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Blind Adaptive Energy Estimation for Decorrelating
Decision-Feedback CDMA Multiuser Detection
Using Learning-Type Stochastic Approximations

Po-Rong ChangMember, IEEE,Chih-Chien Lee, and Chin-Feng Lin

Abstract—This paper investigates the application of linear [6] showed that the optimum detector requires computational
reinforcement learning stochastic approximation to the blind complexity which grows exponentially with increasing the
adaptive energy estimation for a decorrelating decision-feedback number of users. Since a CDMA system could potentially have

(DDF) multiuser detector over synchronous code-division . . . .
multiple-access (CDMA) radio channels in the presence of a large number of users, it may be impractical to implement the

multiple-access interference (MAI) and additive Gaussian noise. Optimum detection unless the number of users is quite small.
The decision feedback incorporated into the structure of a  Hence, there is a need for suboptimum receivers which are
linear decorrelating detector is able to significantly improve robust to near—far effects with a reasonable Computationa|
the weaker users’ performance by canceling the MAI from ,mpjexity to ensure their practical implementation. Lupas
the stronger users. However, the DDF receiver requires the . -
knowledge of the received energies. In this paper, a new novel and Verdu [4] 'mr(_)duced a class Qf suboptimum detectors
blind estimation mechanism is proposed to estimate all the users’ that are based on linear transformations of a bank of matched
energies using a stochastic approximation algorithm without filter outputs. The well-known decorrelator is one of the
training data. In order to increase the convergence speed of the syboptimum multiuser detectors with simple structure whose
energy estimation, a linear reinforcement learning technique is ., hlexity increases only in proportion to the number of users
conducted to accelerate the stochastic approximation algorithms. : -
Results show that our blind adaptation mechanism is able to ,[4]' The bit error rate.(BER) performgnce of the Fjecorrelator 1S
accurately estimate all the users’ energies even if the users ofindependent of the interferers’ received energies and, hence,
the DDF detector are not ranked properly. After performing is near—far resistant. However, one major drawback of the
the blind energy estimation and then reordering the users in a decorrelator is that it enhances the noise presented in the
nonincreasing order, numerical simulations show that the DDF o~aived signals. Several other suboptimal detectors have
(_jete_ctor for the weakest user perfo_rms closely to the maximum b d b d the k led f h bili
likelihood detector, whose complexity grows exponentially with een propose .ase on the knowle gg of (or the ability
the number of users. to accurately estimate) the users’ energies. Such schemes
exploit the knowledge of the users’ energies via some form
of successive cancellation of the multiple-access interference
(MAI) from the stronger users. These include the multistage
detectors that attempt to cancel the MAI at a later stage
. INTRODUCTION by utilizing the tentative decisions made in an earlier stage
HE CONVENTIONAL method of detecting a spread{5]- More significantly, Duel-Hallen [7] introduced multiuser
spectrum signal in a multiuser code-division multipledecision feedback receivers that may be used in conjunction
access (CDMA) channel employs a filter matched to theith a multistage architecture. Interference from previous
desired signal [1], [2]. This conventional single-user detect§ymbols of the same user, as well MAI from stronger users, is
ignores the presence of interfering signals, or equivalentigmoved via the use of decision feedback, leading to signifi-
ignores the cross correlations between the signals of differ&ant BER performance improvements. Since the decorrelating
users. Therefore, the performance of the single-user detedlggision-feedback (DDF) detector requires the knowledge of
severely degrades when the relative received power of tfie received energies of all the users, the BER performance of
interfering signal becomes large, i.e., the near—far effedtte DDF detector is significantly degraded when the receiver
[1]. To tackle this difficulty, there has been an interest iflid not know all the users’ energies. Chen and Roy [11] ap-
designing the optimum detector for various multiuser COMAlied a recursive least sequences (RLS) algorithm to estimate
communication systems [2], [4], [5]. The optimum multiuse product of a input symbol and its received energy without
detection can be carried out by the maximization of a lograining data. In this paper, we propose an alternative novel
likelihood function. Although the optimum multiuser detectio®lind estimation technique to estimate all the users’ energies
is superior to the conventional single-user detector, S. Vertging a stochastic approximation algorithm without training
data. In order to further improve the speed of convergence, a
Manuscript received August 5, 1996; revised July 13, 1998. linear reinforcement learning scheme [17] is conducted to ac-
The authors are with the Department of Communication Engineeringelerate the stochastic approximation algorithm. In Section V,
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C. (e-mail: pr-.. . . . ..
chang@ce.nctu.edu.tw). simulation results show that the blind energy estimation is able
Publisher Item Identifier S 0018-9545(99)01051-8. to accurately estimate all the users’ energies via additive white
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Fig. 1. Block diagram of decorrelating DDF detector.
Gaussian noise (AWGN) channels in the fastest convergewagerev = [v1, 7, - -, vk| is @ Gaussian noise vector with

