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SUMMARY

Flash memory offers attractive features for storage of data, such as non-volatility, shock resistance, fast
access speed, and low power consumption. However, it requires erasing before it can be overwritten. The
erase operations are slow and consume comparatively a great deal of power. Furthermore, flash memory
can only be erased a limited number of times. To overcome hardware limitations, we use the non-in-place
update mechanism that requires a cleaner to reclaim space occupied by obsolete data. To improve cleaning
performance and prolong flash memory lifetime, we propose a new data reorganization method. By this
method, data in flash memory are dynamically classified and clustered together according to their accessing
frequencies. Experimental results show that this clustering technique significantly improved the cleaning
performance for a variety of cleaning algorithms. The number of erase operations performed is greatly
reduced and flash memory lifetime is prolonged. Even wearing is ensured as well. Copyright 1999 John
Wiley & Sons, Ltd.
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INTRODUCTION

Flash memory currently has been widely used in mobile devices, consumer electronics, and
embedded applications. Due to its attractive advantages in accessing-speed, shock-resistance,
non-volatility, power-consumption, etc., flash memory shows more promise than conventional
storage media like EPROM and hard disks [1–6]. However, due to its hardware characteristics,
flash memory also asks for specific operations in using it [3].

Three primary operations, the read, write and erase, are defined as being responsible
for accessing flash memory. Read operations are most efficient (typically 150–250
nanoseconds/byte) than write (typically 6–9 microseconds/byte) and erase operations.
Applications can efficiently read and write data to the addresses within the flash memory.
However, for manipulating the erase operations, the whole storage space of flash memory is
partitioned into segments† in fixed size. The hardware manufacturers define the segment sizes
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(typically 64 Kbytes). Each segment is the basic unit in erasing the flash memory. Typically,
to erase a segment costs about 0.6–0.8 seconds, which is slow and consumes comparatively a
great deal of power.

Another limitation about flash memory is that it cannot be written over existing data unless
the whole segment containing that data is erased in advance. The number of times a segment
can be erased is also limited typically by 100,000 times to 1,000,000 times. So if the flash
memory is not evenly erased, the flash memory will soon be worn out, even though the total
utilization of this flash memory is still low. Concluded from above discussions, in order to
access flash memory efficiently and be more power-saving, the erase operations should be
avoided as much as possible, and should be operated evenly over the whole flash memory.
These are the primary principles in implementing flash-memory based storage systems.

Flash-memory based storage systems are commonly implemented in two ways. They are
either totally designed from scratch [6,7] or are constructed by using file systems plus new
device driver implementations [5,8]. In the later approach, the file system does not care
which media it uses to store data, and just generates requests to the drivers in disk block
and sector numbers. It is the device driver itself needs to translate the disk block accesses
to flash memory addresses. Evidently, no matter which approach is used, it is important to
avoid having to erase during every data update. A mechanism, namednon-in-place update
mechanism, is generally used to achieve this expectation [5–10]. Under this mechanism, data
updates are written to empty flash memory space and obsolete data are set invalidated as
garbage. A softwarecleanerlater reclaims garbage by migrating valid data from the segment
to be cleaned to another free segment, and then erasing the original segment. With this non-
in-place update mechanism, the cleaner has a substantial impact on the number of erase
operations induced, which in turn impacts system performance, flash memory lifetime, power
consumption, etc [3,4,6,10].

Two major concerns regarding policies in controlling the cleaner are thesegment selection
algorithm and data redistribution method (or data reorganization method). The segment
selection algorithm determines which segments to be cleaned, while the data redistribution
method determines how to migrate valid data in the selected segments. Previous study [10]
showed that data redistribution has greatly impacts on cleaning performance. The challenge
is how to distribute the data.

Motivation

In this paper, we tried to find an effective data redistribution method to reduce the number
of erase operations induced by flash memory cleaner. The simplest way is to copy valid data
to another free segment in the same order as they appear in the original segment. But this
does nothing contributed to reduce the number of erase operations. If data are migrated in
the way thathot data(most frequently updated data) are clustered in the same segments, then
flash segments will be either full of all hot data or all non-hot data. Because hot data have
high possibility to be updated soon to cause the original copy to become garbage, segments
containing most of the hot data would soon contain the most amount of garbage [10–12]. To
clean these segments then can reclaim the largest amount of garbage. Cleaning is thus less
needed. As a result, less erasures are performed and less amount of data are migrated, which
significantly reduce the cleaning costs. The remaining problem is how to effectively cluster
hot data.

