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FRACTAL EXTRACTION FROM A MIXED FBM SIGNAL USING

DISCRETE WAVELET TRANSFORMS†

Bing-Fei Wu* and Yu-Lin Su
Department of Electrical and Control Engineering

National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

Key Words: fractional Brownian motion, wavelet transform.

ABSTRACT

Since stationarity, ergodicity and self-similarity for the discrete
wavelet transform of fractional Brownian motion (fBm) processes have
been shown in previous works, these characteristics could be applied
to extract the parameters of two fBm signals from a mixed fBm signal
using time-average correlation functions. The goal of this paper is to
distinguish the two identical power fBm signals from the mixed sig-
nal. In this case, we suppose that the mixed signal is available, but
information on the parameters of the two fBm signals is not provided.
A method is proposed to find the parameters of these two fBm signals.
The smaller parameter can be detected from the fractal dimension of
the mixed fBm signal. The parameter of the other fBm is estimated by
processing the wavelet coefficients of the mixed fBm signal. Finally,
the simulation results showed that this approach works well in increas-
ing the difference between the parameters of the two fBms.

I. INTRODUCTION

Two fractional Brownian motion (fBm) signals
with different fractal dimensions added have been
shown to have multifractal behavior under the defi-
nition of multifractals with the q-th order informa-
tion dimension. Arneodo et al. discussed an fBm sig-
nal with a single fractal dimension (1991). Two fBm
signals with different fractal dimensions added were
shown to have multifractal behavior under the defi-
nition of multifractals (Bunde and Havlin Eds, 1991)
(Takayasu, 1992). The q-ih order information dimen-
sion approaches the one with the smaller H. Various
methods to estimate the single fractal dimension for
an fBm signal were summarized by Gache, Frandrin
and Garreau (1991). Kaplan and Kuo (1993) proposed
a modified EM (estimate-maximize) algorithm to

separate two fBm signals, i.e., one with H=0 and the
other one with an unknown H. Wornell (1995) pre-
sented an optimal Bayesian detector to discriminate
between Gaussian j processes in a background of sta-
tionary white Gaussian noise, where the stationary
white Gaussian noise was a special case correspond-
ing to H=0. Fieguth and Willsky (1996) developed a
multiscale Haar to estimate the Hurst parameter H of
an fBm signal with noise. Chen, Erdol and Bao (1996)
used a best matched wavelet tree to filter noise. How-
ever, the aforementaioned studies proposed estima-
tor/detector/filter to distinguish an fBm's parameter
from the environment with additional stationary white
Gaussian noise, a special case of fBm corresponding
to H=0. Here, we propose a method based on dis-
crete wavelet transforms (DWT) to identify two iden-
tical power signals from a mixed fBm signal, where
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*Correspondence addressee

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
45

 2
8 

A
pr

il 
20

14
 



172 Journal of the Chinese Institute of Engineers, Vol. 22, No. 2 (1999)

information on the parameters of the two fBm sig-
nals is not available. The combined fBm signal will
be shown to have multifractal properties under the
definition of the q-th order Renyi information dimen-
sion. The Renyi information dimension agrees with
the capacity dimension when q->0 (Takayasu, 1992).
The O-th order Renyi information dimension of the
combined fBm signal will be presented in Section II
to approach the fBm signal with smaller H parameter
as the increment of fBm approaches zero. Since the
simulation results showed that the activity of the
mixed fBm signal is similar to the fBm signal with a
smaller H, the method proposed herein is estimating
the 0-th order information dimension of the fBm with
a smaller H by directly estimating the fractal dimen-
sion of the mixed signal. The other signal is pre-
dicted by using proportional power processing or the
Wiener filter on discrete wavelet transforms. In this
study, we propose two methods for the proportional
power factors. One uses suboptimal filters to mini-
mize the variance of the extraction error. The other
uses proportional factors with dyadic decaying. In
1996, a de-noising function named "wden.m" was
developed. This de-noising function, which is sup-
ported by Matlab 5.0, filters out noise for a given
signal with noise. Here, we use the "de-noising" func-
tion to extract one of the fBm signals with a large H
if the "signal" denotes the fBm signal we wanted, and
the other fBm signal denotes the "noise". Simula-
tion results are presented to compare the two kinds
of filters and the "de-noising". Although the error of
the extracted signal is not greater than -20 db, the
fractal dimension of the extracted signal is close to
the true dimension using the method of a Wiener fil-
ter on DWT.

