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Blind Adaptive Energy Estimation for Decorrelating
Decision-Feedback CDMA Multiuser Detection
Using Learning-Type Stochastic Approximations
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Abstract—This paper investigates the application of linear
reinforcement learning stochastic approximation to the blind
adaptive energy estimation for a decorrelating decision-feedback
(DDF) multiuser detector over synchronous code-division
multiple-access (CDMA) radio channels in the presence of
multiple-access interference (MAI) and additive Gaussian noise.
The decision feedback incorporated into the structure of a
linear decorrelating detector is able to significantly improve
the weaker users’ performance by canceling the MAI from
the stronger users. However, the DDF receiver requires the
knowledge of the received energies. In this paper, a new novel
blind estimation mechanism is proposed to estimate all the users’
energies using a stochastic approximation algorithm without
training data. In order to increase the convergence speed of the
energy estimation, a linear reinforcement learning technique is
conducted to accelerate the stochastic approximation algorithms.
Results show that our blind adaptation mechanism is able to
accurately estimate all the users’ energies even if the users of
the DDF detector are not ranked properly. After performing
the blind energy estimation and then reordering the users in a
nonincreasing order, numerical simulations show that the DDF
detector for the weakest user performs closely to the maximum
likelihood detector, whose complexity grows exponentially with
the number of users.

Index Terms—CDMA, DDF multiuser detection, stochastic
approximation.

I. INTRODUCTION

T HE CONVENTIONAL method of detecting a spread-
spectrum signal in a multiuser code-division multiple-

access (CDMA) channel employs a filter matched to the
desired signal [1], [2]. This conventional single-user detector
ignores the presence of interfering signals, or equivalently,
ignores the cross correlations between the signals of different
users. Therefore, the performance of the single-user detector
severely degrades when the relative received power of the
interfering signal becomes large, i.e., the near–far effects
[1]. To tackle this difficulty, there has been an interest in
designing the optimum detector for various multiuser CDMA
communication systems [2], [4], [5]. The optimum multiuser
detection can be carried out by the maximization of a log-
likelihood function. Although the optimum multiuser detection
is superior to the conventional single-user detector, S. Verdu

Manuscript received August 5, 1996; revised July 13, 1998.
The authors are with the Department of Communication Engineering,

National Chiao-Tung University, Hsinchu, Taiwan, R.O.C. (e-mail: pr-
chang@cc.nctu.edu.tw).

Publisher Item Identifier S 0018-9545(99)01051-8.

[6] showed that the optimum detector requires computational
complexity which grows exponentially with increasing the
number of users. Since a CDMA system could potentially have
a large number of users, it may be impractical to implement the
optimum detection unless the number of users is quite small.

Hence, there is a need for suboptimum receivers which are
robust to near–far effects with a reasonable computational
complexity to ensure their practical implementation. Lupas
and Verdu [4] introduced a class of suboptimum detectors
that are based on linear transformations of a bank of matched
filter outputs. The well-known decorrelator is one of the
suboptimum multiuser detectors with simple structure whose
complexity increases only in proportion to the number of users
[4]. The bit error rate (BER) performance of the decorrelator is
independent of the interferers’ received energies and, hence,
is near–far resistant. However, one major drawback of the
decorrelator is that it enhances the noise presented in the
received signals. Several other suboptimal detectors have
been proposed based on the knowledge of (or the ability
to accurately estimate) the users’ energies. Such schemes
exploit the knowledge of the users’ energies via some form
of successive cancellation of the multiple-access interference
(MAI) from the stronger users. These include the multistage
detectors that attempt to cancel the MAI at a later stage
by utilizing the tentative decisions made in an earlier stage
[5]. More significantly, Duel-Hallen [7] introduced multiuser
decision feedback receivers that may be used in conjunction
with a multistage architecture. Interference from previous
symbols of the same user, as well MAI from stronger users, is
removed via the use of decision feedback, leading to signifi-
cant BER performance improvements. Since the decorrelating
decision-feedback (DDF) detector requires the knowledge of
the received energies of all the users, the BER performance of
the DDF detector is significantly degraded when the receiver
did not know all the users’ energies. Chen and Roy [11] ap-
plied a recursive least sequences (RLS) algorithm to estimate
a product of a input symbol and its received energy without
training data. In this paper, we propose an alternative novel
blind estimation technique to estimate all the users’ energies
using a stochastic approximation algorithm without training
data. In order to further improve the speed of convergence, a
linear reinforcement learning scheme [17] is conducted to ac-
celerate the stochastic approximation algorithm. In Section V,
simulation results show that the blind energy estimation is able
to accurately estimate all the users’ energies via additive white
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Fig. 1. Block diagram of decorrelating DDF detector.