rate and is robust to interfering signals and channel noise. the autocorrelation matri¥{##" } = o2R™1.
Then, the detected symbols are obtained by taking the sign
detector on each element §f i.e.,

b = sgn(). (5)
The decorrelating detector is based on an SS-CDMA system _ )
with binary phase-shift-keyed (BPSK) signaling [1], [2]. There The decorrelating detector has several desirable features. It
are a total ofK users transmitting over a common wirelesgoes not require the knowledge of the users’ received energies,
channel. Associated with each userc 1.2.--- K is a data and its BER performance is independent of the received
signal b, (¢) and a signature code wa{véform(t) which €nergies of the interfering users. Hence, the decorrelating
are functions of time. The sampled outputs of a bank getector is near—far resistant. However, one major drawback of
K matched filters at the receiver in the first time intervdl® decorrelator is that it enhances the noise presented in the

Il. DECORRELATING DETECTORS FOR
SYNCHRONOUS CDMA SYSTEMS

(reference interval) can be expressed as received signals. The power of the noisgis o2(R 1),
which is greater than noise power at the output of the
y=RWb+w (1) matched filter, where? = Ny/2 and (R~ '), denotes the

(k,k)th element of R=1. Thus, the probability that théth
where W is a diagonal channel gain or energy matrix witlnput symbolé, is recovered incorrectly is given by
the (k, k)th elementwy, ;, = VWi, W, denotes the received
energy for usekvk: 1727"'7K7y: [917927"'791(]T7b: Pek(Dec) = Q(\/Wk/[02(R_l)k,k]) (6)
[bLo, b270, e, b[(70]T,11 = [Ul, Vo, ,U[(]T, and Vi is the
output of the channel noisgt) through thekth matched filter. where theQ) function is Q(z) = 1/v2x [° =¥ /2 dy
Note that the index “0” irb will be omitted whenever possible.
It can be proven thaty is still a Gaussian noise with zero m
mean and variance d¥;/2, and the covariance matrix of the
vector v is

BT ERROR RATE ANALYSIS FOR
DECORRELATING DDF MULTIUSER DETECTORS
WITH ERRORS IN ESTIMATING RECEIVED ENERGIES

E{vw"} = Ny /2R 2) Decision-feedback equalizers often have significantly lower
BER’s than linear detectors in single user channels [7] and
where R is a K x K positive definite matrix of signature have been shown superior to linear detectors in several mul-
waveform cross-correlation matrix with it§, j)th element tiuser systems [5], [7]. Based on this fact, Duel-Hallen [7]
defined as has proposed a decorrelating DDF multiuser detector illus-
T trated in Fig. 1 which combines the advantages of both the
R ;= / a;(t)a;(t) dt, i,j€{1,2,---K}. (3) decorrelating detector and DDF equalizer. It employs forward
0 decorrelating and feedback filters to cancel MAI. The DDF
At an SS-CDMA receiver, the received power from &etector cancels MAI completely, provided that the feedback
nearer transmitter can be much bigger than that of a fartrft#ta are decoded correctly. Decisions are made in the order
transmitter, causing interference and hence degrading fHedecreasing received power levels, thus, the weakest user
communication quality of a farther transmitter. To tackle thean benefit the most from utilizing the decisions to remove
near—far problem [1], a simply decorrelating detector [3] hdg€ interference of stronger users. If the received power of
been proposed to eliminate the near—far problem and thenth§ Weakest user is significantly lower than that of the other
recover the input data vectéraccording to the given output Users and the order of the received power levels is correct, the
vectory without power control. In the decorrelating detectoBER performance of the weakest user is close to that of the
the matrix filter R~ followed by a set of decision devicesMAI-free case (single-user bound [7]). On the other hand, the

(sign detector) is applied tg. The output of the matrix filter receiver for the stronger user who is the first user in Fig. 1 does
is not involve feedback and is equivalent to the decorrelator.

In Fig. 1, (FT)~! is the whitening matrix filter applied to
y=Wb+v (4) the sampled output of the matched filter bank of (1), where
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F is a lower triangular matrix obtained by factorizing thevhere b;'s denote the previous detected symbols. If the
signature waveform cross-correlation matrix Bs= FTF previous decisions are correct, the remaining interference
using Cholesky decomposition algorithm. Thus, the resulting resulted from the previous detected symbols and equals

output vector is SEL B AW,
2= FWb+n 7) Moreover, the conditior_1a| bit error probgbility for thgh
) ) ) user of a DDF detector with an energy estimathts can be
wheren = [ny,no,---,nx]? is a white Gaussian vector ¢y nd by

with the autocorrelation matri¥;{nn?} = oI, where[ is o .
a K x K identity matrix ando? = Ny/2. Note that all the P.;,(DDF+ GEslby,ba, - -bg—1,b1,bo, -+ b1,

components ok are uncorrelated. In addition, it is assumed AW, -, AWi_y)
that the received energiég;'s are known and nonincreasing, k1
ie., Wy > Wy > --- > Wg. In others words, the strongest =Q| Fur /Wby, _,_Z Fi. /Wi(bi _ gi)
user is the first user, and the weakest user isille user. ’ =