Our approach is to classify data according to their write access frequencies and dynamically
cluster them at the time when the data is updated or when the segments are cleaned.
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This approach is low overhead and data classification is fine-grained. Empirical evaluations
through practical implementation and simulations showed that this approach significantly
reduces the number of erase operations performed. Flash memory lifetime is thus prolonged,
throughput is improved, and power is more saving.

RELATED WORK

Many storage systems adopt the non-in-place update scheme that requires garbage collection
to reclaim space occupied by obsolete data [5–17]. The Log-Structured File System
(LFS) [11–14] is a representative. Since garbage collection in LFS is similar to flash memory
cleaning, several cleaning policies proposed in LFS have been employed in flash memory
storage systems [5]. Thegreedypolicy, which selects the segment with the largest amount of
garbage for cleaning, was shown to perform well for uniform accesses but poorly for high
localities of reference [6,9–12]. Thecost-benefitpolicy, which considers not only the amount
of garbage, but also the age of data, was shown to outperform greedy policy for high localities
of reference [9–12]. The age sortingmethod [11,12], which sorts data blocks by age before
writing them on disks, is used to separate hot data from cold data. Several segments are
cleaned at once.

HP AutoRAID [15], a two-level disk array structure, uses thehole pluggingmethod
in garbage collection. This method reclaims a segment by overwriting its valid data to
other segments’holes(space occupied by obsolete data). Theadaptive cleaningpolicy [16]
incorporates this hole plugging into traditional LFS cleaning. This policy adapts to changes
in disk utilization by dynamically choosing cost-benefit policy or hole-plugging policy.

Logical Disk (LD) [17] maintains a logical block map to turn an existing file system
into an LFS-like file system. LD supports the abstraction ofblock lists, which allows file
systems to express the logical relationships among blocks. It provides a data clustering
method: when migrating valid blocks from segments to be cleaned, a segment cleaner uses
the list information to physically cluster related blocks to improve future read performance.
Its clustering effectiveness depends on the correct specifications of block lists.

Dougliset al.[4] discussed storage alternatives for mobile computers. They showed that the
key to flash memory file systems is erasure management. They also found that flash memory
utilization (the percentage of flash memory space occupied by valid data) has substantial
impacts: for 90 per cent utilization, energy consumption is increased by 70–190 per cent,
write response time is degraded by 30 per cent, and lifetime is decreased by up to a third,
as compared with 40 per cent utilization. In addition, at 90 per cent utilization or above, an
erasure unit much larger than the file system block size would result in much unnecessary
copying.

Microsoft Flash File System (MFFS) [7] provides complete file system capabilities for
DOS. MFFS uses linked lists to store and manage data in flash memory. Data are allocated
as variable-sized regions instead of fixed-sized blocks. The greedy policy is used in cleaning.
Dougliset al.[4] reported the poor performance of MFFS when accessing large files. Its write
performance degrades linearly with the growth of file size.

M-Systems TrueFFS [8] allows flash memory to emulate hard disks and provides DOS
and Windows file compatibility. TrueFFS is a software block device driver to be used with
an existing file system. The driver manages flash memory space as fixed-sized blocks and
is responsible to translate the file system requests from disk sectors to flash memory blocks.
Its garbage collection selects segments with the large amount of garbage, the least number
of erasures, and the most static data. It then decides which segments to clean. To ensure the
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evenly reclamation among all segments, a random selection process is also used. TrueFSS
uses a statistical approach to wear-leveling.

Linux PCMCIA [18] flash memory drivers [19,20] also uses the greedy policy in cleaning
but sometimes chooses to clean the segment that has been erased the fewest number of times.
The idea is to avoid concentrating erasures on a few segments.

eNVy [6], a large flash memory-based storage system, provides flash memory as a linear
memory array rather than an emulated disk. eNVy uses hardware support of copy-on-write
and page-remapping techniques to provide transparent in-place update semantics. Itshybrid
cleaningpolicy combinesFIFO and locality gatheringto minimize the cleaning costs for
uniform access and high locality of reference. Their simulations of a 2-gigabyte eNVy
system showed that it could support 30,000 transactions per second using the TPC-A database
benchmark.

