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Narrow-Band Interference Suppression in
Spread-Spectrum CDMA Communications
Using Pipelined Recurrent Neural Networks

Po-Rong ChangMember, IEEE,and Jen-Tsung Hu

Abstract—This paper investigates the application of pipelined (TDMA). Cellular systems, mobile satellite networks, and per-
recurrent neural networks (PRNN's) to the narrow-band interfer-  sonal communication networks (PCN’s) that use CDMA have
ence (NBI) suppression over spread-spectrum (SS) code-division,een hronosed and are currently under design, construction,

multiple-access (CDMA) channels in the presence of additive .
white Gaussian noise (AWGN) plus non-Gaussian observation OF deployment [1]. Moreover, networks of low earth orbit

noise. Optimal detectors and receivers for such channels are no (LEO) and medium earth orbit (MEO) satellites for worldwide
longer linear. A PRNN that consists of a number of simpler (global) communications such as Loral/Qualcomm’s Glob-

small-scale recurrent neural network (RNN) modules with less 5istar and TWR's Odyssey that employ CDMA have been
computational complexity is conducted to introduce best nonlin- developed [1]

ear approximation capability into the minimum mean-squared . L .
error nonlinear predictor model in order to accurately predict The SS technique is inherently resistant to the narrow-band

the NBI signal based on adaptive learning for each module interference (NBI) caused by coexistence with conventional
from previous non-Gaussian observations. Once the prediction communications. However, it has been demonstrated that the
of the NBI signal is obtained, a resulting signal is computed performance of SS systems in the presence of narrow-band

by subtracting the estimate from the received signal. Thus, the ", L .
effect of the NBI can be reduced. Moreover, since those modules Signals can be enhanced significantly through the use of active

of a PRNN can be performed simultaneously in a pipelined NBI suppression prior to despreading [2]-[14]. In a direct-
parallelism fashion, this would lead to a significant improvement sequence (DS) SS system, the transmitting spread signal is
in its total computational efficiency. Simulation results show that  agjized by modulating the signal with a pseudonoise (PN)

PRNN-based NBI rejection provides a superior signal-to-noise n At the receiver. the incoming sianal is despread
ratio (SNR) improvement relative to the conventional adaptive sequence. e receiver, the inco g signal IS desprea

nonlinear approximate conditional mean (ACM) filters, especially Dy correlating it with the same PN sequence. Thus, it is
when the channel statistics and exact number of CDMA users are possible to reject interfering signals whose bandwidths are

not known to those receivers. small compared to that of the spread signal. Moreover, since
the spread signal has a nearly flat spectrum (white noise), it
I. INTRODUCTION cannot be predicted from its past values. The interfering signal

READ-SPECTRUM communications are currently ur€an be predicted accurately because it is narrowband. Once
Sdper development for wireless mobile communication aﬁhe prediction of the interference is obtained, an error signal is

plications due to their efficient utilization of channel bandcomputed by subtracting the estimate from the received signal.
width, the relative insensitivity to multipath interference, an{Sing the resuilting error signal as the input to the correlator,
the potential for improved privacy [1]. In addition to providingthe effect of the interfering signal can be reduced.
multiple-accessing capabilities and multipath rejection, spread-Since the direct-sequence SS signal can be modeled as
spectrum (SS) communications also offer the possibility @n independent identically distributed (i.i.d.) binary sequence,
further increasing overall-spectrum capacity by overlaying @/ch a sequence is highly non-Gaussian. Optimal detectors and
code-division multiple-access (CDMA) network over narrowteceivers for predicting a narrow-band process in the presence
band users [1]. CDMA is a promising technique for radi®f such a sequence are therefore no longer linear. Vijayan
access in a variety of cellular mobile and wireless persorgitd Poor [11] proposed nonlinear methods of predicting the
communication networks. In an SS-CDMA system, severafrrow-band signal that led to a significant increase in the
independent users share simultaneously a common charsighal-to-noise ratio (SNR) improvement due to filtering. This
using spreading code waveforms. In addition, it offers sonm®nlinear method was derived from a system model that takes
attractive features such as high flexibility, high capacitynto account the non-Gaussian distribution of the observation
simplified frequency planning, and soft capacity. For exoise. The observation noise consists of additive white Gauss-
ample, CDMA provides up to about four—six times moré&n noise (AWGN) plus the SS data signal. Meanwhile, the
capacity than first-generation time-division multiple acce$$BI signal is modeled as an autoregressive (AR) process.
Manuscript received August 5, 1996; revised December 27, 1996. wlay‘.”‘.n and Poor [11] apl?“ed a Masreliez-type approximate
P-R. Chang is with the Department of Communication EngineefOnditional mean (ACM) filter [13] to the AR process whose
ing, National Chiao-Tung University, Hsin-Chu, Taiwan (e-mail: prstatistics are known to the receiver. The nonlinearity of ACM
chang@cc.nctu.edu.tw). . .. .
J-T. Hu is with AT&T. filter takes the form of soft-decision feedback of an estimate of
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o sampled once during each chip interval. The equivalent dis-
2(0) { ’ })ﬁ B S S R crete time received signal has three components due to the SS

matched

=s@OHOMW) filler i rate signal sz, the NBI ¢, and the ambient white noise,. The
observation at samplg is given by
Estimating
filter R 2 = Sk + 15 + M- (1)
Z, m I,