Duel-Hallen [7] has shown that the BER of the decorrelating
decision feedback (DDF) detector for ti¢h user under the + AWJH) /0—> (12)
assumption of correct previous decisions is given by

x(DDF) = Q(Fy 1/ Wi /o) (8) Assuming that the input symbols’s, the detected symbols

whereFy, ;. represents thék, k)th element off”. SinceF2, = 'S, and the energy error patterdsi¥;'s are mutually inde-

1/(R~1)y, the value of P (DDF) is identical to that of pendent, their joint probability density function (pdf) can be
P.i(Dec) of (6). This implies that the DDF detector forWritten as
user 1 does not employ feedback and is equivalent to the 2 2
: (b1, bay e bg1, b1, ba
decorrelating detector. On the other hand, for the weakest user

(the K'th user),Fz ;- = 1 and its BER performance is equal AWy, -+, AWi1|GEs)

to that of the single-user (SU) system given by = f(by by bai ) f(by, o Dpy)
P.x(SU) = Q(v/Wk /o) = P!, (DDF). (9) S(AWL, - AW |G Rs) (13)

Actually, the DDF detector does not know the exact valugghere f(AWY, -, AWy_1|GEs) is the pdf of the first

of all the received energies, especially for the time-varying — 1 energy error patterns conditioned on a specific energy

CDMA channel. Thus, the received energies of all the usesstimatorGxs. Hence, the BER for théth user of a DDF
need to be estimated and updated for proper cancellationy@fh ;s can be derived as follows:

multiuser interference. The general received energy estimation

mechanism can be formulated as a mapping from a set of £ex(DDF|Grs)

observable parameters in the DDF system to a sét pbsitive :/ / / / / /

estimated received energies represented Ryxal vector, i.e., by by Jby I AW,

Grs: Vo, — (RTK (10) - Pop(DDF + GEslby --- AWy 1)

where the spacé,, denotes a superset of all the possible “J(b1, b2, bi—1)

observable sets. For example, an observable set may contain f(by, - bry)

the.wh|ten|ng mgtnx filter outputs,;,'l < i < K, the previous AW, AWi_1|Grs) dby -+ dbp_s

estimated energies, and the previous detected symbols. Note . - A A

that the elements of the observable sets are not unique. Another rd(by) - d(bp-1)d(AWL) - d(AWp-1)

observable set can be generated from the above-mentioned =By o byl AW AWy

observable set by replacing the whitening matrix filter outputs k—1

z;'s by the matched filter outputs;’s. : {Q(Fkyk\/kak + 3 Fri(VWilb; — bi)
It is desirable to investigate the effect of errors in estimating i=1

received energies on the BER performance of a DDF by .
performing the energy estimat6fzs. Assume that the square + AWibi)/a)}. (14)
root value of the estimated energy for thth user isv/ Wy.

The kth error pat'Eern for energy estimation is defined agjnce the explicit expression gIAW,, -+ -, AWi_1|Gps) is
AWy, = VWi —V Wi Therefore, the input to theth decision  actually unknown, it is impossible to derive the exact explicit

device can be derived as follows: expression of BER of (14). Although this probability does
k-1 —. not have the exact analytical formulation, computer numerical
"=y sz\/;zbz simulations are most commonly used in determining the BER
i=1 and the effects of energy error propagation.
= Frv/Wibe Equation (14) shows that the BER is highly dependent on

E—1 R R the estimation performance of the energy estimdigys. If
+ Z Fri(VWi(b; — b)) + AW;b;)) + . (11) Gps is the ideal energy estimator, the energy error patterns
i=1 AW,'s become zero, and then the BER;(DDF|Ggs) of
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Fig. 2. Block diagram of BDDF detector with blind energy estimator.

(14) is identical to the BERP.;(DDF|Ideal Estimation of where w = [VW,vVWa,--- VWg]¥ and B =
an ideal DDF with exactly known received energies (idedliag(b;,bo,---,bx) denotes theK x K diagonal matrix

estimation). According to the above discussion, the probleofiinput data symbols. Note that is called the energy vector,
of finding the best energy estimat6f;, . can be expressed aswhere thekth element ofw is actually the square root value

an optimization problem given by of the received energy for usér
An estimate of the whitening filter output vecteis defined
K
b
min | (P.,(DDF|Ggs) Y )
GEps el 2= FBw (17)
_ P.u(DDF|ideal Estimation)? | . (15) WhereB = diag(by, by, -+, bic) denotes thek x K diagonal

matrix of previous detected symbols.
The trueK-dimensional energy vectar* can be found by