Kawaguchiet al. [5] based on LFS to design a flash-memory based file system. The device
driver approach is used, which emulates a hard disk and supports a conventional UNIX
file system transparently. They modified LFS’s cost-benefit policy but used a different cost
measure. During cleaning, theseparate segment cleaningmethod is used in data clustering.
That is, two segments are used: one for cleaning cold segments and one for cleaning the
non-cold segments and writing the data. Hot data are thus less likely to be mixed with cold
data. Wear leveling is not implemented in their work. Their evaluations showed that separate
segment cleaning performs better than using only one segment for both the data writing and
the cleaning operations. Its performance is comparable to the 4.4BSD Pageable Memory
Based File System [21].

In our early study, theCATpolicy [9] is proposed to take into account utilization, segment
age, and the number of times segments have been erased in selecting segments to clean.
Because the number of erase operations performed on individual segments is concerned, flash
memory is more evenly worn than greedy policy and cost-benefit policy. Valid blocks in the
segments to be cleaned are migrated into separate segments depending on whether the blocks
are hot or cold. The CAT policy and the cost-benefit policy were shown to outperform the
greedy policy for high localities of reference but do not perform as well as the greedy policy
for uniform access [9,10]. Data reorganization was shown to be the most important factor
affecting cleaning performance [10].

FLASH MEMORY MANAGEMENT USING DATA CLUSTERING

Data reorganization by separating hot data from cold data can reduce cleaning
overhead [3,5,6,10–12]. Previous research [5,6,9,10] reorganizes data only at cleaning
time when migrating valid data in the segment that is being cleaned. We propose a new
data reorganization method:DAC (Dynamic dAta Clustering) approach. This approach
dynamically clusters data not only during segment cleaning, but also during data update. This
is motivated by the fact that when data blocks are updated, they are updated to another free
flash space. Then hot data and cold data can be separately clustered at this time by updating
them to separate flash memory spaces. This approach is detailed below.

The approach logically partitions the flash memory into severalregions, as shown in
Figure 1(a). Each region consists of a set of flash segments that need not physically
contiguous. The idea is to cluster data blocks of the similar write access frequencies in the
same regions. Only write operations are concerned because read operations do not incur
cleaning. Since data access frequencies may change over time, the basic operation is to
actively migrate data blocks between regions when their access frequencies change. That

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(3), 267–290 (1999)



CLEANING PERFORMANCE FOR FLASH MEMORY 271

Figure 1. State machine for data clustering

is, data blocks are moved toward theTop region (i.e. the hottest) if their update frequencies
increase, whereas they are moved toward theBottomregion (i.e. the coldest) if their update
frequencies decrease. So regions can be dynamically shrunk or enlarged.

A state machine is used for the region switching. The state machine contains several states
and the state transition diagram is shown in Figure1(b). Each data block is associated with
a state indicating the region it resides in. The starting state is ‘Bottom region’, where newly
created data blocks reside. The state switching occurs only when data blocks are updated or
when garbage collection occurs. When a data block is updated, it is ‘promoted’ to the upper
region toward the Top. That is, the obsolete data block in the original region is invalidated as
garbage and the update data are written to free space in the upper region. When a segment is
selected for cleaning, all of its valid data blocks are ‘demoted’ to the lower region toward the
Bottom. That is, all valid blocks migrate back to the lower region by being copied into free
space in the lower region.

Because the degree of hotness for a block is determined by the number of times the block
has been updated but degrades as the block’s age grows, we thus add an additional criterion
for state switching: the time threshold. If a block is to be promoted, it also has to be young
for the current region (i.e. the resident time in the current region is smaller than a certain
threshold). Otherwise, the update data are written to the free space in the current region. If
a block is to be demoted, it also has to be old for the current region (i.e. its resident time
exceeds a certain threshold). Otherwise, the block is migrated to the free space in the current
region.

By this active data migration between neighboring regions during data updating time and
during cleaning time,Top region will gather the most frequently updated data during the
recent accesses. The closer to the Top region, the hotter the block is; otherwise, the colder
it is. Therefore, data blocks of similar write access frequencies can be effectively clustered.
Figure2 shows the detailed operations.

The advantages of DAC method can be summarized as follows. First, data are clustered
in a low-overhead way during data updating and during segment cleaning. So complex
computations for determining data as hot or cold are not needed whereas they were needed
in previous research [5,9,10]. Second, data classification is more fine-grained. Instead of
classifying data into hot and cold as in previous research [5,9,10], the DAC approach is more
fine-grained since more states of data are allowed depending on the configuration of the state
machine. Since data reorganization by separating hot data from cold data can reduce cleaning
overhead [3,5,6,10–12], this fine-grained classification is expected to perform better than
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Figure 2. Algorithms for write and cleaning

classifying data into only hot and cold. Ideally, more regions are better since data blocks are
classified more fine-grainedly. However, too many regions will cause total free flash memory
space to be fragmented among more regions since each region needs free space to accept data
writing, such that the available free segments that can be assigned to regions are reduced. This
fragmentation turns out to cause erasures.