- Bit
+ s g5 |cstimate The ambient noise:;, can be modeled as an AWGN with

o | detector varianceo?, the interference; having bandwidth much less
g than the spread bandwidth, and the SS sigpddeing the sum
Flg 1. Estimator/subtractor model for NBI rejection in SS-CDMA System%f N |ndependent, equ|probab|E, b|nary, and anupodal random
variables and having the following binomial density function:

is significantly better than the linear Kalman filter. However, .
the problem with this approach is the difficulty of achieving the N X
NBI rejection when the AR parameters are not known to the plsk) =2 Z
receiver. Therefore, Vijayan and Poor used the nonlinearity in
the ACM filter to develop adaptive nonlinear LMS algorithm%’
that do not need the AR parameters. Recently, Rusch ?
Poor [12] have proposed an adaptive ACM filter based on t g
residual less the soft-decision feedback in order to track the
performance as well as the ACM filter did when the statisti
are known. However, the performance of both adaptive AC e estimator/subtractor configuration of Fig. 1. This work

filters becomes worse when the exact number of CDMA us [Sis developed in [11]-[14]. The estimator/subtractor imple-

is not known to both filters. This is called the offset prObIerﬂwentation essentially forms a replica of the NBI which can

due to improper referencing of the nonlinearity caused by ﬂB% subtracted from the received signal to enhance the wide-
number of users [12].

. S band components. A method of producing such a replica is to
An alternative approach to the NBI rejection is based o ploit the disparity in the predictability of the NBI, i.ei

neural networks. Bijjani and Das [15] applied the multilayere nd the SS signal, i.esz. In particular, the SS signal cannot

perrrclrirzjt;ci):ati(ManP)Hg\?vu?elr nll\allt\livlg’rkstl?ﬁ '\rIBf: L?Z?gm;nk So e predicted from its past values since it has a nearly flat
co ons. ever, S er 1ro %S Ohectrum (white noise). Meanwhile, the interfering signal can

_Sljgvg\f;';\éiget?ﬁ: (?i?f(ijcldlr:prz?:(:;élltzlﬁzt(;\l/tglg?sh(ijtgztnﬁ;egq"ﬁ predicted accurately because it is narrowband. Hence, a
Y, rediction 2, of the received signat;, using the estimating

p;ec:]lcit:]onnoL? NBli ?gr;‘?/lirw:rr:] trr:?i ﬂgx'b'lc'jty rEOr ad?rptn;[%filter based on previously received values will, in effect, be
changing hon-Laussian environment IS based on recurrent gl ;41 of the interfering signal. In other words, the

ral ngtvyorks (RNN's) [1.6]' RNN is yvell su'lted for Fhe adaptive stimating filter removes the white-noise-like SS signal from
prediction of a nonstationary nonlinear time series [17], [19§

<]Y>6(sk—N+2j) (2
=\
ere N is the number of users in the SS-CDMA system.
noted in the preceding section, the three signals can be
sumed to be mutually independent.

In this section, we describe nonlinear methods that offer
proved NBI suppression capability over linear methods in

. L he received signal. Thus, by subtracting predicted values
Several algorithms _have been propoged fgr the trammg ort F the received signal obtained in this way from the actual
RNN's. The most widely k“OV.V” algorithm is the re_al_-tlme "Creceived signal and using the resulting prediction eegons
Cl.mem Iearnmg (RTRL) algorithm, proposed by W'”".”lms anfhe input to the SS detector, i.e., PN correlator, the effect of
Zipser [18], .Wh'Ch can be used to updatg .the synaptic We'g%se NBI can be reduced significantly. In addition, Vijayan and
o o e ot 1 o o ooy B L] S re N an bo moseid a a Gavssiar

. . . - i AR f ie.

the RNN-based predictor, but also increase its computauonaL\JltoregreSSIVe (AR) process of ordey i.e.,
complexity. To tackle this difficulty, in Section Ill, a pipelined I
recurrent neural network (PRNN), proposed by Haykin and Li i = Z(/)jikﬂ, T e (3)
[20], is introduced to implement the adaptive nonlinear pre-
dictor for NBI rejection with low computational complexity.

Finally, in Section IV, we present an experimental study Qfhere {ex} is a white Gaussian process amd, ¢, -+, ¢r.
the PRNN applied to the NBI rejection in SS-CDMA systemgre AR parameters.

From (1) and (3), a state-space representation for the re-

j=1

[I. CONVENTIONAL NONLINEAR TECHNIQUES ceived signal and the interference is given by
FOR INTERFERENCE SUPPRESSION IN
MULTIPLE-USER SPREAD-SPECTRUM SYSTEMS xp = Oxp1 +wy 4)
2 = Hxp + vg (5)

A. Estimator/Subtractor Model for NBI Suppression

Fig. 1illustrates a received signalt) that is passed throughwhere x;, = [ix, i 1, ix_r+1]7, Wi = [ex,0,---,0]T,
a filter matched to the chip waveform and chip-synchronously = [1,0,---,0], and ® is the companion matrix of the AR