IV. BLIND ENERGY ESTIMATION FOR DDF MULTIUSER minimizing the mean-square error (MSE) criterion

DETECTORSUSING STOCHASTIC APPROXIMATION J 2 F _ 32
e(w) = E{|lz - 2]}
ALGORITHMS WITH LINEAR REINFORCEMENT LEARNING A Ao
. . . . = F g ; z — FBw||"}. 18
As mentioned in the above section, the best energy estimator ‘17‘“7‘K7b17“‘7bK{|| Iy (18)

G5 can be found by minimizing the cost functional of (15) By letting the gradientyJz(w) be a zero vector, the value
directly. Since the explicit expression of this cost functionaf the optimal solutionw* is given by

is actually unknown and very complex, it is difficult to find . R .

its optimal solution directly. To overcome this difficulty, an w* = [E{BYF'FBY| T E{BTF' 2}

alternative expression of cost functional is presented in this = [E{BRBY)'E{BFTz} (19)
section. This expression is found to be particularly suitable ]

for stochastic approximation algorithm without requiring thé"here E{} denotes an  expectaton  over

exact knowledge of unknown probability distribution on eacki," s #x, 01,0k, R = FTF, and BT = B.

variable. The new energy estimator based on minimizing t&nce JE(W) is a quadratic polynominal function in terms

alternative cost functional and together with the DDF doé¥ w, the optimal solutionw™ of (19) is the unique global

not require any training sequence, and its behavior is quifnimum point to (18).

similar to that of Bussgang-type blind equalization [13]. In However, the joint probability density function of

Section V, simulation results show that the optimal solutiorfas 22, " -2k, b1, b2, -+ b is  actually unknown and

to both the cost functionals result in almost the same optiméry complex. This implies that the optimal energy veaior

performance. On the other hand, the cost functional of (16§nnot be obtained from (19) directly. Fortunately, Robbins

is able to provide the performance index to evaluate tf@@d Monro [14] suggested the following scheme called

solution derived from our alternative cost functional in théhe stochastic apprOX|mat|on without the evaluation of the

BER manner. Fig. 2 shows the basic structure of the DOfXpectation over, - - zic by, - by to solve the gradient

detector with a blind energy estimator, where the whitenirRf (19) recursively as time evolves:

matrix filter outputsz;,1 < 4 < K and the previous detected T

symbolsbh;,1 < ¢ < K are the observable and measurable Wil =wi — 5 Vw {J(wi)}

parameters used for the estimator. To implement this estimator, =w; + ri{(FB)Y(z — FBw;)} (20)

the whitening matrix filter outputs of (7) of the DDF detector

should be rewritten as an expression in terms akax 1 Where {r;} is a learning-rate sequence of positive scalars

vector of received energies, i.e., tending to zero and (w) = ||z— F' Bw||? is the MSE measure

which depends on the observed random samptes; } and

z=FWb+n=FBw+n (16) can be treated as the estimate/af{(w) = E{J(w)}. In other
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words, the stochastic approximation estimates the unknowe expected-error surface defined By and thus accelerate
deterministic gradienty«Jg(w) with the known random the convergence of the algorithm.
gradients/qJ(w) at each iteration in the discrete stochastic The learning algorithm introduces the weighting matrix
gradient-descent algorithm of (20), where the unknown gradi®(:) and modifies the gradient-type stochastic approximation
ent /g (w) points in the direction of steepest descent oalgorithm of (20) as follows:
the unknown expected-error surface defined/py= E{J}. rio

The learning-rate coefficients;} decrease with time to Wi =Wi-1 = 5 P(6) Vw {J(wi-1)}
suppress random dlstyrbanceg. .In addition, simulation results — +T¢P(i){(FBi_1)T(zi _ F-Bi—lwi—l)}
show that the decreasing coefficients are also able to suppress
both the MAI and channel noise. If the sequefeg} satisfies

the conditions of Dvoretzky’s theorem [15] wherer; satisfies conditions of (21), and the matrix gait)

=wi_y +rP()Bi_1(FT2 — RBi_1w,_,) (27)

n is defined by
zhigo i =0, n11—I>IC>l<> ; i =0 p1(i) 0 0
n B ) 0 p2(7) 0
lim Z 72 < oo, (21) Pi) =K :
i=1 0 0 - px()
Then, the random energy vectas; in (20) converges to 0<pr(d) <1, pr(0) = 1/K,
the optimal solution to the unknown expected-error function E=12 ... K
Je(w) of (18) with probability one, i.e., X o
R{hm wzzw*}zl (22) K ; pk(L):tl{P(L)}:Kv i=1,2,---
lim E{|jw; —w"||*} =0. (23) (28)

A linear reinforcement learning [17] is used to update at
y iteration the components 6%:) and alter the direction
e search accordingly