Gaussian noise (AWGN) channels in the fastest convergence
rate and is robust to interfering signals and channel noise.

II. DECORRELATING DETECTORS FOR

SYNCHRONOUS CDMA SYSTEMS

The decorrelating detector is based on an SS-CDMA system
with binary phase-shift-keyed (BPSK) signaling [1], [2]. There
are a total of users transmitting over a common wireless
channel. Associated with each user is a data
signal and a signature code waveform which
are functions of time. The sampled outputs of a bank of

matched filters at the receiver in the first time interval
(reference interval) can be expressed as

(1)

where is a diagonal channel gain or energy matrix with
the th element denotes the received
energy for user

and is the
output of the channel noise through the th matched filter.
Note that the index “0” in will be omitted whenever possible.
It can be proven that is still a Gaussian noise with zero
mean and variance of and the covariance matrix of the
vector is

(2)

where is a positive definite matrix of signature
waveform cross-correlation matrix with its th element
defined as

(3)

At an SS-CDMA receiver, the received power from a
nearer transmitter can be much bigger than that of a farther
transmitter, causing interference and hence degrading the
communication quality of a farther transmitter. To tackle the
near–far problem [1], a simply decorrelating detector [3] has
been proposed to eliminate the near–far problem and then to
recover the input data vectoraccording to the given output
vector without power control. In the decorrelating detector,
the matrix filter followed by a set of decision devices
(sign detector) is applied to The output of the matrix filter
is

(4)

where is a Gaussian noise vector with
the autocorrelation matrix

Then, the detected symbols are obtained by taking the sign
detector on each element of, i.e.,

(5)

The decorrelating detector has several desirable features. It
does not require the knowledge of the users’ received energies,
and its BER performance is independent of the received
energies of the interfering users. Hence, the decorrelating
detector is near–far resistant. However, one major drawback of
the decorrelator is that it enhances the noise presented in the
received signals. The power of the noise is ,
which is greater than noise power at the output of the
matched filter, where and denotes the

th element of Thus, the probability that theth
input symbol is recovered incorrectly is given by

(6)

where the function is

III. B IT ERROR RATE ANALYSIS FOR

DECORRELATING DDF MULTIUSER DETECTORS

WITH ERRORS IN ESTIMATING RECEIVED ENERGIES

Decision-feedback equalizers often have significantly lower
BER’s than linear detectors in single user channels [7] and
have been shown superior to linear detectors in several mul-
tiuser systems [5], [7]. Based on this fact, Duel-Hallen [7]
has proposed a decorrelating DDF multiuser detector illus-
trated in Fig. 1 which combines the advantages of both the
decorrelating detector and DDF equalizer. It employs forward
decorrelating and feedback filters to cancel MAI. The DDF
detector cancels MAI completely, provided that the feedback
data are decoded correctly. Decisions are made in the order
of decreasing received power levels, thus, the weakest user
can benefit the most from utilizing the decisions to remove
the interference of stronger users. If the received power of
the weakest user is significantly lower than that of the other
users and the order of the received power levels is correct, the
BER performance of the weakest user is close to that of the
MAI-free case (single-user bound [7]). On the other hand, the
receiver for the stronger user who is the first user in Fig. 1 does
not involve feedback and is equivalent to the decorrelator.

In Fig. 1, is the whitening matrix filter applied to
the sampled output of the matched filter bank of (1), where
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is a lower triangular matrix obtained by factorizing the
signature waveform cross-correlation matrix as
using Cholesky decomposition algorithm. Thus, the resulting
output vector is

(7)

where is a white Gaussian vector
with the autocorrelation matrix where is
a identity matrix and Note that all the
components of are uncorrelated. In addition, it is assumed
that the received energies ’s are known and nonincreasing,
i.e., In others words, the strongest
user is the first user, and the weakest user is theth user.