CHANG AND HU: NARROW-BAND INTERFERENCE SUPPRESSION IN CDMA COMMUNICATIONS 469

parametersp;, ¢o, - - -, ¢ given by Glon) = Igr(zr) (13)
b1 b2 o o br O
1 0 - 0 0 and Qy, = E{w,wi} andp(z, | Z*~1) denotes the observa-
=0 1 -~ 0 0. (6) tion prediction density.
Consider a system with one CDMA user. The pdf of
o 0 --- 1 0 observation noise is a Gaussian mixture of (7). Vijayan and

The observation noise in the state-space systefni¢ a F0Or [11] have shown that the score functigi(-) and its
sum of the white Gaussian measurement nais@nd the Ss derivative Gy (-) are expressed as

signal s. 1 en

It is noted that the first component of the state vestpiis gr(z) = ) {@c - tanh(p)} (14)
the interferencé,. Hence, an estimate of the interference can 1’“ 1 iy .
be obtained by estimating the state from the received signal. Gr(z) = = {1 - = sech2<—’;)} (15)
Then, the interference rejection is performed by subtracting the Tk Tk Tk

estimate from the received signal. The estimatexpfoased wheree, denotes the innovation signal and is its variance,
on observations until timg is called the filtered estimate, andihat is,

the estimate ok; based on observations until timke— 1 is . ) - )
called the predicted estimate. It is known that the optimums e =2 — HXy o = HMpH™ + o3, (16)

of such estimates, in the mean-square error (MSE) S€NF%an be seen that without the nonlinear terms tanh and sech,

. . o f

at dt"?e k are the cogglltmnalhmeankxk = E{xx | Z°}  the ACM filter reduces to the Kalman-Bucy filter. From (14),

gn Xk :h E{x |f Zb }, where Z (T d{zl’ZQ’ ﬂﬂ;;—l;'l} the ACM filter provides decision feedback in the tanh, that is,
enotes the set of observations recorded up 10 #m&he i ;oprects the measurement by a factor in rafige, 1] that

optimal filtered and predicted estimates may be obtained frcggtimates the SS signal

the Kalman-Bucy filtering equations whefz} and {wy } The previous systems witlv users have a very similar

are Gaussian processes. However, the observation MRISEstructure. In this case, the observation noise is a more compli-

is _highly _non-G_aussian [11]. For ex_a_mple, fc_)r a SS_'CDM ated Gaussian mixture than that given in (7). The expression
system with a single user, the probability density function (pd the pdf of the current observation is in a form of Gaussian
of v, is a weighted sum of two Gaussian densities singce

ixture, i.e.,
is the sum of a Gaussian random variable and one that takes
values ofd-1 with equal probability, i.e., p(z = Hxp + vg)
1 N
puy(v) = 3 [No2 (v —1) + Ny2 (v+1)] (7) =27"Y" < , )N(,f (zr — Hxy — N +2j). (17)
. J :
j=1

whereN,z(-) is the zero-mean Gaussian probability density. )

non-Gaussian. In [13], Masreliez developed an ACM filtehlasreliez nonlinearities can be derived as follows:

to estimate the state of a linear system with non-Gaussian N N =N 4207
observation noise. Moreover, Vijayan and Poor [11] have ex—N 2 El:ll( l )@ Tk
applied the Masreliez concept to NBI rejection in SS-CDMA 9% k) = o2 o2 —(n N12)? (18)
systems. , S DA (1;)@ 27
B. Approximate Conditional Mean (ACM) Filters for Grler) = i? - %F(%) (29)
SS-CDMA Channels with Known Statistics % Tk \%
Assume that the AR parametess, ¢, - - - , ;. are constant Where F'(-) is given by
and known to the receiver. Using the Masreliez assumption N N
that the state prediction densip(x; | Z*~!) is Gaussian F<C_’;> = 4 . ZZ[([ — )
with meanx;, and covariance matri/;, the optimal predicted %k Ny et T
estimatex;, and its covariancé’, can be recursively calculated lezo ( J )@ g ]
as 2 2
N N [ —N+20) +éck—N+2_7) ]
X = Xp + MkHTgk(Zk) (8) : < I ) <J )C 7k - (20)
My = 0P0T + O, (10) quaﬂon (18) is a smopth quantizer .used_ tq produce an
kel k k estimate of the total SS signal. The nonlinearity in the smooth
Xi = X, (11) quantizer reduces to the tanh function whéh is unity.
where Moreover, the performance of the ACM filter will degrade

as the number of users increases since the increased power of
} Jp(a | ZF D] (12) the SS signal causes the observation noise to be even more
highly non-Gaussian when the filter employs the tanh term.

plar | 2471
8zk

a(2) = —[



470 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 48, NO. 2, MARCH 1999

& ™ Zy. P » tospread spectrum detector

Z

G5t o]

> to spread spectrum detector
( PN correlator) Fig. 3. Adaptive nonlinear ACM predictor.