Regarding to the clustering time and clustering method used in other storage systems
[5,9–12], TableI summarizes the comparison of various data-clustering methods.

DESIGN AND IMPLEMENTATION OF A FLASH MEMORY SERVER

A flash memory server providing the DAC data clustering was implemented. The server
manages flash memory as fixed-size blocks. Every data block is associated with a unique
logical block number. Since the non-in-place update scheme is used, when data blocks are
updated, their physical locations in flash memory change. The server then uses a table-
mapping method to map logical block numbers to physical locations.
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Table I. Comparison of various data-clustering methods used in storage systems

Storage Flash memory-based file Flash memory
systems LFS [11,12] system [5] server [9,10] DAC server

Clustering Age Sorting Separate Segment Cleaning Separate Segment Dynamic Data Clustering
method (Segment-based) Cleaning (Block-based)

(i.e. sort data (i.e. classify data into hot (i.e. classify data into (i.e. classify data by their
by age) and cold) hot and cold) update frequencies)

Clustering Cleaning Cleaning Cleaning Cleaning and data update
time time

Figure 3. Data layout on flash memory

We first describe data layout on flash memory, then introduce three tables that the server
uses to speed up processing. They are translation table, region table, and lookup table. These
tables are constructed in main memory during server startup time by obtaining segment
information from flash memory and are maintained during runtime. The information stored
in the tables is only a copy of information stored in flash memory. Therefore, even if power
failures occur, these tables can be reconstructed from flash memory.

Data layout on flash memory

Figure3 shows the data layout on flash memory. Each segment has asegment headerto
record segment information such as the number of times the segment has been erased,per
block information array, etc. The per-block information array describes every block in the
segment, such as logical block number, region number, the number of times the block has been
updated, flags indicating free, valid, or obsolete, etc. Thesegment summary headerdescribes
the whole flash memory, including total number of flash segments and total number of blocks
per segment. The final segment,index segment, keeps track of thoseactive segmentsthat are
currently used for data writing in each region.
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Figure 4. Translation table and address translation

Block-based translation table

The translation table, shown in Figure4, records the physical locations for each logical
block. This table is constructed to speed up the address translation from logical block numbers
to physical addresses in flash memory. When a block is updated to another new empty
block, the old block’s per-block information is markedinvalid and the new block’s per-block
information records the logical block number. The corresponding translation table entry is
also updated to record the current physical location.

Each table entry also contains a region number indicating which region the block belongs
to and a timestamp indicating when this block was allocated in the region. The DAC state
machine uses this information to decide whether a block’s state should be switched.

Region management

Theregion table, shown in Figure5, keeps track of information for each region, such as the
active segment, a region segment list, etc. The active segment indicates the segment currently
used for data writing in the region, while the region segment list keeps track of each segment
in the region.

A free segment listrecords the available free segments. Initially, the server reads segment
headers from flash memory to identify free segments to construct this free segment list at
server startup time. When an active segment is out of free space, a segment taken from the
free segment list is used as the active segment. In the meantime, the change of active segment
is written to the index segment as an appended log. When the index segment has no free
space, it is erased first before wrapping around the log. When the number of free segments
falls below a certain threshold, the cleaner is activated to reclaim the garbage.

Segment-based lookup table

The lookup table, shown in Figure6, contains segment information duplicated from
segment headers on flash memory. Each table entry also contains a counter for counting
the number of valid blocks in the segment. The cleaner then uses this table to speed up the
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Figure 5. Region table and region segment lists

Figure 6. Lookup table to speed up cleaning

selection of segments for cleaning. An indicator, indicating the first free block available for
writing in the segment, is also included to speed up the block allocation.

SIMULATION STUDIES

Trace-driven simulation was performed to examine the effect of DAC data clustering on
cleaning performance. The impact of flash memory utilization, flash memory size, and degree
of locality of reference were examined in detail as well. To evaluate the cleaning effectiveness,
we first devised several metrics. We then introduce the simulator and traces. Finally, we
present simulation results.