Duel-Hallen [7] has shown that the BER of the decorrelating
decision feedback (DDF) detector for theth user under the
assumption of correct previous decisions is given by

DDF (8)

where represents the th element of Since
the value of DDF is identical to that of

of (6). This implies that the DDF detector for
user 1 does not employ feedback and is equivalent to the
decorrelating detector. On the other hand, for the weakest user
(the th user), and its BER performance is equal
to that of the single-user (SU) system given by

DDF (9)

Actually, the DDF detector does not know the exact values
of all the received energies, especially for the time-varying
CDMA channel. Thus, the received energies of all the users
need to be estimated and updated for proper cancellation of
multiuser interference. The general received energy estimation
mechanism can be formulated as a mapping from a set of
observable parameters in the DDF system to a set ofpositive
estimated received energies represented by a vector, i.e.,

(10)

where the space denotes a superset of all the possible
observable sets. For example, an observable set may contain
the whitening matrix filter outputs , the previous
estimated energies, and the previous detected symbols. Note
that the elements of the observable sets are not unique. Another
observable set can be generated from the above-mentioned
observable set by replacing the whitening matrix filter outputs

’s by the matched filter outputs ’s.
It is desirable to investigate the effect of errors in estimating

received energies on the BER performance of a DDF by
performing the energy estimator Assume that the square
root value of the estimated energy for theth user is
The th error pattern for energy estimation is defined as

Therefore, the input to theth decision
device can be derived as follows:

(11)

where ’s denote the previous detected symbols. If the
previous decisions are correct, the remaining interference
is resulted from the previous detected symbols and equals

Moreover, the conditional bit error probability for theth
user of a DDF detector with an energy estimator can be
found by

DDF

(12)

Assuming that the input symbols’s, the detected symbols
’s, and the energy error patterns ’s are mutually inde-

pendent, their joint probability density function (pdf) can be
written as

(13)

where is the pdf of the first
energy error patterns conditioned on a specific energy

estimator Hence, the BER for the th user of a DDF
with can be derived as follows:

DDF

DDF

(14)

Since the explicit expression of is
actually unknown, it is impossible to derive the exact explicit
expression of BER of (14). Although this probability does
not have the exact analytical formulation, computer numerical
simulations are most commonly used in determining the BER
and the effects of energy error propagation.

Equation (14) shows that the BER is highly dependent on
the estimation performance of the energy estimator If

is the ideal energy estimator, the energy error patterns
’s become zero, and then the BER DDF of
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Fig. 2. Block diagram of BDDF detector with blind energy estimator.

(14) is identical to the BER DDF Ideal Estimation of
an ideal DDF with exactly known received energies (ideal
estimation). According to the above discussion, the problem
of finding the best energy estimator can be expressed as
an optimization problem given by

DDF

Ideal Estimation (15)

IV. BLIND ENERGY ESTIMATION FOR DDF MULTIUSER

DETECTORSUSING STOCHASTIC APPROXIMATION

ALGORITHMS WITH LINEAR REINFORCEMENTLEARNING

As mentioned in the above section, the best energy estimator
can be found by minimizing the cost functional of (15)

directly. Since the explicit expression of this cost functional
is actually unknown and very complex, it is difficult to find
its optimal solution directly. To overcome this difficulty, an
alternative expression of cost functional is presented in this
section. This expression is found to be particularly suitable
for stochastic approximation algorithm without requiring the
exact knowledge of unknown probability distribution on each
variable. The new energy estimator based on minimizing the
alternative cost functional and together with the DDF does
not require any training sequence, and its behavior is quite
similar to that of Bussgang-type blind equalization [13]. In
Section V, simulation results show that the optimal solutions
to both the cost functionals result in almost the same optimal
performance. On the other hand, the cost functional of (15)
is able to provide the performance index to evaluate the
solution derived from our alternative cost functional in the
BER manner. Fig. 2 shows the basic structure of the DDF
detector with a blind energy estimator, where the whitening
matrix filter outputs and the previous detected
symbols are the observable and measurable
parameters used for the estimator. To implement this estimator,
the whitening matrix filter outputs of (7) of the DDF detector
should be rewritten as an expression in terms of a
vector of received energies, i.e.,

(16)

where and
denotes the diagonal matrix

of input data symbols. Note that is called the energy vector,
where the th element of is actually the square root value
of the received energy for user

An estimate of the whitening filter output vectoris defined
by

(17)

where denotes the diagonal
matrix of previous detected symbols.