Fig. 2. Adaptive linear predictor. ) ) o ]
The appropriate nonlinearity is given by

C. Adaptive ACM Filters for SS-CDMA Channels e — tanh (), N=1
Whose Statistics Are Unknown lep N 420
_ _ _ _ ple) = SN g (¥)e
In the previous section, the ACM filter performs appreciably e — N +2&=— — gz V> 1L
better than the optimal linear Kalman filter when the AR S (e 207
parameters of the interference are known to the receiver. - (24)

However, in practice, these AR parameters are random and not

known to the receiver. Therefore, an effective suppression filterVijayan and Poor [11] developed an adaptive nonlinear
should be able to adapt itself to variations in the interferen&dS algorithm based on the ACM nonlinearity. Its tap-weight
characteristics. In [8] and [9], lltis, Li, and Milstein haveupdate equations can be expressed as

applied simple linear transversal filters to the problem of NBI @), — O, 1 + 1era(k o5
rejection. Fig. 2 illustrates the system diagram gith-order * ko1 + werz(F) (25)
linear filter. Their tap weighta; x,azx, - - -, a, » are adjusted wherez(k) = [Zx—1, Zx—2," "+ Zx—p]®, On = [arx, a2k -,
using the Widrow LMS algorithm as follows: ap k]*, the nonlinear prediction of;, is given by

pr

Ok = Or—y + erz(k) (21) Zp = Z @ j—17k—-1 = Of_12(k)

=1
where®;, = [a1 r, as x, - -, a, k]t is the estimated tap weight p
at timek, z(k) = [2k—1,2k—2, '+, 2zx—p|* denotes the obser- = Zai,k_l[%k_i + pr—ilen—i)] (26)
vation vector,e;, = 2z, — z(k)7®;_; is the prediction error =1

or the residual of the prediction, ang. is a normalized step
size. Note thats;, = z%(k)®;_; is the predicted value of %
the received signat;, based on the immediate past values. ol =N —1 (27)

Finally, the prediction errog; is sent to the SS detector, i.e.,

PN correlator. In order to both speed convergence and ensfiffré2« is a sample estimate of the prediction error variance,

the stability, the value ofi, can be determined by which can be obtained b, = $A 1 + (1 - fa)ef, and
(32 is a forgetting factor with value between zero and one.
iy = Ho (22) Recently, Rusch and Poor [12] have proposed the second
Tk adaptive ACM filter structure based on the residual less the
. soft-decision feedback to improve the performance of the
where jio is chosen small enough to ensure the convergengg, e mentioned LMS-based ACM filter and provide better

andr; is an estimate of the input power, which is obtained b%sults. By altering the weight update equation of (25) to be

= 2z, — %k, and o} can be estimated by

e — B _ 2 based on the residual less the soft-decision feedback, the new
k= e+ (= )z (23) update equation is written as

and 3;,0 < ;1 < 1 is a forgetting factor chosen to yield a O = Op_1 + (7 — 21)2(k)

gggot:icl)iglse between the prediction accuracy and the tracking = @y + pplen)z (k). (28)

Unfortunately, the noise in this LMS algorithm is theSimilarly, the outputs of both the adaptive ACM filters are the
observation noise; which is the sum of Gaussian and nonfesidual signals of their predictions, i.e,, The residual signal
Gaussian noise. This would severely degrade the performacoatains both the SS signal and an AWGN. After inputting
of LMS-based interference rejection. Therefore, the nonlithe residual signal into the detector, it is possible to obtain
earilty derived from the ACM filter can be incorporated intdhe desired user data. Rusch and Poor [12] have shown that
this LMS structure and thereby substantially remove the $8s new adaptive filter was able to track the interference
signal from the adaptation process. Fig. 3 depicts this conceg. well as the ACM filter did when statistics are known.
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Adaptive ACM filtering for the case of multiple CDMA users  z, Z4y Z, z,_,
follows directly from the case of a single user. However, there D D —D
is an offset problem present due to improper referencing of 1 —l
the nonlinearity in (24) since the receiver actually does not
know the exact number of CDMA users in the system. As Pipelined Recurrent Neural Network
the number of CDMA users increases, the offset becomes (PRNN)
larger. Then its performance will degrade when the number of
users increases. To tackle this difficulty, the next section will l 2=y (k)
present an alternative approach based on RNN’s which is able —y KU
to provide the satisfactory results that are almost independent T ?
of the number of CDMA users. &y

——————— » to spread spectrum detector

Fig. 4. Adaptive PRNN predictor.
I1l. NONLINEAR ADAPTIVE FILTERS

FOR NBI SUPPRESSIONUSING PRNN's . . .
neurons can be divided into a number of simpler small-scale

RNN'’s are neural networks that have feedback. RNN’s aggNN modules with less computational complexity. In the
highly nonlinear dynamical systems which exhibit a rich angjjowing section, we are trying to apply the PRNN structure
complex dynamical behavior. Moreover, RNN allows any neyq improve the computational performance of performing the
ron in the network to be connected to any other neuron in thgnlinear adaptive predictor. Fig. 4 shows the system diagram
network. They have been proven better than traditional signglpRNN-based nonlinear adaptive filter for NBI rejection. The
processing methods in modeling and predicting nonlinear apgyNN-based filter is placed behind the channel and receives
chaotic time series [17]. Connet al.[19] have indicated that {he channel output. The network inputs at tifez;, provides
RNN's are well suited for the nonlinear prediction of nonlineafhe desired response of the PRNN to train the network to
AR process. There are a number of types of recurrent netwogghieve the optimal nonlinear adaptive filter by minimizing the
that have been proposed by several researchers [16], [18]pHadiction error (residual),. The estimates;, of z;, actually
this paper, we are trying to apply the most widely knowgontains a large portion of the NBI signal component since
architecture proposed by Williams and Zipser [18] to timgye other SS signal and AWGN components which have a
series prediction. A network with this particular architecturgat spectrum cannot be predicted and are then filtered out by
is also called the fully connected recurrent network. the PRNN-based filter. In other words, the predicted vaijue