Metrics

To measure the amount of work involved in cleaning, we devised a formula to express
flash memory cleaning cost. Since, before a segment is erased and reclaimed, valid data in
the segment should be migrated by copying to free space in other segments. Thus, the flash
memory cleaning cost includes erasure cost and migration cost, which can be expressed as
the following formula:

CleaningCostflash Memory

= NumberOfErase∗ (EraseCostPerSegment+ MigrateCostvalid data) (1)

The cost of each erasure on a segment is constant regardless the amount of valid data in the
segment [3,22,23], whereas the migration cost is determined by the amount of data migrated
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during cleaning. The larger the amount of valid data, the higher the migration cost. However,
the erasure cost dominates the migration cost. In order to provide better performance and
prolong flash memory lifetime, the primary goal is to minimize the number of erase operations
performed. The secondary goal is to minimize the number of blocks copied during cleaning.

Because the time to write a whole segment is about a constant ratio of the time
to erase a whole segment, we can express the ratio of write time to erase time as
WriteToEraseTimeRatio. The write cost per segment then can be expressed as:

WriteCostPerSegment= WriteToEraseTimeRatio∗ EraseCostPerSegment (2)

Then formula(1) can be re-formulated as

CleaningCostflash Memory

= NumberOfErase∗ EraseCostPerSegment

+ TotalNumberOfBlocksCopied

NumberOfBlocksPerSegment
∗ WriteCostPerSegment

= NumberOfErase∗ EraseCostPerSegment

+ TotalNumberOfBlocksCopied

NumberOfBlocksPerSegment
∗ WriteToEraseTimeRatio∗ EraseCostPerSegment

= EraseCostPerSegment∗(
NumberOfErase+ TotalNumberOfBlocksCopied

NumberOfBlocksPerSegment
∗ WriteToEraseTimeRatio

)
(3)

Since erasure cost per segment is constant, we then use the following simplified formula
derived from formula(3) as the metric to compare the cleaning effectiveness of various
cleaning policies:

SimplifiedCleaningCostflash Memory

= NumberOfErase+
(

TotalNumberOfBlocksCopied

NumberOfBlocksPerSegment
∗ WriteToEraseTimeRatio

)

(4)

Since another important goal for flash memory storage systems is wear leveling, thedegree
of uneven wearing[10] that indicates the variance of wearing for flash segments is also used
as a metric. Because the segment header of each flash segment has recorded the number of
times the segment has been erased, we created a utility to read them out from flash memory
segments and compute the standard deviation of these numbers as the degree of uneven
wearing. The smaller the standard deviation, the more evenly the flash memory is worn.

Simulator

Our flash simulator completely simulated the flash memory server except that it stores data
in a large memory array instead of flash memory. The simulator accepts the parameters as
shown in TableII . To demonstrate the DAC data clustering is very effective in reducing the
cleaning costs for various cleaning policies, the following three segment selection algorithms
are also implemented:

(a) greedy policy (Greedy)
The cleaner selects the segment with the largest amount of invalid data for cleaning.
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Table II. Simulator parameters

Flash size Flash memory size.
Flash segment size The size of an erasure unit.
Flash segment lifecycle Program/erase cycles.
Flash block size The block size that the server maintains.
Flash storage utilization The amount of initial data, relative to flash size. Data are

preallocated in flash memory at the start of simulation.
Number of regions Number of regions (i.e. the states of the DAC state machine).
Segment selection algorithm Algorithms to select segments for cleaning.

(b) cost-benefit policy [5] (Cost-benefit)
The cleaner chooses to clean segments that maximize the formula:a∗(1−u)/2u, where
u is flash memory utilization anda (age) is the time since the most recent modification.

(c) CAT policy [10] (CAT )
The cleaner chooses to clean segments that minimize the formula:u/((1 − u) ∗ a) ∗ t,
whereu is utilization,a is segment age, andt is the number of times the segment has
been erased.

For simplicity, the simulator assumes each request can be finished before arrival of next
request. The number of erase operations performed on segments, the number of blocks
copied, the simplified cleaning cost, and the degree of uneven wearing are reported for each
simulation.

Traces

Ruemmler and Wilkes [24,25] have collected the disk-level traces of HP-UX workstations
at Hewlett-Packard Laboratories. The traces cover two months of activities on three different
systems: a time-sharing computer, a file server, and a personal workstation. The personal
workstation (hplajw ) was used mainly for email and document editing. Since the usage
behaviors of personal computers are likely to be similar to what would be used on mobile
computers, hplajw traces were often used in simulations of mobile computers [4,10,26–28],
where flash memory products are typically applied. So our simulations used the hplajw traces
to drive the simulator.