The true -dimensional energy vector can be found by
minimizing the mean-square error (MSE) criterion

(18)

By letting the gradient be a zero vector, the value
of the optimal solution is given by

(19)

where denotes an expectation over
and

Since is a quadratic polynominal function in terms
of the optimal solution of (19) is the unique global
minimum point to (18).

However, the joint probability density function of
is actually unknown and

very complex. This implies that the optimal energy vector
cannot be obtained from (19) directly. Fortunately, Robbins
and Monro [14] suggested the following scheme called
the stochastic approximation without the evaluation of the
expectation over to solve the gradient
of (19) recursively as time evolves:

(20)

where is a learning-rate sequence of positive scalars
tending to zero and is the MSE measure
which depends on the observed random samples and
can be treated as the estimate of In other
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words, the stochastic approximation estimates the unknown
deterministic gradient with the known random
gradient at each iteration in the discrete stochastic
gradient-descent algorithm of (20), where the unknown gradi-
ent points in the direction of steepest descent on
the unknown expected-error surface defined by

The learning-rate coefficients decrease with time to
suppress random disturbances. In addition, simulation results
show that the decreasing coefficients are also able to suppress
both the MAI and channel noise. If the sequence satisfies
the conditions of Dvoretzky’s theorem [15]

(21)

Then, the random energy vector in (20) converges to
the optimal solution to the unknown expected-error function

of (18) with probability one, i.e.,

(22)

(23)

It is obvious that the harmonic sequence satisfies all
the three conditions of (21) and can be used as a special case of

Another scheme may be generated by minimizing upper
bounds on the variance of the estimated MSE, i.e.,

(24)

An optimal sequence of learning rate which satisfies (21)
can be generated by

(25)

which minimizes the upper bound of the error bound [16]

(26)

The sequence satisfies the Rao-Craḿer inequality.
This implies that its convergence cannot be faster than at

where and are positive constant numbers.
Since this is a serious limitation on the speed of convergence,
an acceleration scheme with learning capability has been
proposed to accelerate the convergence of the algorithm and
would be presented in the next section.

A. Acceleration of Stochastic Approximation Algorithms
Using Linear Reinforcement Learning

Saridis [17] has proposed a learning scheme which provides
a memory to the multidimensional stochastic approximation
algorithms in order to utilize the accumulated past experience
of the search for acceleration proposes. In addition, a matrix
gain has been used instead of the scalar learning rateThe
learning scheme is used to update the weighting coefficients
of the new matrix gain applied to the components of the
correction terms as to direct the search along the ridge of

the expected-error surface defined by and thus accelerate
the convergence of the algorithm.

The learning algorithm introduces the weighting matrix
and modifies the gradient-type stochastic approximation

algorithm of (20) as follows:

(27)

where satisfies conditions of (21), and the matrix gain
is defined by

...
...

(28)

A linear reinforcement learning [17] is used to update at
every iteration the components of and alter the direction
of the search accordingly

(29)

where the rate of learning and the limiting value of
the th weighting component are defined as follows:

(30)

where is the number of components of
that did not change sign at the last step. Note that if all the
components change sign , then

(31)

In addition, the expression of can be de-
rived as follows:

(32)

where is a vector which
contains the zero components except itsth component is an
identity.

The above-mentioned iterative algorithm of (27)–(30) is
activated only in the presence of a sharp ridge by detecting
the successive overshooting of the projected local minimum
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in the direction of one or more of the coordinate axes. In
that case, the projection of the gradient in this direction is
penalized while the other projections are reinforced in such a
way that the th step will not be in the direction of the
local gradient, but at a direction approaching to the direction
of the ridge. The increments being applied at a direction closer
to the direction of the ridge will take the search to a region
close to the extremum much faster than the conventional
gradient-type stochastic approximation algorithm. On the other
hand, (31) indicates that the search is moved away from the
region of ridge. Moreover, in case of absence of a ridge, no
overshooting will occur. Thus, and
the learning-type algorithm degenerates to the conventional
stochastic approximation algorithm of (20). More details of
learning-type algorithms can be found in [17].

