully connected recurrent network.

Li [22] have shown that an RNN with a sufficiently large
number of neurons and appropriate weights can be found
by performing the real-time recurrent learning (RTRL) [18]
algorithm such that the sum of the squared prediction errors

for an arbitrary . In other words, ,
where denotes the norm with respect to the training
set , where and are the actual system and estimated
RNN-based system model, respectively. Moreover, the RNN
has the ability to generalize learning to what has never been
seen [18]. This is called the generalization from learning.
This is particularly useful for learning a NBI signal via a
non-Gaussian SS-CDMA channel where observations may be
incomplete, delayed, or partially available. Thus,
, where denotes the set union of and a set of data that

is not belonging to and . The RTRL algorithm
is capable of nonlinear adaptive prediction of nonstationary
signals and does not require a priori knowledge of time
dependence among the input data. However, a major limitation
of the RTRL algorithm is that its computational complexity
is proportional to , where is the total number of
neurons in the network. Since a sufficiently large number
of neurons are required to maintain the prediction accuracy
of the RNN-based nonlinear predictor, it seems infeasible to
achieve the RNN-based prediction within an acceptable small
time interval. To tackle this difficulty, Haykin and Li [20]
proposed a new RNN structure called the PRNN that is an
extension of the conventional RTRL algorithm. The design
of such a network is based on the principle of divide and
conquer, that is, a complex RNN with a large number of

Fig. 4. Adaptive PRNN predictor.

neurons can be divided into a number of simpler small-scale
RNN modules with less computational complexity. In the
following section, we are trying to apply the PRNN structure
to improve the computational performance of performing the
nonlinear adaptive predictor. Fig. 4 shows the system diagram
of PRNN-based nonlinear adaptive filter for NBI rejection. The
PRNN-based filter is placed behind the channel and receives
the channel output. The network inputs at time provides
the desired response of the PRNN to train the network to
achieve the optimal nonlinear adaptive filter by minimizing the
prediction error (residual) . The estimate of actually
contains a large portion of the NBI signal component since
the other SS signal and AWGN components which have a
flat spectrum cannot be predicted and are then filtered out by
the PRNN-based filter. In other words, the predicted value
of the received signal is, in effect, equal to the estimate of
the NBI. Thus, by subtracting the estimate from the received
signal, the residual signal becomes a sum of an AWGN and
a SS signal. Once the optimal residual signal is obtained, the
resulting prediction error signal is used as the input to the
SS detector, i.e., PN correlator.

A. Low-Complexity PRNN’s

The PRNN shown in Fig. 5 is composed of identical
modules, each of which is designed as a fully connected
recurrent network with neurons. Each module has
neuron outputs fed back to its input, and the remaining neuron
output (the first neuron output) is applied directly to the next
module. In the case of module, a one-unit delayed version
of the module’s output is assumed to be fed back to the input.
Information flow into and out of the modules proceeds in
a synchronized fashion. Fig. 6 shows the detailed structure
of module with neurons and external inputs. All the
modules have exactly the same number of external inputs and
internal feedback signals. Note that for module, its module
output acts as an external feedback signal to itself. In addition,
all the modules of PRNN are designed to have exactly the
same ( -by- synaptic weight matrix . The
updated value of the synaptic weight matrix is computed
using the RTRL algorithm [18]. Haykin and Li [20] have
demonstrated that the PRNN is able to provide the satisfactory
accuracy of the nonlinear adaptive prediction of nonstationary
signal and time series process. An important feature of the
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Fig. 5. A PRNN with q modules.

Fig. 6. Detailed architecture of modulei of the PRNN.

PRNN is its high computational efficiency. Especially, the total
computational requirement of processing a single sample on a
PRNN is arithmetic operations. However, this is to be
contrasted with computational requirement of a corresponding
structure involving the use of a conventional RNN with
neurons, that is arithmetic operations. Thus, the
computational savings made possible by the use of PRNN can
indeed be enormous for large.

For the th module, its external input at theth time point
is described by the-by-1 vector

(29)

where is the nonlinear prediction order. The other input
vector applied to module is the -by- feedback vector

(30)

where is the first neuron’s output in the adjacent
module and denotes the internal feedback signal
consisting of the one-step delayed output signals of neurons

in module and can be written as

(31)

Note that denotes feedback signals that originate from
module itself. The last module of the PRNN, namely, module
, operates as a standard fully connected RNN. Thus,

is written as

(32)

Additionally, the fixed input 1 is included for the provision
of a threshold applied to each neuron in module. Based
on the above discussion, an input vector consisting of total

input signals applied to moduleis represented

(33)

Thus, the th element of is represented by

(34)

At the th time point, the output of neuron in
module is computed by passing through a sigmoidal
function , obtaining

(35)

where the net internal activity is shown by

(36)

Finally, the prediction computed by the PRNN at time
instant is defined by the output of the visible (first) neuron
of module 1 as shown by

(37)