The traces exhibit high locality of reference, where 71.2 per cent of writes were to
metadata [24]. Since flash memory capacity is currently small, we do not expect flash memory
to contain swap space, so traces from swap partition were excluded. This exclusion should
not have much impact on the correctness of results since swap partition occupies only 7.1 per
cent of the writes in the traces [24]. In total, 1331 Mbytes of data were written.

Simulation results for hplajw traces

Though flash memory capacity is currently small, the capacity is increasing as hardware
technologies advance. So we simulated the flash memory as large as the hard disk used in
the hplajw (i.e. 278 Mbytes). Because of the need of extra space for segment headers and
cleaning, the simulated flash memory was 283 Mbytes with 128-Kbyte erase segments. The
server maintains data in 1-Kbyte blocks. Because the typical time to write a segment is 0.4–0.6
seconds and to erase a segment is 0.6–0.8 seconds [22,23], we used 0.75 as the ratio of write
time to erase time in calculating the cleaning cost.
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Figure 7. Effect of DAC data clustering. The flash memory was 283 Mbytes with 128-Kbyte erase segments and
the block size was 1 Kbytes. The flash memory utilization was set to 85 per cent initially and hplajw traces were

used

The effect of DAC data clustering

We first measured the effect of DAC data clustering for various cleaning policies. The
number of regions (i.e. the number of states in the DAC state machine) ranged from 1 to 16.
Because the time threshold for state switching will affect the performance, to fairly compare
the effectiveness of various cleaning policies, the time threshold was not set. That is, a block’s
state is promoted every time it is updated and demoted every time the segment it belongs to
is selected for cleaning. The effect of time threshold was measured in the next simulation.
Because cleaning activities were low under low utilization, in order to measure the cleaning
overhead, flash memory utilization was initially set to 85 per cent by writing enough blocks
in sequence to fill the flash memory to 85 per cent of flash memory space, then hplajw traces
were used.

Figure7 shows the results. When DAC data clustering was not used (i.e. the number of
regions is 1), each policy incurred high cleaning cost. However, when DAC data clustering
was used (i.e. the number of regions is more than 1), the numbers of erase operations
performed and blocks copied for each policy were significantly reduced. Cleaning cost was
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Figure 7. Continued

thus greatly reduced. For example, CAT incurred 19.7–20.5 per cent fewer erase operations,
76–87.4 per cent fewer blocks copied, and 29.3–30.5 per cent less cleaning cost, as shown in
Figures7(a)–(c). Among all algorithms, CAT performed best and Greedy performed worst.

The results also show that for this workload, the number of erasures did not have prominent
variance when the number of regions was greater than 3. This is because the further reduction
of erasures is little as the number of regions is increased, while increasing the number
of regions causes the effect of fragmentation of free space among more regions. This
fragmentation turns out to incur erasures. Therefore, the number of regions was set to 4 in
the rest of simulations.

Figure7(d)shows that CAT performed best in the wear leveling whereas flash memory was
worn unevenly for Greedy and Cost-benefit. This is because only CAT formula takes even
wearing into account in selecting segments to clean.

Varying the time threshold for state switching

The time threshold for state switchingis an additional parameter to control whether a
block’s state must be promoted when the block is updated or must be demoted when the
segment the block belongs to is selected for cleaning. Figure8 shows the results of varying
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Figure 8. Effect of varying the time threshold for state switching in the DAC state machine. The flash memory was
283 Mbytes with 128-Kbyte erase segments and the block size was 1 Kbytes. The flash memory utilization was set

to 85 per cent initially and hplajw traces were used

the time threshold. We found that under this workload, for a 4-state DAC state machine, not
to set the time threshold (i.e. labeled ‘*’ in the x-axis) is better than to set it. However, in our
experiences with the other workloads (e.g. workloads in the simulations for varying localities
of reference), setting the threshold can further reduce cleaning overhead. Therefore, whether
setting the time threshold for region transition improves performance depends largely upon
workloads and data access behaviors.

Varying flash memory utilization

Since our DAC data clustering significantly improved performance under high utilization,
we wanted to find out how performance varies under various degrees of utilization. Therefore,
before each run of simulation, we wrote enough blocks to sequentially fill the flash memory
till the desired level of utilization. Then hplajw traces were used in the simulation. The DAC
state machine was configured with 4 states.