B. Two-Phase Blind Adaptation

Usually, the users in the DDF detector may be not ranked
properly according to their received energies. In this case, the
first phase blind adaptation is used to identify the order of all
the users’ received energies within a fixed short time period
by using the proposed energy estimation mechanism. After the
first phase adaptation, it is desired to sort the energy estimates
in a nonincreasing order , where
the notation in the subscript denotes the reordered sequence.
The second phase adaptation is applied to the reordered users
with a proper nonincreasing order and then to obtain the
desired detected symbols.

V. SIMULATION RESULTS

For simplicity, the CDMA channel models used in evaluat-
ing the estimation performance of the proposed blind adaptive
energy estimator are on the basis of both the two-user and
four-user synchronous CDMA AWGN channels with two
different signature waveform cross-correlation matrices. The
two-user CDMA system is simple and illustrative of the salient
features of the blind adaptive energy estimation for the DDF
detectors. The first two-user CDMA system contains two
signature waveforms, of length three, i.e., and

which have been previously considered
in the literature [5] and correspond to the cross correlation

The learning-rate coefficients of learning-type
stochastic approximation (LSA) are the harmonic sequence

The rate of linear reinforcement learning is
The values of both the weight coefficients and

limiting values at the initial step are set to and
respectively. Assume that the unknown

received energies (actually square root values of received
energies) for both users 1 and 2 are set to and

, respectively. For simplicity, the square root energy is
called the energy in this paper. The variance of AWGN noise is

The initial estimated received energies are all
set to zero. Fig. 3 illustrates the convergence of two estimated
received energies achieved by blind adaptive energy estimation
using both the learning-type stochastic approximation (LSA)
algorithm and least mean square (LMS) algorithm with two
different learning rates and when

Fig. 3. Comparison of the estimated energies achieved by LSA, LMS1,
and LMS2 for a two-user CDMA BDDF detector withR12 = 1=3 when
w1 =

p
10; w2 = 1; (correct user order), and�2 = 0:07943:

and From Fig. 3, it
is observed that the learning curves for both the received user
energies achieved by LSA converge to their corresponding
respective desired energies, and one rapidly. In addition,
a comparison of the learning curves in Fig. 3 indicates that
LSA converges to the desired energy much faster than LMS.
For LMS with a larger rate it results in faster
convergence speed, but has a lager variation around the desired
energy. On the other hand, the decreasing learning coefficients
of LSA are able to suppress the random variation. Thus, no
variations occur in the learning curves of LSA. An alternative
approach to evaluate the estimation performance is in terms
of the following MSE criterion given by:

Error

(33)

where is the estimated energy vector obtained from
the th experiment and denotes the total
number of experiments. Each experiment is generated by a set
of randomly chosen binary input symbols. In practice,is
set to 20. The value of MSE is obtained over 20 experiments.
Fig. 4 shows the MSE convergence of both the LSA and LMS
algorithms with either or Results show
that the steady-state value of average error produced by the
LSA converges to a value rapidly, which is much
lower than that of the LMS algorithm with either
or These results would be conducted to verify the
optimal convergence capability of LSA algorithm.

Next, it is desired to investigate the estimation performance
of blind adaptive energy estimation mechanism applied to
the DDF detector with the order of users interchanged, i.e.,

Figs. 5 and 6 show the convergence
of the estimated received energies and their associated MSE
errors. It is observed that the blind adaptive energy estimator
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Fig. 4. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a two-user CDMA BDDF detector withR12 = 1=3 when
w1 =

p
10; w2 = 1; (correct user order), and�2 = 0:07943:

Fig. 5. Comparison of the estimated energies achieved by LSA, LMS1,
and LMS2 for a two-user CDMA BDDF detector withR12 = 1=3 when
w1 = 1; w2 =

p
10; (reverse user order), and�2 = 0:07943:

using LSA is able to achieve the best estimation performance
in the fastest convergence rate even though the users are
not ranked properly. In other words, our blind adaptation
mechanism is independent of the user order.