It is obvious that the harmonic sequence/i} satisfies alll
the three conditions of (21) and can be used as a special c:as%vt
{r;}. Another scheme may be generated by minimizing uppgf

bounds on the variance of the estimated MSE, i.e., (i) = apr(i — 1) + (1 — ) M (4) (29)
w; > E{|lw; —w*|*}. (24) where the rate of learning and the limiting valuex (i) of
An optimal sequence of learning rate which satisfies (Z_We hth weighting componeny (1) are defined as follows:
can be generated by O<a<xl
. 1 c 8J(wz,2) 8J(wz,1) <0
=y (25) ’ Jwy, dwy T
1 Aeli) = 1 AJ(w;—2) 8J(w;—1) 0 k=1 K
which minimizes the upper bound of the error bound [16] K m’ dws, owy, >0 k=1
1
2
2 (o2 -, M= 0
< 26 K
R 20 (30)

The sequence{r:} satisfies the Rao-Cram inequality. where0 < m < K is the number of components 9. (w; 1)

Th|s/ implies rt]hat its c%nvergence S{annot b('i fatlster tgan bt did not change sign at the last step. Note that if all the
¢1/(4 + c2) wherec; and ¢z are positive constant num ers'components change sigm: — 0), then

Since this is a serious limitation on the speed of convergence,

an acceleration scheme with learning capability has been Meli) = 1 E=12 ... K m=0. (31)
proposed to accelerate the convergence of the algorithm and K’ B
would be presented in the next section. In addition, the expression abJ(w;_1)/0w), can be de-
rived as follows:
A. Acceleration of Stochastic Approximation Algorithms 8 (wi_1) . .
Using Linear Reinforcement Learning 8wz_ =—el (FB;_) (21 — FB;_1w;_1)
. - . . . k

Saridis [17] has prop_oged a I_earnlng scheme which prow_des =T B (F 21 — RBi_ywi_y)  (32)
a memory to the multidimensional stochastic approximation
algorithms in order to utilize the accumulated past experienadere e, = [0,0,---,1,0---0]7 is a K x 1 vector which

of the search for acceleration proposes. In addition, a matdgntains the zero components exceptkitis component is an
gain has been used instead of the scalar learningrfatehe identity.

learning scheme is used to update the weighting coefficientsThe above-mentioned iterative algorithm of (27)—(30) is
of the new matrix gain applied to the components of thactivated only in the presence of a sharp ridge by detecting
correction terms as to direct the search along the ridge tbe successive overshooting of the projected local minimum
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in the direction of one or more of the coordinate axes. In a0 |
that case, the projection of the gradient in this direction is !
penalized while the other projections are reinforced in such a

way that the(i + 1)th step will not be in the direction of the @m%%,.;%,Wvé,t__wﬁéﬁw,%p,fgéﬁw%;};g,%:wmﬁw%
local gradient, but at a direction approaching to the direction "' 30— e ' ‘ \
of the ridge. The increments being applied at a direction closer ‘

to the direction of the ridge will take the search to a region , e
close to the extremum much faster than the conventional | LSt o005
gradient-type stochastic approximation algorithm. On the other ~ 2° — o LMS2 0,005
hand, (31) indicates that the search is moved away from the E—
region of ridge. Moreover, in case of absence of a ridge, no
overshooting will occur. ThuspP(¢) = 1,4 = 1,2--- and

the learning-type algorithm degenerates to the conventional
stochastic approximation algorithm of (20). More details of
learning-type algorithms can be found in [17].

,',

LMS2

5,
Ry ¢t B L ST DAk B
w2 1.0 — u%wﬁW#‘s’“‘rfﬁw\ﬂ&awﬁwﬁéw’h‘*}ﬂ%ﬁ%‘m%#‘fﬂ"iﬁ"*:‘f,

0.0 —t= -y [ L T
o} 1000 2000 3000 4000 5000
lterations

B. Two-Phase Blind Adaptation

Usually, the users in the DDF detector may be not ranked
properly according to their received energies. In this case, tfie 3. Comparison of the estimated energies achieved by LSA, LMS1,
first phase blind adaptation is used to identify the order of :ﬂrl‘d_"'\\/'/% for a two-user COMA BODF de;;g“’_f (‘;‘”ﬁi; 1/3 when
the users’ received energies within a fixed short time periga = V10, wa = 1, {correct user order), ane® = 0.07943.
by using the proposed energy estimation mechanism. After the
first phase adaptation, it is desired to sort the energy estimattes = V10, wo = 1, and o? = 0.07943. From Fig. 3, it
in a nonincreasing ordeiV;y > W) > -+ > W), where IS obs_erved that the learning curves for both 'Fhe received user
the notatior(-) in the subscript denotes the reordered sequen€gergies achieved by LSA converge to their corresponding
The second phase adaptation is applied to the reordered ugeggective desired energieg10 and one rapidly. In addition,

with a proper nonincreasing order and then to obtain tifecomparison of the learning curves in Fig. 3 indicates that
desired detected symbols. LSA converges to the desired energy much faster than LMS.