Figure9 shows that as the utilization increased, performance degraded for each policy. The
degradation is because more space was occupied by valid data and then more cleaning was
needed in order to reclaim free space. Therefore, the effect of different cleaning methods was
especially prominent for higher utilizations. For example, at utilizations above 70 per cent,
each policy degraded dramatically when DAC data clustering was not used, whereas each
policy degraded gradually when DAC data clustering was used. At 90 per cent utilization, the
reduction of cleaning costs when using DAC data clustering were 33.8 per cent for Greedy,
41.8 per cent for Cost-benefit, and 48.5 per cent for CAT.

Varying flash memory size

In order to know the impact of flash memory size on the cleaning, the traces were
preprocessed to map to flash memory space before simulation. Figure10 shows that as the
size of flash memory increased, each policy performed better since more free space was left
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Figure 9. Varying flash memory utilization. Policies used with DAC data clustering were labeled ‘On’ in the
legends; otherwise, they were labeled ‘Off ’. The flash memory was 283 Mbytes with 128-Kbyte erase segments.

Block size was 1 Kbytes and hplajw traces were used

and then cleaning was less needed. However, performance for each policy depended largely
on flash memory size when DAC data clustering was not used, whereas each policy performed
well for various sizes when DAC data clustering was used (4-state DAC state machine was
used in this simulation).

Varying degree of locality

Because HP traces exhibit high localities of reference, we wanted to find out whether DAC
data clustering performs well for various localities of reference. A workload generator was
created to generate workloads for different localities of reference, which was based on the
hot-and-coldworkload used in the evaluation of Sprite LFS cleaning policies [11,12]. The
generated workload was 14-day write references. In total, 192-Mbyte data were written to
flash memory in 4-Kbyte units. The arrival rate of requests is Poisson distribution.
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Figure 9. Continued

Figure 11(a) shows the results. We used the notation ‘x/y’ for locality of reference, in
which x% of all accesses go to y% of the data while (1-x)% goes to the remaining (1-y)% of
data. As the locality increased, when DAC data clustering was not used, the cleaning costs
for each policy were greatly increased. This is because hot data and cold data were mixed
together, which increased the cleaning overhead. When DAC data clustering was used (4-
state DAC state machine was used in this simulation and the time threshold for state switching
was not set), the cleaning costs for each policy were dramatically decreased. This is because
hot data were successfully separated from cold data, such that cleaning costs were largely
decreased. This effect is especially prominent for higher localities of reference. The reduction
of cleaning costs when DAC data clustering was used were 1.9–28.5 per cent for Greedy,
0.5–61.5 per cent for Cost-benefit, and 0.8–65.6 per cent for CAT. This shows that DAC data
clustering can significantly reduce cleaning costs by effective data clustering.
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Figure 10. Varying flash memory size. Policies used with DAC data clustering were labeled ‘On’ in the legends;
otherwise, they were labeled ‘Off ’. The segment size was 128 Kbytes and the block size was 1 Kbytes. The flash

memory utilization was set to 85 per cent initially and hplajw traces were used

Figure11(b)shows that setting the time threshold for state switching is beneficial for this
kind of workloads. When the threshold was set to 84 minutes (arbitrarily chosen), cleaning
costs can be further reduced as compared with those when the time threshold was not set:
0.3–12.5 per cent for Greedy, 0.4–12.5 per cent for Cost-benefit, and 0.6–12.5 per cent for
CAT.

PERFORMANCE EVALUATIONS

A flash memory server utilizing DAC data clustering was implemented on Linux in
GNU C++. TableIII summarizes the experimental environment. In order to measure the
effectiveness of DAC data clustering for various cleaning policies, three policies were also
implemented in the server: greedy policy (Greedy), cost-benefit policy [5] (Cost-benefit),
and CAT policy [9,10] (CAT ).
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Figure 10. Continued

Because we wanted to know whether DAC data clustering performs well for combination of
different workloads, a synthetic workload combining random access and locality access was
created. The workload contained 4-phase data accesses: the first and the third phases were
locality access in which 90 per cent of accesses were to 10 per cent of data; the other phases
were random access. Since read operations do not incur cleaning, the workload focused on
data updates that incurred invalidation of old blocks, writing of new blocks, and cleaning. In
each phase, 40-Mbyte data were written to flash memory in 4-Kbyte units. Totally, 160-Mbyte
data were written.