Note .
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The main difference between the pipelined recurrent net-
work of Fig. 5 and the conventional real-time recurrent net-
work is that PRNN is characterized by a nested nonlinearity.
Since all the neurons have a common nonlinear activation
function , the functional dependence of the output

of the network in Fig. 5 on external inputs can be
expressed as follows:

(38)

where, for convenience of presentation, we have omitted
the dependence on the synaptic weight matrix that is
common to all the modules and . The
expression of (38) is indeed the nested nonlinearity that gives
the PRNN of Fig. 5 its enhanced computing power, compared
to the conventional real-time recurrent network. Moreover,
the scheme of nested nonlinear functions described in (38)
is unusual in the classical approximation theory. Indeed, it
is a universal approximator in the sense that a PRNN with
appropriate training can approximate any nonlinear adaptive
predictor to any desired degree of accuracy, provided that
sufficiently many hidden neurons are available [22].

Certainly, is interpreted as the one-step prediction
of computed by the th module whose functional de-
pendence can be described by a complete dependence form
shown as follows:

(39)

where is the synaptic weight matrix
of module and is the input vector defined in (29) and
(31). The desired response for moduleat time instant is

. Hence, the prediction error for module
is given by

(40)

Note that for is the output residual signal
sent to the SS detector. Thus, an overall cost function for the
PRNN is defined by

(41)

where is an exponential forgetting factor that lies in the range
of . The inverse of is a measure of the memory
of the PRNN. Adjustments to the synaptic weight matrix
of each module is made to minimize in accordance with
the real-time recurrent learning (RTRL) algorithm.

B. Real-Time Recurrent Learning (RTRL) Algorithm

For the case of a particular weight , its incremental
change made at time according to the method of
steepest descent is given by

(42)

where is the learning-rate parameter. From (39), (40), and
(41), we note that

(43)

In (43), the partial derivative is calculated using a
modification of the RTRL algorithm [18]. A quadruply indexed
set of variables is introduced to characterize the
RTRL algorithm, and each element of the set is given by

(44)

Note that . The RTRL algorithm is used to

recursively compute the values of for every time step and
all appropriate and as follows:

(45)

with initial conditions

(46)

where is a Kronecker delta equal to one when and
zero otherwise, and and are defined in (34) and (36),
respectively. From (35), we find that the derivative is
given by

(47)

Hence, it is possible to determine the value of at time
instant by the recursion of (45) and (46). As a result, from
(42), (43), and (44), the change applied to the ()th element
of the synaptic weight matrix is calculated by the following:

(48)

The weight is updated in accordance with

(49)

IV. SIMULATION RESULTS

Computer simulations have been carried out to compare the
performance of PRNN-based, Kalman, ACM, adaptive linear,
and two adaptive ACM interference rejection filters described
above. The first adaptive ACM filter is the nonlinear prediction
filter (NLP1) of (25) with the coefficients being updated using
the LMS algorithm. The second adaptive ACM filter has the
same nonlinear filter (NLP2) structure employing the residual
less the soft-decision feedback of (28) with and

. The number of filter taps is for each
adaptive filter. The parameters of the proposed PRNN-based
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Fig. 7. Comparison of mean square prediction errors achieved by PRNN predictor for AR interference with various numbers of users when input
SNR = �10 dB.

Fig. 8. Predictor performance for AR interference with known statis-
tics—single CDMA user.

interference rejection filter were given by the following. The
nonlinear prediction order is selected as four, the number
of modules is chosen as five, the forgetting factorof
(41) is set to 0.9, the learning rate is set to 0.001, and
the number of neurons per module is chosen to two.
The computational complexity of a weight-adjustment on the
PRNN is on the order of , whereas the com-
putational complexity of an adjustment on the conventional

Fig. 9. Predictor performance for AR interference with known statistics-
multiple CDMA users.

recurrent network is on the order of . Thus, the
PRNN reduces the computational complexity by more than
two orders of magnitude. Moreover, by using a five-processor
parallel computer, computational complexity per adjustment
of PRNN is reduced to since each module is
performed independently using its corresponding processor. To
verify the rate of convergence for adaptive PRNN predictor,
a performance index is in terms of the following mean square
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Fig. 10. Comparison of mean square prediction errors achieved by linear, NLP1, NLP2, and PRNN predictors for AR interference with 50 users when
input SNR = �10 dB and the number of users was not known to all the predictors.

prediction error given by:

MSE (50)

where denotes the prediction error at theth iteration for
the th experiment (run) and is the total number of
experiments (runs). Note that . Here, the value of

is chosen as ten.
Two kinds of NBI were considered in this paper: AR and si-

nusoidal interference. We first considered the AR interference.
The AR interfering signal was obtained by passing white noise
through a second-order IIR filter with both poles at ,
i.e.,

(51)

where is white Gaussian noise. The power of the back-
ground thermal noise is kept constant at . The SNR
at the filter input is defined as follows:

Input SNR (52)

Fig. 7 depicts MSE convergence of PRNN predictor for AR
interference with a various number of CDMA users when input
SNR is equal to 10 dB relative to a unity power SS signal.
From Fig. 7, it is seen that adaptation times were longer for
a larger number of users. Moreover, since the prediction error
contains the total SS signal, the steady-state value of the MSE
prediction error is proportional to the number of SS-CDMA
users. In order words, the steady-state MSE value increases as
the number of users increases.