The multifractal properties of a mixed fBm sig-
nal are derived in Section II. The extraction algo-
rithms are proposed in Section III. Simulation
results are shown in Section IV.

II. MULTIFRACTALS OF A COMBINED FBM
SIGNAL

The multifractal characteristics of a mixed fBm
signal are shown herein. The estimated fractal di-
mension for the mixed fBm signal will approach the
dimension of the fBm signal with a smaller H. Let
B\(t) and B2(t) be two fBm processes, then the incre-
ments, defined as

xi(t,T)=Bl(t+z)-B2(r),

X2(t,T)=B2(t+T)-B2(T), (1)

have a Gaussian distribution (Falconer, 1990; Peitgen
and Saupe edt., 1988) with zero mean and variances

of CT^

functions are

2, i.e., the probability density

-),

r2
X2

2o2\t 2H,
(2)

Suppose that X\(t,x) and x2{t,x) are independent
and WLOG, H\>H2. Then the composed signal

x{t,X)=Xx{t,X)+X2{t,X) (3)

is also Gaussian with zero mean and a variance of
CT^crf+cr^c^d^'+KI2"2) ^ j e ? t^e probability den-
sity function of x(t,x) is

Px(x)=
x

exp(- (4)

Based on the g-th order Renyi information di-
mension (Takayasu, 1992), let /*,- denote the probabil-
ity that a point belongs to the i-th cube with cube size
Ax=S1. Then

= j

= c,< (5)

and the g-th order Renyi information dimension for
the fBm process with parameter H2 is written as

-2(1 -q)\ogS}

lim
<5->0

(Since, t, 8eR, there exists t such that t=8.)

= lim
5 - log<5
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4.5
Tau(q)=(1 -q)Dq v.s. q, where Dq is the q-th order inform, dim. Autocorrelation ol DWT for the mixed fBm:H1=0.75, H2=0.1
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Fig. 1. Multifractal characteristics for the mixed signal, i.e., one
with #=0.1, the other with #=0.75.
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Fig. 2. Autocorrelation function of the wavelet coefficient for the
mixed signal, i.e., one with H\=0J5, the other with H\=0.1.

= 2-H2, (6)
a(M, k) - a'(M,k)

where Ca = (J-)\ A ^ . With the same defi-

nition, the ^-th order information dimension for the
two added fBm signals with H\ and H2 is manipu-
lated by

Dq(mixed)

- l)log<5}

= 2-H2-\im{

= 2-H2~D(H2).

- log<5
(7)

(8)

Eq. (7) shows that the mixed fBm signal has
multifractal characteristics. Fig. 1 also shows this
property. Eq. (8) expresses that the q-th order di-
mension of the mixed signal approximates the fBm
with a smaller H as the increment t approaches zero.

III. FRACTAL EXTRACTIONS

In this case, we suppose that the mixed signal is
available, but information regarding the parameters
of the two fBm signals is not available. Since the
simulation results showed that the activity of the
mixed fBm signals is similar to the fBm signal with
smaller H, (See Fig. 2), the method proposed herein
can be utilized to estimate the q-th order information

Fig. 3. Extraction using proportional power processing

dimension of the fBm with a smaller H by directly
computing the fractal dimension of the mixed
signal. The other signal can be predicted by using
proportional power processing or a Wiener filter on
discrete wavelet transforms.

1. Proportional Power Process

The proportional power process diagram is
shown in Fig. 3. The proportional factors b(m), m=\,
2, ..., M, are chosen using two methods. One uses
dyadic factors, the other is calculated under the mini-
mum variance sense.

(i) Dyadic Factors

The dyadic factor process is summarized in the
following. Let x\ and x2 denote two fBm signals. For
X\ with a large H{HX) and x2 with a small H(H2),
x=x\+x2, and a{m,k) and d(m,k) denote the scaling and
wavelet coefficients, respectively. Let the extracted
wavelet coefficients for the fBm with a large H, de-
noted by de(m,k)H] be scaled from the wavelet coeffi-
cients of the mixed fBm signal d{m,k) by factor b(m)
as

de(m,k)H=b(m)d(m,k), (9)

for m=\, 2, ..., M and b(M)=l. Also, let the extracted
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scaling coefficient at the resolution 2 M be ae(M,k)H =
a(M,k). For experience, the proportional factor b(m)
can be given by ,

b(m) = 1 (10)
2

for ra=l, 2, ..., M. Then, the signal x, is extracted
by iteratively reconstructing the discrete wavelet
transform from the resolution 2~M to 1.