Li [22] have shown that an RNN with a sufficiently largepf the received signal is, in effect, equal to the estimate of
number of neurons and appropriate weights can be foufh NBI. Thus, by subtracting the estimate from the received
by performing the real-time recurrent learning (RTRL) [18kjgnal, the residual signal becomes a sum of an AWGN and
algorithm such that the sum of the squared prediction errgysss signal. Once the optimal residual signal is obtained, the

& < e for an arbitrarye > 0. In other words,[i — hllp < ¢, resulting prediction error signal, is used as the input to the
where|| - [ p denotes thd., normwith respect to the training ss detector, i.e., PN correlator.

set D, whereh and h are the actual system and estimated

RNN-based system model, respectively. Moreover, the RNN ]

has the ability to generalize learning to what has never ben LoW-Complexity PRNN's

seen [18]. This is called the generalization from learning. The PRNN shown in Fig. 5 is composed gfidentical
This is particularly useful for learning a NBI signal via amodules, each of which is designed as a fully connected
non-Gaussian SS-CDMA channel where observations may feeurrent network withV/ neurons. Each module hdg — 1
incomplete, delayed, or partially available. Thils,— || 5 < neuron outputs fed back to its input, and the remaining neuron
¢, where D denotes the set union d® and a set of data that output (the first neuron output) is applied directly to the next
is not belonging toD and D C D. The RTRL algorithm module. In the case of modulg a one-unit delayed version

is capable of nonlinear adaptive prediction of nonstationaof the module’s output is assumed to be fed back to the input.
signals and does not require a priori knowledge of tim@formation flow into and out of the modules proceeds in
dependence among the input data. However, a major limitatiansynchronized fashion. Fig. 6 shows the detailed structure
of the RTRL algorithm is that its computational complexityof module¢ with N neurons ang external inputs. All the

is proportional toO(M*), where M is the total number of modules have exactly the same number of external inputs and
neurons in the network. Since a sufficiently large numbarternal feedback signals. Note that for modyldats module

of neurons are required to maintain the prediction accuraoytput acts as an external feedback signal to itself. In addition,
of the RNN-based nonlinear predictor, it seems infeasible &l the modules of PRNN are designed to have exactly the
achieve the RNN-based prediction within an acceptable smséime $ + M + 1)-by-M synaptic weight matrixi¥’. The
time interval. To tackle this difficulty, Haykin and Li [20] updated value of the synaptic weight matix is computed
proposed a new RNN structure called the PRNN that is aising the RTRL algorithm [18]. Haykin and Li [20] have
extension of the conventional RTRL algorithm. The desiglemonstrated that the PRNN is able to provide the satisfactory
of such a network is based on the principle of divide anakcuracy of the nonlinear adaptive prediction of nonstationary
conquer, that is, a complex RNN with a large number afignal and time series process. An important feature of the
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D & ) R——— D k D &)
Z‘l(lk) 2, (k) z, (k) z, (k)
"l Module ¢: yq_,(k? Module g~ 1: Module 2: |y, (k) Module I ~ (k)
N weight matrix W - veight matrix w -’weighl matrix W, weight matrix W] e =X
D J D QJ D L D
D

Fig. 5. A PRNN with ¢ modules.

Note thatr}(k) denotes feedback signals that originate from
Zpoi — module: itself. The last module of the PRNN, namely, module
. g, operates as a standard fully connected RNN. Tlys;)
kb is written as
. — ry(k) = [yg,1(k = 1),yg2(k = 1), -, yg m(k — 1)]T- (32)
Zh (i pe ) — . . . .. ..
k-tivph Additionally, the fixed input+1 is included for the provision
+1 —1 KM of a threshold applied to each neuron in modileBased
N on the above discussion, an input vector consisting of total
ni(k) y (p + M +1) input signals applied to moduleis represented
71,2(]() u; = [Z:ir(k)vlvr:ir(k)]Tv = 1727"'7(]' (33)
. = Thus, thelth element ofu; is represented by
ro(k
’ Uil
Zh—(i+1—1)> 1<i<p, 1<i<q
1, l=p+1, 1<i<gq
=S Yirri—p+1(k), I=p+2, 1 <i<g-1
Fig. 6. Detailed architecture of moduleof the PRNN. yi,l—(P+1)(k)’ l=p+2, i=gq .
Yii—p4+1) (k) p+3<I<p+1+M, 1<:<q.