For LMS with a larger rater = 0.05, it results in faster
convergence speed, but has a lager variation around the desired
energy. On the other hand, the decreasing learning coefficients
For simplicity, the CDMA channel models used in evaluabf LSA are able to suppress the random variation. Thus, no
ing the estimation performance of the proposed blind adaptiygriations occur in the learning curves of LSA. An alternative

energy estimator are on the basis of both the two-user aggbroach to evaluate the estimation performance is in terms
four-user synchronous CDMA AWGN channels with twaf the following MSE criterion given by:
different signature waveform cross-correlation matrices. The

V. SIMULATION RESULTS

two-user CDMA system is simple and illustrative of the salient Error = E{|lw — @}

features of the blind adaptive energy estimation for the DDF 1 X . )

detectors. The first two-user CDMA system contains two N > N exp — Bm x| (33)
signature waveforms, of length three, i€.(t) = [1,1,1] and m=1

az(t) = [1,—-1,1], which have been previously considereavhere,, .x, IS the estimated energy vector obtained from

in the literature [5] and correspond to the cross correlatidhe mth experimentl < m < N and N denotes the total
R,» = 1/3. The learning-rate coefficients of learning-typewumber of experiments. Each experiment is generated by a set
stochastic approximation (LSA) are the harmonic sequenckrandomly chosen binary input symbols. In practi¢e,is

{r; = (1/4)}. The rate of linear reinforcement learning isset to 20. The value of MSE is obtained over 20 experiments.
a = 0.9. The values of both the weight coefficients andrig. 4 shows the MSE convergence of both the LSA and LMS
limiting values at the initial step are setpp(0) = (1/2) and algorithms with eitherr = 0.05 or » = 0.005. Results show
Ax(0) = 0,k = 1,2, respectively. Assume that the unknowrthat the steady-state value of average error produced by the
received energies (actually square root values of receivie8A converges to a valué< 10~2) rapidly, which is much
energies) for both users 1 and 2 are sewo= /10 and lower than that of the LMS algorithm with either = 0.05

wy = 1, respectively. For simplicity, the square root energy isr » = 0.005. These results would be conducted to verify the
called the energy in this paper. The variance of AWGN noised@ptimal convergence capability of LSA algorithm.

o2 = 0.07943. The initial estimated received energies are all Next, it is desired to investigate the estimation performance
set to zero. Fig. 3 illustrates the convergence of two estimatefl blind adaptive energy estimation mechanism applied to
received energies achieved by blind adaptive energy estimatibe DDF detector with the order of users interchanged, i.e.,
using both the learning-type stochastic approximation (LSA); (= 1) < wo(= v/10). Figs. 5 and 6 show the convergence
algorithm and least mean square (LMS) algorithm with twof the estimated received energies and their associated MSE
different learning rates = 0.05 and » = 0.005 when errors. It is observed that the blind adaptive energy estimator



548 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 48, NO. 2, MARCH 1999

1.00E+1 — 1.00E+1 —

; LsA
100E+0 — — LSA 100E+0 —fi - LMST =0.05
- LMS1 r=0.05 1

: i I .‘._ - LMS2 r=0.005
-4 . LMS2 1=0.005 i :

LMS1 LMS1

Error
o
(=]
m
L
|

PO A A W
! ' {

{MSs2

1.00E-2 — S 2
E o _\w\—\ﬁ,\\ﬂ‘\ 1.00E-2 —| e
= - e
1.00E-3 T I R l i A 1.00E-3 T ‘ ; I LR | S a—
¢} 1000 2000 3000 4000 5000 3} 1000 2000 3000 4000 5000
Iterations lterations

Fig. 4. Comparison of mean square errors achieved by LSA, LMS1, apgfj. 6. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a two-user CDMA BDDF detector withi?> = 1/3 when | MS2 for a two-user CDMA BDDF detector with?12 = 1/3 when
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wy =1, w2 = V10, (reverse user order), and = 0.07943.