(ii) Suboptimal Factors

The process is similar to the dyadic factor pro-
cess, but the factor b(m) is required to minimize the
variance of the extracting errors, i.e.,

de(m,k)H=b(m)d(m,k),

-XfQC'-XJ},
b(m)

(ID

w h e r e Xx=[xx [ 1 ]xx [2]...xx [N-\ ] ] T a n d X\ =
[xe

x[0]xe
x[l]...xe

x[N-l]]T, x
e
x=xexl=xx. U s i n g t h e

linear operators H and G and the reconstruction for-
mula (Su and Wu, 1998), Xx and X\ can be expressed
as

Xl=HTax+GTd

= HTa\f+HT GTdl
M+HT GTdl

M_x

DWT

a(M,k) = a'(M,k)

x7[n] d(m,k)
Wiener Filter : Wn

d'(m,k)

WWT
xCI,[n] =

Fig. 4. Extraction using Wiener filter.

1-1

-Trace{HT ' GT£{d]
mdT

M}GH"

=0 (14)

Here, we assume dh dj and aM are uncorrelated
for fcj to simplify the problem. Therefore, the opti-
mal factor b(m) is obtained as

b(m) =

Trace{HTGT£{dmdT
{X)M_x)GHM-2+...+HTGT£{dmdT

{X)X}G}

7TrnrpiHT"">GTF(d /* r UW" ~' 1

(15)

where aM=[a(M,O)a(M,l)...a(M,-%:-l))T, dm=

I / / I YVt I I I / i I YM 1 I // I V¥t — 1 1 1 J1 n fl / / ~~*

[rf(l)(m,O)rf(1)(rn,l)...rf(l)(m,-^—I)]7" is d{l)(m,k) the

wavelet coefficient of xx. The linear operators #m_i
and Gm_] are two -^-x j ^ _ [ matrices, m^l, whose

entries are defined as

HTGTd\ (12) and

XM 7-M-l T x M - 2 7-

= HT aM+HT GTdMb(M) + HT GTdM_xb(M-

(13)

Substitute Eq. (12) and Eq. (13) into Eq.(ll) and take
the partial derivative with respect to b(m), then set it
equal to zero, i.e.,

= 2b(m)Trace{HT ' GT£{dmdT
m}GHm-1} + •••

+ b(l)Trace{HT""lGT£{dmdT
]}G

+ b(l)Trace{GT£{dld
T

m}GH'"-]}

+ Trace{HT'"']GT£{dmdT
M}HM}

+ Trace{HTM£{aMdT
m}GHm->}-...

(16)

where h and g are the mirror filters for DWT. For
simplicity, dm and <i(i), are assumed to be uncorrelated
for i*m such that the suboptimal factor becomes

bim) =
Trace{HTGT£{dmdJX)m}GHM-]}

2Trace{HT""tG T£{dmdT
m }GH

M~
(17)

This method has one disadvantage which is that
d(i)OT must be given. It is useless for the implementa-
tion in actual practice since we assumed no prior in-
formation about x\.

2. Wiener Filter

Since the wavelet coefficient of an fBm signal
is stationary (Su and Wu, 1998; Wu and Su, 1998a)
and ergodic (Wu and Su, 1998b), the Wiener filter
can be applied to process the wavelet coefficient. The
proportional power process with the Wiener filter dia-
gram is shown as Fig. 4.

The Wiener filters (Widrow and Stearns, 1985)
Wm are described as below:
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-0.005

-0.01

-0.015

-0.02

-0.025

Extracting Signals using 3 methods:

solid line-designed signal (H-0.75)
dotted line=extracted by proportional power method
dashed line -extracted by toolbox
dashdot line -extracted by optimal

. x 10' Ideal low pass filter: length=N/128

50 100 150
n

200 250 300

Fig. 5. Extracted signals using three methods: suboptimal factors,
proportional factors and "de-noising" function in Matlab
5.0, where the solid-line denotes the designed signal, the
dotted l:ne denotes the proportional factors, the dashdot
line denotes the suboptimal factors and the dashed line
denotes the "De-noising" function.

yym\ryn

' 2 '

(18)

The procedures of the adaptation algorithm are
summarized in the following:
Step 1. Take M-level DWT for the combined fBm

signal, x[n]=A:i[n]+jc2[n], «=0, 1, ..., N-l, to
obtain the scaling coefficient a(M,k) and the
detail coefficients d(m,k), m=l, 2, ..., M.