3
PRNN is its high computational efficiency. Especially, the total 59
computational requirement of processing a single sample on @t the kth time point, the outputy;,,(k) of neuronn in
PRNN isO(qM*) arithmetic operations. However, this is to benodule i is computed by passing;,, through a sigmoidal
contrasted with computational requirement of a correspondifigiction ¢(-), obtaining

structure involving the use of a conventional RNN with/ 1
neurons, that isO(q*M*) arithmetic operations. Thus, the Yin(k) = ©(vin) = s — (35)
computational savings made possible by the use of PRNN can "
indeed be enormous for |argp where the net internal activitym is shown by
For theith module, its external input at theth time point M1
is described by the-by-1 vector Vin = Z Wkt
=1
Zz(k) = [Zk,i, Zk—(i—l—l), . 7Zk—(i+p—1)]T (29) p
where p is the nonlinear prediction order. The other input = anlzk—(“rl—l) T Wnptt
vector applied to module is the M-by-1 feedback vector =1
p+M+1
rl(k) = [yi+1,1(k)7 r/i(k)]Tv = 17 27 R (q - 1) (30) + Z wani:l—(P'i’l)(k)' (36)
I=p+2

where y;41,1(k) is the first neuron’s output in the adjacent _ - .
modulei + 1 andr’(k) denotes the internal feedback signal Flnallyz the 'pred|ct|on computed by t_h_e PRNN at time
consisting of the one-step delayed output signals of neurdﬂgtamk is defined by the output of the visible (first) neuron
2,3,---,M in modulei and can be written as of module 1 as shown by

I‘;(k) — [yi,Q(k'_]-);"';yi,]\l(k_ ]_)]T7 2 :ﬁl(k‘i‘l) :yl,l(k)- (37)
1= 1,2,---,((]— 1). (31) Note 731(]{}) = Zp_1.
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The main difference between the pipelined recurrent netherer is the learning-rate parameter. From (39), (40), and
work of Fig. 5 and the conventional real-time recurrent ne(41), we note that
work is that PRNN is characterized by a nested nonlinearity.

q
Since all the neurons have a common nonlinear activation 8E(k) Z)\z le ae”
function¢(-), the functional dependence of the outgut (k) Iwni im1 Fow
(=%,) of the network in Fig. 5 on external inputs can be a 3
expressed as follows: = —22)\2 te UZ 1(h) (43)
W
2 = yl,l(k) = @(z1(k), y2 1(k))
= p(z1(k), p(za(k), y3,1(k)) In (43), the partial denvauve‘M is calculated using a
_ E—1 L9 L—3 modification of the RTRL algorlthm [18]. A quadruply indexed
oz ) ola( )z ) set of variables{r’(k)} is introduced to characterize the
2k = a),yg 1 (R)) ) (38) RTRL algorithm, and each element of the set is given by
where, for convenience of presentation, we have omitted . A (k)
the dependence on the synaptic weight mafiik that is Ta(k) = “ow,y
common to ?Il3t£1e_q _rn((j)dutljefhandzit(kc)j = Z|'(k —_:‘).tr']l'hte _ 1<i< ; 1<j, n<M
expression 0 s indeed the nested nonlinear at gives
Xpressi (38)Is | ! i v 1<I<p+1+M. (44)

the PRNN of Fig. 5 its enhanced computing power, compared
to the conventional real-time recurrent network. Moreover, Note that#ii = 2%1 The RTRL algorithm is used to
the scheme of nested nonlinear functions described in (31‘%% " Ot

. i . oo ursively compute the values of’ for every time step and
is unusual in the classical approximation theory. Indeed y P I y P

is a universal approximator in the sense that a PRNN Wlt | appropriatei, j, n and! as follows:
appropriate training can approximate any nonlinear adaptive ..

predictor to any desired degree of accuracy, provided thattu(k +1) (i {Z Wim(k T ( +6mu7l(k)}
sufficiently many hidden neurons are available [22]. m=l1

Certainly, y; 1(k) is interpreted as the one-step prediction (45)
of z(k) computed by theith module whose functional de- it initial conditions
pendence can be described by a complete dependence form B
shown as follows: w5 (0) =0 (46)

Zi(k + 1) = v (k) = (W, zi(k),1i(K)) (39) wheres,; is a Kronecker delta equal to one wher= » and
zero otherwise, and;; andv;; are defined in (34) and (36)
respectively. From (35), we find that the derivatiy4-) is
given by

where W is the M x (p + M + 1) synaptic weight matrix
of module¢ andr;(k) is the input vector defined in (29) and
(31). The desired response for modualat time instantt is
zi(k + 1) = z1—;4+1. Hence, the prediction error for module @ (vij) = vij ()1 — yi; (k). (47)

1 is given by
. Hence, it is possible to determine the valueréf(k) at time
cir = 2i(k+1) = Zi(k+1) = zi(k + 1) — 4.1 (K) instantk by the recursion of (45) and (46). As a result from
= Zg—it1 — ¥ (k). (40) (42), (43), and (44), the change applied to theljth element
Note thate, = e, for i = 1 is the output residual signal of the synaptic weight matrix is calculated by the following:

sent to the SS detector. Thus, an overall cost function for the q i i
PRNN is defined by Awp(k) =20 A he; (k). (48)
q
E(k) = Z Ny (41) The weightuw,; is updated in accordance with
7=1

wherel is an exponential forgetting factor that lies in the range
of 0 < A < 1. The inverse ofl — X is a measure of the memory
of the PRNN. Adjustments to the synaptic weight mafiix

of each module is made to minimiZé(k) in accordance with ~ Computer simulations have been carried out to compare the