Next, a performance measure used to verify the interference
rejection filters is the ratio of SNR at the output of the filter
to the SNR at the input and given by

SNR improvement (53)

where the SNR at the filter output is given by

Output SNR (54)

First, three filters were compared, namely, Kalman, ACM,
and PRNN when Kalman and ACM filters knew the AR
parameters and the exact number of CDMA users, whereas
PRNN did not know these parameters. Figs. 8 and 9 show
the comparison of SNR improvements achieved by Kalman,
ACM, and PRNN for the case of single and multiple users,
respectively, when input SNR was varied from20 dB to

5 dB. All results were based on ten trials, and for each
trial, the simulations were run for 1500 samples for 1 and 10
users, for 3000 samples for 25 users, and for 6000 samples for
50 users. From Fig. 9, it is seen that the SNR improvements
of both PRNN and ACM were almost independent of the
number of users and close to the upper bound. Moreover, the
PRNN provides a little SNR improvement better than ACM.
However, for the Kalman filter, its performance will degrade
as the number of users increases. For the input SNR with a
lower value, the received signal contains a larger portion of the
NBI signal. As mentioned above, the NBI signal component
is good for prediction. Thus, all the predictors achieve the
better SNR improvement performance when the input SNR is
at the low value. Otherwise, their performances become worse
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Fig. 11. Adaptive predictor performance for AR interference-multiple
CDMA users when PRNN and NLP1 did not know the number of users.

as the input SNR increases. At the extreme case, there is no
SNR improvement on each filter when received signal did
not contain the interfering signal. In other words, each filter
cannot offer the prediction capability for the white-noise-like
received signal.

Next, four types of adaptive filters were compared, namely,
linear, NLP1, NLP2, and PRNN when AR parameters and the
number of users were not known to all the adaptive filters.
Thus, both NLP1 and NLP2 employ the tanh term of (14)
for a single user. Fig. 10 illustrates the MSE convergence of
the four adaptive filters for AR interference with 50 users and
input SNR dB. A comparison of the adaptation curves
in Fig. 10 indicates that PRNN converges to the steady-state
value much faster than the linear filter, NLP1, and NLP2. From
Fig. 10, it is seen that both NLP1 and NLP2 performed as
well as the linear LMS filter did because the tanh term in
both NLP1 and NLP2 is not able to provide the sufficient
nonlinear capability to deal with the high nonlinearity due to
50 users. Meanwhile, the PRNN with ten neurons is able to
offer the accurate nonlinear prediction for dealing with the
case of 50 users. For simplicity, Figs. 11 and 12 show the
comparison of SNR improvements achieved by PRNN, NLP1,
and NLP2 since the linear filter is always worse than the
nonlinear filters and not considered in this case. It is seen
that the SNR improvement of PRNN is independent of the
number of users and almost coincides with the upper bound.
Meanwhile, the performances of both NLP1 and NLP2 become
worse as the number of users increases. However, once NLP1
and NLP2 know the exact number of users and employ the
smooth quantizer of (24), their performances illustrated in
Fig. 13 become better and are independent of the number of
users. Especially, NLP2 was able to track the performance as
well as the ACM filter did when the statistics were known. For
this case, PRNN that did not know the exact number of users

Fig. 12. Adaptive predictor performance for AR interference-multiple
CDMA users when PRNN and NLP2 did not know the number of users.

Fig. 13. Adaptive predictor performance for AR interference-multiple
CDMA users when NLP1 and NLP2 knew the number of users.

still attains the better performance than that of both NLP1 and
NLP2.

Another case we considered was a single-tone sinusoidal
interference. The frequency of the sinusoidal interference
signal was kept constant at 0.15 radians, i.e.,

(55)

where is the amplitude and is a random phase with uniform
distribution. It is shown that the performance is similar to
that in the AR interference case. PRNN provides the better
SNR improvement than that of all the other adaptive filters.
Its performance almost coincides with the upper bound and is
independent of the number of users.
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V. CONCLUSION

This paper has introduced a new nonlinear NBI suppression
technique based on PRNN which is capable of accurately
predicting the NBI signal over the multiple-user SS-CDMA
channel by using the RTRL learning algorithm. The PRNN-
based predictor offers a superior SNR improvement perfor-
mance to that of the conventional Kalman, ACM, and linear
and nonlinear ACM adaptive filters because of its ability to
approximate arbitrary nonlinear systems. For comparison of
simulation results for both the AR and sinusoidal interfering
signals, the SNR improvement of PRNN predictor with ten
neurons and less computational complexity almost coincides
with the upper bound and is independent of the number of
CDMA users up to 50 users. However, the performances of
all the conventional linear and nonlinear ACM adaptive filters
become worse as the number of users increases when the
number of users was not known to those adaptive filters.
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