Step 2. Let a(M,k)=a(M,k).
Step 3. Process d(m,k)=Wm(k)d(m,k).
Step 4. Take the inverse DWT of a(M,k) and d(m,k),

m=l, 2, ..., M to obtain the extraction signal
xext[n]=S(0,N-\).

Step 5. Update x[n]=x[n+l], n=0, 1, ..., N-2, n[N-
l]=x[N], then repeat Step 2 to Step 5.

IV. SIMULATION RESULTS

Consider two sampled fBm processes (Kaplan
and Kou, 1993), denoted respectively by X[[n] =
BH](nAt) and x2[n]=BH2(nAt), where neZ and At is
the sampling period. The autocorrelation of B is de-
noted by

2H 2H
nx-n2

2H

(19)

solid line= designed signal (H=0.75), dotted Iine=ex1racted signal

1000 1200

Fig. 6.

10

Extraction signal by an ideal filter, where the solid-line
denotes the designed signal and the dotted line denotes
the extracted signal.

Hamming filter: hamming(N/8)

o 2

-6

solid-line: designed signal xi (H-0.75)

dotted line: extracted by Hamming filter

> : i * , =?

200 400 600
n

800 1000 1200

Fig. 7. Extraction signal using Hamming filter, where the solid-
line denotes the designed signal and the dotted line de-
notes the extracted signal.

Let At=l and choose Haar basis for simplicity,
that is h[0]=h[l]=g[0]=-g[\]=^. We used the spec-

v2
tral synthesis method (Peitgen and Saupe edt., 1988)
to generate two independent fBm signals with differ-
ent parameters and chose H^O.75 and H2=0.l. The
simulated data length was 2048. The extraction re-
sults shown in Fig. 5 represent the comparison of the
dyadic factors, the suboptimal factors and the "de-
noising" function supported by Matlab 5.0. The first
two methods performed better than the "de-noising"
function. Figs. 6 and 7 show the signals extracted by
an ideal low-pass filter and a Hamming filter respec-
tively. No matter what cut-off frequency was chosen
for the ideal filter or what parameters were chosen
for the Hamming filter, the extraction results were

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
45

 2
8 

A
pr

il 
20

14
 



176 Journal of the Chinese Institute of Engineers, Vol. 22, No. 2 (1999)

Table 1. Fractal dimensions extracted from the mixed fBm signal with dB SNR uisng Wiener filters pro-
cessed on wavelet coefficients

0.75
0.9
0.6
0.75
0.9
0.6
0.75
0.9
0.6
0.75
0.9
0.75
0.9

" l(,mean)

0.7387
0.8449
0.6200
0.7387
0.8449
0.6200
0.7387
0.8449
0.6200
0.7387
0.8449
0.7387
0.8449

H\(std)

0.0206
0.0175
0.0210
0.0206
0.0175
0.021
0.0206
0.0175
0.0210
0.0206
0.0175
0.0206
0.0175

Mixed

H2m 1

0.
0.
0.1
0.1
0.1
0.2
0.2
0.2
0.35
0.35
0.35
0.5
0.5

fBm signal

-*2(mean)

0.1953
0.1953
0.2545
0.2545
0.2545
0.3189
0.3189
0.3189
0.4260
0.4260
0.4260
0.5413
0.5413

H\(std)

0.0147
0.0147
0.0177
0.0177
0.0177
0.0135
0.0135
0.0135
0.0175
0.0175
0.0175
0.0181
0.0181

r

0.0385
0.0219
0.0153
-0.0114
0.0112
0.0133
0.0108
0.0484
-0.0531
0.0054
0.0018
-0.0063
-0.0060

H

mean

0.7234
0.8394
0.6470
0.7348
0.8586
0.6508
0.7426
0.9022
0.7003
0.7678
0.9139
0.8156
0.9317

I

Std.

0.0256
0.0276
0.0646
0.0138
0.0268
0.0684
0.0326
0.0194
0.0915
0.0213
0.0138
0.0432
0.0176

H

mean

0.0050
0.0030
0.1014
0.1086
0.0858
0.2040
0.1964
0.1762
0.2490
0.3353
0.3432
0.4786
0.4923

2

Std.