IV. SIMULATION RESULTS

the real-time recurrent learning (RTRL) algorithm. performance of PRNN-based, Kalman, ACM, adaptive linear,
and two adaptive ACM interference rejection filters described
B. Real-Time Recurrent Learning (RTRL) Algorithm above. The first adaptive ACM filter is the nonlinear prediction

filter (NLP1) of (25) with the coefficients being updated using
the LMS algorithm. The second adaptive ACM filter has the
same nonlinear filter (NLP2) structure employing the residual
less the soft-decision feedback of (28) wjth = 0.99 and
Awna(k) = _naE(k) (42) P2 = 0.99. The number of filter taps iy = 10 for each
Jwny adaptive filter. The parameters of the proposed PRNN-based

For the case of a particular weight,;, its incremental
changeAw,, (k) made at time: according to the method of
steepest descent is given by
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Fig. 7. Comparison of mean square prediction errors achieved by PRNN predictor for AR interference with various numbers of users when input
SNR = —-10 dB.
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Fig. 8. Predictor performance for AR interference with known stati§5ig-_9- Predictor performance for AR interference with known statistics-
tics—single CDMA user. multiple CDMA users.

interference rejection filter were given by the following. Th&ecurrent network is on the order 8f x 2*(=10*). Thus, the
nonlinear prediction ordefp) is selected as four, the numbePRNN reduces the computational complexity by more than
of modules(q) is chosen as five, the forgetting factarof two orders of magnitude. Moreover, by using a five-processor
(41) is set to 0.9, the learning ratg is set to 0.001, and parallel computer, computational complexity per adjustment
the number of neurons per modul@/) is chosen to two. of PRNN is reduced t@(2* = (16)) since each module is
The computational complexity of a weight-adjustment on thgerformed independently using its corresponding processor. To
PRNN is on the order of x 2*(=80), whereas the com- verify the rate of convergence for adaptive PRNN predictor,
putational complexity of an adjustment on the conventionalperformance index is in terms of the following mean square
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Fig. 10. Comparison of mean square prediction errors achieved by linear, NLP1, NLP2, and PRNN predictors for AR interference with 50 users when
input SNR = —10 dB and the number of users was not known to all the predictors.
prediction error given by: Next, a performance measure used to verify the interference

rejection filters is the ratio of SNR at the output of the filter
to the SNR at the input and given by

MSE(k) = (50)
. E(|z — si]?
SNR improvement H (53)

where ¢}, denotes the prediction error at thh iteration for kT Sk
the jth experiment (run) andV.,, is the total number of where the SNR at the filter output is given by
experiments (runs). Note thaf = ¢] ,. Here, the value of 5
N.un is chosen as ten ’ Output SNRE E(s3) (54)

run ! . . . . . = e —  12)

Two kinds of NBI were considered in this paper: AR and si- E(ler — se[?)

nusoidal interference. We first considered the AR interferenggyst, three filters were compared, namely, Kalman, ACM

The AR interfering signal was obtained by passing white noigg,qy PRNN when Kalman and ACM filters knew the AR
through a second-order IIR filter with both poleszat- 0.99,  parameters and the exact number of CDMA users, whereas
€., PRNN did not know these parameters. Figs. 8 and 9 show
i = 1.98i)_1 — 0.9801i5_ o + cx (51) the comparison of SNR improveme_nts achieved t_Jy Kalman,
ACM, and PRNN for the case of single and multiple users,
where {e; } is white Gaussian noise. The power of the backespectively, when input SNR was varied froa20 dB to
ground thermal noise is kept constantgt= 0.01. The SNR —5 dB. All results were based on ten trials, and for each

at the filter input is defined as follows: trial, the simulations were run for 1500 samples for 1 and 10
E(SQ) users, for 3000 samples for 25 users, and for 6000 samples for
Input SNR2 k (52) 50 users. From Fig. 9, it is seen that the SNR improvements

E(] 2 = s [?) of both PRNN and ACM were almost independent of the
Fig. 7 depicts MSE convergence of PRNN predictor for ARumber of users and close to the upper bound. Moreover, the
interference with a various number of CDMA users when inp@RNN provides a little SNR improvement better than ACM.
SNR is equal to-10 dB relative to a unity power SS signal.However, for the Kalman filter, its performance will degrade
From Fig. 7, it is seen that adaptation times were longer fas the number of users increases. For the input SNR with a
a larger number of users. Moreover, since the prediction ertower value, the received signal contains a larger portion of the
contains the total SS signal, the steady-state value of the MSBI signal. As mentioned above, the NBI signal component
prediction error is proportional to the number of SS-CDMAs good for prediction. Thus, all the predictors achieve the
users. In order words, the steady-state MSE value increasedetser SNR improvement performance when the input SNR is
the number of users increases. at the low value. Otherwise, their performances become worse
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Fig. 11. Adaptive predictor performance for AR interference-multipl&ig. 12. Adaptive predictor performance for AR interference-multiple
CDMA users when PRNN and NLP1 did not know the number of users. CDMA users when PRNN and NLP2 did not know the number of users.

as the input SNR increases. At the extreme case, there is no 4
SNR improvement on each filter when received signal did