Ili’g. 7. BER comparison of the BDDF, ideal DDF, decorrelating, single-user,
and optimum detectors for a two-user channel wigh, = 1/3 and
signal-to-noise ratio of user 2 fixed at 8 dB.

using LSA is able to achieve the best estimation performance . L
in the fastest convergence rate even though the users ard: N other words,F.;.(DDF| Blind Energy Estimatiop

not ranked properly. In other words, our blind adaptatiofy £<(DDF| Ideal Estimatiop. This implies that our blind
mechanism is independent of the user order. energy estimator is able to achieve thg bes.t energy estimation
The BER’s were determined by simulating the DDF detect€rformance in the BER manner defined in (15). Note that
with a blind adaptive energy estimation using LSA for SynI;he ideal DDF detector does not know the order of users.
chronous CDMA AWGN channels and taking an average of 3doreover, both the BDDF and ideal DDF detectors have
individual runs of 16 samples. Fig. 7 shows the BER of thdower error rate than that of decorrelator of (6). As the first
second user versus the difference between input signal-to-ndiser grows stronger, the BER'’s of the second user for both
ratios when SNR(2)= 8 dB. It is observed that the BER curvethe DDF detectors approach the same single-user bound of
of the DDF detector with blind adaptive energy estimatio(®). For the range from 0 to 10 dB, i.e., SNR(%) SNR(2)
(BDDF) is almost identical to that of the DDF detector witH{correct order of users), the BER curve of BDDF detector
exactly known received energies (ideal DDF) even though tiee almost identical to that of the optimum CDMA detector.
order of two users is interchanged, i.e., SNR{A)SNR(2) However, the BER of BDDF detector may be higher than
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Fig. 9. Comparison of mean square errors achieved by LSA, LMS1, af@ly. 11. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a two-user CDMA BDDF detector withR;2 0.7 when LMS2 for a two-user CDMA BDDF detector withRio 0.7 when
wy = /10, wy = 1, (correct user order), and® = 0.07943. wy = 1, wy = /10, (reverse user order), and® = 0.07943.

that of the optimum CDMA detector for the range frorl0 convergence rate. This again verifies the fact that the blind
to 0 dB, i.e., SNR(2)> SNR(1) (reverse order of users).adaptation mechanism is independent of user order even the
Furthermore, the BER of the BDDF detector decreases ammbss correlation is high. Fig. 12 shows the BER curve of
finally approaches a single-user bound when SNR(%)) BDDF detector which is almost identical to that of optimum
decreases and is less than a value-df0 dB. Next, we CDMA detector when the order of users is correct. However,
consider the higher bandwidth-efficient two-user synchronofa the case of reverse order, the BER of user 2 for the BDDF
CDMA system with a higher cross correlatidit,, = 0.7. detector is higher than that of the decorrelator for the range
Figs. 3 and 4 depict the convergence curves of the estimafemm —10 to —7.5 dB. Moreover, as SNR(X)»; ) decreases,
energies and their MSE errors in much the same set up astlde BDDF detector again performs better than the decorrelator
Figs. 3 and 4, respectively, when the user order is correahd finally approaches the single-user bound. In order to
For the case of reverse user order, Figs. 10 and 11 shelwninate the case of reverse order, we can apply the two-
their convergence curves which are almost identical to thalhase blind adaptation to the BDDF detector. The first-phase
of Figs. 5 and 6, respectively. Observing Figs. 8-11, LSAdaptation is used to determine the order of users within a
achieves the best energy estimation performance in the fastggscific short time period. Then, after interchanging the order,



550 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 48, NO. 2, MARCH 1999
1E2 — & 100E+2 —
1 . . 1.00E+1 —
g |
;Q /[;_;}77& n 4 w2 S e ‘
- Ej/ N y". - LMS1 r=0.05
7 . LMS2 r=0.005
& L1 E‘\. 77777
L i
&T 3 Ej \\\\
1} ; — Single \\‘-\.
m - DEC %
[ i G
3- opt @i
8 - A - ideal DFB %
il —-€3-- BDFB 5
Y
B
By
1E-4 . 1 — . r :
10 5 0 5 10 0 1000 2000 3000 4000 5000
SNR(1)-SNR(2) dB,SNR(2)=8dB lterations

Fig. 12. BER comparison of the BDDF, ideal DDF, decorrelating, sir-i9- 14. Comparison of mean square errors achieved by LSA, LMS1, and
gle-user, and optimum detectors for a two-user channel With = 0.7 LMS2 for a four-user BDDF detector with Gold codes of length 7 when

and signal-to-noise ratio of user 2 fixed at 8 dB. wy = wp = ws = V10, wy =1 (correct user order), ang® = 0.07943.

40 —
40 T
LsA ,
WIW2W3 | ! otk bhe Ao 5 & K e M B g
T N il B iy mﬁﬁ\-@wﬁﬁ"ﬁwwgﬁwﬁ;‘m i
30 —¢ - ' ) L\
! - LSA \ i T Y il
LMST ; oty A, g M e s by A B B s i J?M:‘—v-»
! ; e K‘Wyﬂwmmﬁj%ﬁww%w‘#f ik m" T
30 — - ‘
C Lms2 o - i LMS’;"
20 - LMS1 1=0.05 S Msz s
- LMS2 r=0.005 - LMS1 r=0.05
) 20 — LMS2 r=0.005

eyt N gl W il

00 - ! ] I T T T | T |
0 1000 2000 3000 4000 5000 ) o N
lterations 00 —f— T~ — : |
i i i i H Q 1000 2000 3000 4000 5000
Fig. 13. Comparison of the estimated energies achieved by LSA, LMS1, {terations

and LMS2 for a four-user BDDF detector with Gold codes of length 7 when

wy = wa = w3z = V10, wy = 1, (correct user order), ane® = 0.079 43.
and LMS2 for

w1
user 2 becomes the strongest user which performs the same
as the decorrelator. However, by performing the second-phase
adaptation, user 1 becomes the weakest user whose BER cln