To initialize the flash memory, enough blocks were written in sequence to fill the flash
memory to 90 per cent of flash memory space. Benchmarks were created to overwrite the
initial data according to the synthetic workload. The block size that the server managed is 4
Kbytes. The number of states with which DAC state machine was configured ranged from 1
to 4. The time threshold for state switching was set to 30 minutes. In each run, the number of
erase operations performed, the amount of blocks copied, and the average throughput were
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Figure 11. Varying localities of reference. Policies used with DAC data clustering were labeled ‘On’ in the legends
when the time threshold for state switching was not set, were labeled ‘On*’ when the time threshold was set;
otherwise they were labeled ‘Off ’. The flash memory was 24 Mbytes with 128-Kbyte segments and the block size
was 4 Kbytes. The flash memory utilization was set to 85 per cent initially and the workload for locality of reference

was used

measured. The throughput was obtained from dividing 160 Mbytes by the elapsed time for
the synthetic workload.

Figure12shows that applying DAC data clustering (i.e. the number of regions is more than
1) is beneficial for each policy. Large amounts of erase operations and blocks copied were
reduced and the average throughput was largely increased as well. For example, CAT incurred
15.8–21.83 per cent fewer erase operations, 19.96–27.55 per cent fewer blocks copied, and
16.33–22.56 per cent less cleaning costs. The throughput improvement was 18.89–27.05 per
cent. Figure12(e)shows that flash memory was more evenly worn for CAT.
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Table III. Experimental environment

Hardware:
PC: Pentium 133 MHz, 32 Mbytes of RAM
PC Card Interface Controller: Omega Micro 82C365G
Flash memory: Intel Series 2+ 24Mbyte Flash Memory Card [23]

(segment size:128 Kbytes)

Software:
Operating system: Linux Slackware 96

(kernel version: 2.0.0, PCMCIA package version [19,20]: 2.9.5)

Figure 12. Performance results of DAC data clustering for synthetic workload
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Figure 12. Continued

The above results demonstrate using DAC data clustering that effectively clusters data
according to write access frequencies can substantially reduce cleaning overhead. The results
also show that applying an effective cleaning policy can further reduce the cleaning overhead.
CAT performed best among all policies.

Discussions for time and space overheads

In our implementation of the server, the region table, translation table, and lookup table
are constructed in main memory. They are used to speed up processing. To store these tables
requires a substantial amount of main memory: 12 bytes per region, 13 bytes per block, and
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Figure 12. Continued

17 bytes per segment. However, it is a trade-off between space consumption and performance.
Because current flash memory capacity is still small, the space overhead is limited. For
example, for a 24-Mbyte flash memory with 128-Kbyte segments, 4-Kbyte blocks, and four
regions, these tables take up 78 Kbytes of main memory.

CONCLUSION

Flash memory is expected to be largely used as the increase of capacity and the decrease
of price. Large erases and writes will be created and wear leveling will be very important.
Effective cleaning policies help to maximize the flash memory lifetime, improve system
performance, and reduce power consumption. In this paper, we have presented a data
reorganization technique for clustering frequently accessed data to improve cleaning
performance. Data are clustered dynamically according to their write frequencies.

We have detailed the implementation of a flash memory server utilizing the proposed
data clustering technique. Performance is evaluated through implementation and trace-driven
simulations with a variety of cleaning algorithms. Experiments with synthetic workloads
showed that by applying the proposed method, cleaning costs for various cleaning policies
were significantly reduced by 9.5–22.56 per cent and throughputs were improved by
9.9–27.05 per cent. Simulations with real-world traces showed that cleaning costs were
reduced by 17.8–30.5 per cent. Flash memory lifetime is thus extended, system throughput
is largely improved, and flash memory is evenly worn. In examining the degree of wear-
leveling and exploring the impacts of flash memory utilization, flash memory size, and degree
of locality of reference, the proposed method all performed well.

Several factors are important in determining how well the DAC data clustering will work
in a given environment, such as the configuration for the number of states in the DAC state
machine and the setting of the time threshold for state switching. In our experience, these
factors are highly dependent on workload. We also noticed that different segment selection
algorithms perform differently for the same setting of factors.

The proposed method can not only be used in flash memory, it can also be used in
other applications that can benefit from data clustering or need segment cleaning. For
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example, in our evaluations and simulations, the number of blocks copied during cleaning
was significantly reduced. This result suggests that applying the proposed method is also
beneficial to segment cleaning in the log-based disk systems, which have no erasure cost
and consider only reducing the number of blocks copied to improve cleaning performance.
The other promising application is applying the DAC data clustering to cluster hot disk data
together near the center of disk to reduce seek times in disk storage systems. Clustering
frequently accessed data can reduce seek times and improve disk performance has been shown
in many researches [29–34].
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