~3

~~~~~

not contain the interfering signal. In other words, each filter 39 N
cannot offer the prediction capability for the white-noise-like 51 ""===--._ 712
received signal. N
Next, four types of adaptive filters were compared, namelyg 2%-~--.__  "Tte.g 7Tl !
linear, NLP1, NLP2, and PRNN when AR parameters and th | "=~ el T b

~-
~~

number of users were not known to all the adaptive fiItersE 2
Thus, both NLP1 and NLP2 employ the tanh term of (14§

~—s
~—

for a single user. Fig. 10 illustrates the MSE convergence ! "‘::1‘::::-:;‘*13- ______ e
the four adaptive filters for AR interference with 50 users and; 10»;55)5325-%“%‘5'4 e e
input SNR= —10 dB. A comparison of the adaptation curves~ [ g iicasenc: TRmmn Bl

4> 1 user-Linear predictor R~ S~

in Fig. 10 indicates that PRNN converges to the steady-state 5[-@-10 users-Linear predictor pER -~

- 25 users-Linear predictor R P

value much faster than the linear filter, NLP1, and NLP2. From ~&% 50 users-Linear predictor . ==
Fig. 10, it is seen that both NLP1 and NLP2 performed as % 15 10 5
well as the linear LMS filter did because the tanh term in Input SNR (dB)

both NLP1 and NLPZ is not able to provide the SUﬁiCierEig 13. Adaptive predictor performance for AR interference-multiple

nonlinear capability to deal with the high nonlinearity due t@epma users when NLP1 and NLP2 knew the number of users.

50 users. Meanwhile, the PRNN with ten neurons is able to

offer the accurate nonlinear prediction for dealing with the

case of 50 users. For simplicity, Figs. 11 and 12 show e

comparison of SNR improvements achieved by PRNN, NLP1,

and NLP2 since the linear filter is always worse than the : . .
. . . . . : interference. The frequency of the sinusoidal interference

nonlinear filters and not considered in this case. It is seen . .

that the SNR improvement of PRNN is independent of thse|gnal was kept constant at 0.15 radians, i.e.,

number of users and almost coincides with the upper bound.

Meanwhile, the performances of both NLP1 and NLP2 become i(t) = Acos(0.15¢ + ) (55)

worse as the number of users increases. However, once NLP1

and NLP2 know the exact number of users and employ thgereA is the amplitude and is a random phase with uniform

smooth quantizer of (24), their performances illustrated wfistribution. It is shown that the performance is similar to

Fig. 13 become better and are independent of the numbertiodit in the AR interference case. PRNN provides the better

users. Especially, NLP2 was able to track the performance &R improvement than that of all the other adaptive filters.

well as the ACM filter did when the statistics were known. Fdits performance almost coincides with the upper bound and is

this case, PRNN that did not know the exact number of useénglependent of the number of users.

il attains the better performance than that of both NLP1 and
P2.
Another case we considered was a single-tone sinusoidal
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V. CONCLUSION [13] C. J. Masreliez, “Approximate non-Gaussian filtering with linear state
and observation relationsJEEE Trans. Automat. Contrvol. AC-20,

pp. 107-110, Feb. 1975.

H. V. Poor and L. A. Rusch, “Narrowband interferenc suppression in
spread spectrum CDMA IEEE Personal Communicationpp. 14-27,
1994,

R. Bijjani and P. K. Das, “Rejection of narrowband interference in
PN spread-spectrum systems using neural networks|EEE Global
Telecommunications ConpDec. 1990, pp. 1037-1040.

Special Issue on Dynamic Recurrent NetworkSEE Trans. Neural
Networks vol. 5, pp. 153-340, Mar. 1994.

G. Kechriotis and E. Manolakos, “Using recurrent neural networks for
nonlinear and chaotic signal processing,”IEEE Int. Conf. Acoustics,
Speech and Signal PrqcApr. 1993, pp. 465-469.

R. T. Williams and D. E. Zipser, “A learning algorithm for continually
running fully recurrent neural networksNeural Computationvol. 1,

pp. 270-280, 1989.

J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural networks
and robust time series predictiodEEE Trans. Neural Networksrol.

This paper has introduced a new nonlinear NBI suppression
technique based on PRNN which is capable of accuratdigl
predicting the NBI signal over the multiple-user SS-CDMA
channel by using the RTRL learning algorithm. The PRNN15]
based predictor offers a superior SNR improvement perfor-
mance to that of the conventional Kalman, ACM, and line i6]
and nonlinear ACM adaptive filters because of its ability to
approximate arbitrary nonlinear systems. For comparison Bf!
simulation results for both the AR and sinusoidal interfering
signals, the SNR improvement of PRNN predictor with tefis]
neurons and less computational complexity almost coincides
with the upper bound and is independent of the number gb;
CDMA users up to 50 users. However, the performances of
all the conventional linear and nonlinear ACM adaptive filters,, g %%yﬁﬁ?;%\?fly_.ML?,r.“I:\LIg?lﬁﬁear adaptive prediction of nonstationary
become worse as the number of users increases when the signals,” IEEE Trans. Signal Processingol. 43, pp. 526-535, Feb.

number of users was not known to those adaptive filters. 1995. _
[21] L. Li and S. Haykin, “A cascaded recurrent neural networks for real-
time nonlinear adaptive filtering,” itfEEE Int. Conf. Neural Networks
San Francisco, CA, 1993, pp. 857-862.
[22] L. K. Li, “Approximation theory and recurrent networks,” Iint. Joint
Conf. Neural NetworksBaltimore, MD, 1992, vol. 2, pp. 266-271.
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