Fig. 15. Comparison of the estimated energies achieved by LSA, LMS1,

a four-user BDDF detector with Gold codes of length 7 when

=ws = w3 = 1, wyg = /10 (reverse user order), and = 0.07943.

ve1,—1,1,1,1,~1]. The corresponding cross-correlation

coincides with the BER curve for user 2 of Fig. 12 for th&natrix is given by

range from 0 to 10 dB. Note that user 2 is the weakest user for

the range from 0 to 10 dB, however, he becomes the strongest 7 -1 3 3
user when the signal-to-noise difference ranges fret to R— ll-1 7 -1 3 (34)
0 dB. 713 -1 7 -1

3 3 -1 7

It is of interest to conduct a similar study for a four-user
synchronous CDMA system with a set of signature waveforms
derived from Gold sequence of length seven, i@(t)

Figs. 13 and 14 illustrate the convergence of the estimated

,-1,-1,1,1,1,-1], ax(¢) = [1,1,-1,-1,—-1,—1,—1], energies and their associated MSE errors achieved by both the
as(t) = [1,-1,-1,-1,-1,1,—1], and a4(t) = LSA and LMS algorithms whemw; = ws = w3 = v/10,ws =
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Fig. 16. Comparison of mean square errors achieved by LSA, LMS1, apfy 17. BER comparison of the BDDF, ideal DDF, decorrelating, sin-

LMS2 for a four-user BDDF detector with Gold codes of Iengthh 7 wheBje_yser, and optimum detectors for a four-user channel with Gold codes
wy = wy = w3 =1, wy = V10 (reverse user order), and® = 0.07943.  of |ength 7 and signal-to-noise ratio of user 4 fixed at 8 dB.

1, and 2 = 0.079 43. Both figures show that LSA achievesdata. Results show that the LSA algorithm is able to achieve
the best estimation performance in the fastest convergence gatebest estimation performance in a fastest convergence rate
and has a very small variation. However, LMS algorithmgven the users of the BDDF detector are not ranked properly.
have large variations. Especially, Fig. 14 shows that thereligorporation of the blind energy estimation using LSA in the
an extremely large variation in the learning curve of the LM®DF structure yields an improved BER performance which
algorithm with » = 0.05 since the large random variationis almost identical to that of the DDF detector with exactly

is resulted from a large sum interference of three interferingiown users’ energies. Results also show that after performing
users. However, the decreasing harmonic learning sequeacevo-phase adaptation, the BER curve of the weakest user
of LSA is conducted to eliminate the large random variationill coincide with the optimal CDMA BER curve and finally
Figs. 15 and 16 show their convergence curves which aipproaches the single-user bound when the interfering users
almost identical to that of Figs. 13 and 14, respectively. Thisecome sufficiently stronger.

again verifies that our blind energy estimation is independent
of the user order.

The BER’s of decorrelator, single-user bound, optimal
CDMA detector, ideal DDF (knows all the users’ received[1] A. J. Viterbi, CDMA, Principle of Spread Spectrum Communications
energies except for their order), and BDDF detector for user New York: Addison-Wesley, 1995. o _

4 are shown in Fig. 17. The input signal-to-noise ratio is2] é’Daielg;':t"e%'é’,ﬂéEg'tégigha?”goéma’&ﬁr’2"\/I'[,L")'.t'f(se_r5g,et§;:'.°n
SNR(4) = 8 dB for user 4 and varies from2 to 18 dB for 1995,

other users. We observe that BDDF detector has significantlg] R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous
lower error rate than the decorrelator and coincides with the ¢ode-division multiple access channel#ZEE Trans. Inform. Theory

. vol. 35, pp. 123-136, Jan. 1989.

ideal DDF detector. For the case of correct user order, thﬁ] , “Near—far resistance of multiuser detectors in asynchronous
BDDF detector almost coincides with the optimum CDMA  channels,"IEEE Trans. Communyol. 38, pp. 496-508, Apr. 1990.
detector and approaches the single-user bound as interferif#y

users grow stronger. If the users of BDDF detector are not

M. K. Varanasi and B. Aazhang, “Near-optimum detection in syn-
chronous code-division multiple-access systemEEE Trans. Com-

ranked properly, its order may be corrected using the proposeg

two-phase blind adaptation.
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