The BER’s were determined by simulating the DDF detector
with a blind adaptive energy estimation using LSA for syn-
chronous CDMA AWGN channels and taking an average of 50
individual runs of 10 samples. Fig. 7 shows the BER of the
second user versus the difference between input signal-to-noise
ratios when SNR(2) dB. It is observed that the BER curve
of the DDF detector with blind adaptive energy estimation
(BDDF) is almost identical to that of the DDF detector with
exactly known received energies (ideal DDF) even though the
order of two users is interchanged, i.e., SNR(1)SNR(2)

Fig. 6. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a two-user CDMA BDDF detector withR12 = 1=3 when
w1 = 1; w2 =

p
10; (reverse user order), and�2 = 0:07943:

Fig. 7. BER comparison of the BDDF, ideal DDF, decorrelating, single-user,
and optimum detectors for a two-user channel withR12 = 1=3 and
signal-to-noise ratio of user 2 fixed at 8 dB.

0. In other words, DDF Blind Energy Estimation
DDF Ideal Estimation. This implies that our blind

energy estimator is able to achieve the best energy estimation
performance in the BER manner defined in (15). Note that
the ideal DDF detector does not know the order of users.
Moreover, both the BDDF and ideal DDF detectors have
lower error rate than that of decorrelator of (6). As the first
user grows stronger, the BER’s of the second user for both
the DDF detectors approach the same single-user bound of
(9). For the range from 0 to 10 dB, i.e., SNR(1) SNR(2)
(correct order of users), the BER curve of BDDF detector
is almost identical to that of the optimum CDMA detector.
However, the BER of BDDF detector may be higher than
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Fig. 8. Comparison of the estimated energies achieved by LSA, LMS1,
and LMS2 for a two-user CDMA BDDF detector withR12 = 0:7 when
w1 =

p
10; w2 = 1; (correct user order), and�2 = 0:07943:

Fig. 9. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a two-user CDMA BDDF detector withR12 = 0:7 when
w1 =

p
10; w2 = 1; (correct user order), and�2 = 0:07943:

that of the optimum CDMA detector for the range from10
to 0 dB, i.e., SNR(2) SNR(1) (reverse order of users).
Furthermore, the BER of the BDDF detector decreases and
finally approaches a single-user bound when SNR(1)
decreases and is less than a value of10 dB. Next, we
consider the higher bandwidth-efficient two-user synchronous
CDMA system with a higher cross correlation
Figs. 3 and 4 depict the convergence curves of the estimated
energies and their MSE errors in much the same set up as do
Figs. 3 and 4, respectively, when the user order is correct.
For the case of reverse user order, Figs. 10 and 11 show
their convergence curves which are almost identical to that
of Figs. 5 and 6, respectively. Observing Figs. 8–11, LSA
achieves the best energy estimation performance in the fastest

Fig. 10. Comparison of the estimated energies achieved by LSA, LMS1,
and LMS2 for a two-user CDMA BDDF detector withR12 = 0:7 when
w1 = 1; w2 =

p
10; (reverse user order), and�2 = 0:07943:

Fig. 11. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a two-user CDMA BDDF detector withR12 = 0:7 when
w1 = 1; w2 =

p
10; (reverse user order), and�2 = 0:07943:

convergence rate. This again verifies the fact that the blind
adaptation mechanism is independent of user order even the
cross correlation is high. Fig. 12 shows the BER curve of
BDDF detector which is almost identical to that of optimum
CDMA detector when the order of users is correct. However,
for the case of reverse order, the BER of user 2 for the BDDF
detector is higher than that of the decorrelator for the range
from 10 to 7.5 dB. Moreover, as SNR(1) decreases,
the BDDF detector again performs better than the decorrelator
and finally approaches the single-user bound. In order to
eliminate the case of reverse order, we can apply the two-
phase blind adaptation to the BDDF detector. The first-phase
adaptation is used to determine the order of users within a
specific short time period. Then, after interchanging the order,
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Fig. 12. BER comparison of the BDDF, ideal DDF, decorrelating, sin-
gle-user, and optimum detectors for a two-user channel withR12 = 0:7

and signal-to-noise ratio of user 2 fixed at 8 dB.

Fig. 13. Comparison of the estimated energies achieved by LSA, LMS1,
and LMS2 for a four-user BDDF detector with Gold codes of length 7 when
w1 = w2 = w3 =

p
10; w4 = 1; (correct user order), and�2 = 0:07943:

user 2 becomes the strongest user which performs the same
as the decorrelator. However, by performing the second-phase
adaptation, user 1 becomes the weakest user whose BER curve
coincides with the BER curve for user 2 of Fig. 12 for the
range from 0 to 10 dB. Note that user 2 is the weakest user for
the range from 0 to 10 dB, however, he becomes the strongest
user when the signal-to-noise difference ranges from10 to
0 dB.

It is of interest to conduct a similar study for a four-user
synchronous CDMA system with a set of signature waveforms
derived from Gold sequence of length seven, i.e.,

and

Fig. 14. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a four-user BDDF detector with Gold codes of length 7 when
w1 = w2 = w3 =

p
10; w4 = 1 (correct user order), and�2 = 0:07943:

Fig. 15. Comparison of the estimated energies achieved by LSA, LMS1,
and LMS2 for a four-user BDDF detector with Gold codes of length 7 when
w1 = w2 = w3 = 1; w4 =

p
10 (reverse user order), and�2 = 0:07943:

The corresponding cross-correlation
matrix is given by

(34)

Figs. 13 and 14 illustrate the convergence of the estimated
energies and their associated MSE errors achieved by both the
LSA and LMS algorithms when
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Fig. 16. Comparison of mean square errors achieved by LSA, LMS1, and
LMS2 for a four-user BDDF detector with Gold codes of length 7 when
w1 = w2 = w3 = 1; w4 =

p
10 (reverse user order), and�2 = 0:07943:

and Both figures show that LSA achieves
the best estimation performance in the fastest convergence rate
and has a very small variation. However, LMS algorithms
have large variations. Especially, Fig. 14 shows that there is
an extremely large variation in the learning curve of the LMS
algorithm with since the large random variation
is resulted from a large sum interference of three interfering
users. However, the decreasing harmonic learning sequence
of LSA is conducted to eliminate the large random variation.
Figs. 15 and 16 show their convergence curves which are
almost identical to that of Figs. 13 and 14, respectively. This
again verifies that our blind energy estimation is independent
of the user order.

The BER’s of decorrelator, single-user bound, optimal
CDMA detector, ideal DDF (knows all the users’ received
energies except for their order), and BDDF detector for user
4 are shown in Fig. 17. The input signal-to-noise ratio is
SNR(4) dB for user 4 and varies from 2 to 18 dB for
other users. We observe that BDDF detector has significantly
lower error rate than the decorrelator and coincides with the
ideal DDF detector. For the case of correct user order, the
BDDF detector almost coincides with the optimum CDMA
detector and approaches the single-user bound as interfering
users grow stronger. If the users of BDDF detector are not
ranked properly, its order may be corrected using the proposed
two-phase blind adaptation.

VI. CONCLUSION

This paper has introduced a new blind energy estimation
mechanism for decorrelating DDF multiuser detector which
is capable of dealing with the binary SS-CDSMA signals
over the synchronous AWGN channel by using learning-type
stochastic approximation (LSA) algorithms. This blind energy
estimation mechanism using LSA does not require training

Fig. 17. BER comparison of the BDDF, ideal DDF, decorrelating, sin-
gle-user, and optimum detectors for a four-user channel with Gold codes
of length 7 and signal-to-noise ratio of user 4 fixed at 8 dB.

data. Results show that the LSA algorithm is able to achieve
the best estimation performance in a fastest convergence rate
even the users of the BDDF detector are not ranked properly.
Incorporation of the blind energy estimation using LSA in the
DDF structure yields an improved BER performance which
is almost identical to that of the DDF detector with exactly
known users’ energies. Results also show that after performing
a two-phase adaptation, the BER curve of the weakest user
will coincide with the optimal CDMA BER curve and finally
approaches the single-user bound when the interfering users
become sufficiently stronger.
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