0.0198
0.0178
0.0187
0.0388
0.0232
0.0255
0.0231
0.0361
0.0160
0.0276
0.0297
0.0351
0.0328

r

-0.2943
-0.2790
-0.4027
-0.3930
-0.6564
-0.6523
-0.3548
-0.6668
-0.4609
-0.6782
-0.6730
-0.5067
-0.5590

• std. = standard deviation. "MonteCarlo runs. (D) denotes the designed value.
• H\(Or 2)(mean) and #i(Or2)(*fc/) denote the calculated values for the generated fBm signals with parameter //i(Or2)(D)

using the box-counting method.
• r denotes the correlation coefficient.

x1 (solid-line) and xgxt

100 150 200 2S0 300 350 400 4S0
-0.01

Fig. 8. Extracted signal using the Wiener filter, where the solid-
line denotes the designed signal and the dotted line de-
notes the extracted signal.

worse. Fig. 8 shows the signal extracted by the
Wiener filter using the detail coefficients method.
The result of the Wiener filter method is very similar
to the result of the dyadic factor seen in the simula-
tion. Since the two fBm signals have the same power
and the extracted signal xext still correlates with x2

(see the correlation coefficient r in Table 1), it is dif-
ficult to extract the signal precisely without any prior
information. However, it is possible to estimate the
fBm parameters from the extracted signal xext. A
simulation with 11 Monte-Carlo runs for the H

extraction using the Wiener filter method for differ-
ent fBm parameters is shown in Table 1. In the simu-
lation, the parameters H\ and H2 were calculated by
the box-counting method, and the parameters H t and
H2 were computed by the fractal extraction method
useing the variance estimator. Table 1 shows that
(1) H2 can be estimated by the mixed fBm signal; (2)
Hi can be detected by the Wiener filter method on
DWT; and (3) it is difficult to correctly extract the
H\ the parameter when H2 approaches H\.

White Gaussian noise with H2 equal to zero is a
special case. For this case, Wornell and Oppenheim
(1992) and Kaplan and Kuo (1993) proposed a
maximum likelihood method and a modified
maximum likelihood method to estimate the param-
eter H from the fBm signal added white Gaussian
noise with a 10 dB signal to noise ratio (SNR).
Wornell and Oppenheim's (WO) algorithm, Kaplan
and Kuo's (KK) method and the fractal extraction
using the Wiener filter are summarized in Table 2
using simulated fBm data. Here, the parameter
$H$ estimation in the fractal extraction method
uses the variance estimator. For a 10 dB SNR, the
fractal extraction method does not perform as well as
the WO and KK algorithms, but it still works to iden-
tify the fBm signal from the noisy background.
Furthermore, it also works well in a 0 dB SNR
enviroment. Since the method used in the WO and
KK algorithms is better than the variance estimator
to calculate the parameter H, the results will be bet-
ter if the variance estimator in the fractal extraction
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Table 2. Fractal dimensions extracted from white Gaussian noise background using Wiener filters pro-
cessed on wavelet coefficients

Noise

With/Without

Without

With

With

SNR

10 dB

OdB

True

H

0.9
0.75
0.9
0.75
0.9
0.75

mean

0.846
0.683
0.894
0.760

--
--

WO

Std.

0.021
0.026
0.032
0.040

--
--

KK

mean

0.899
0.748
0.917
0.770

--
--

Std.

0.017
0.017
0.019
0.029

--
--

Fractal

mean

0.826
0.717
0.874
0.757
0.839
0.723

Extract

Std.

0.021
0.022
0.012
0.039
0.028
0.026

• std. = standard deviation. "Monte Carlo runs for fractal extraction.
• The data for WO and KK simulation is from (Womell and Oppenheim, 1992) and the data length is 2048.
• The data length for the fractal extracted simulation is 2048.
• H(mean) and H(std) denote the calculated values for the generated fBm signals with parameter //(D) using the box-

counting method.

is replaced by the method used in the WO or the KK
algorithm.

V. CONCLUSION

The characteristics of stationarity, ergodicity
and self-similarity for the DWT of fBm processes can
be applied to extract fBm parameters from a mixed
fBm signal. Information on the parameters of the
two fBm signals is not provided. The signal to noise
ratio will be improved to about 20 dB after the pro-
cess, where the "signal" denotes the wanted fBm
signal and the other fBm signal is referred to as
"noise". In general, the error of this extraction
method depends on the high frequency term of
the "signal" plus the low frequency part of the
"noise", under the uncorrelated assumption for the
two fBm signals. This method is useful in compari-
sons with the traditional generalized cosine filter
(ideal low pass/hamming/hanning/Kaiser). Although
the extracted signals are not similar enough to the
original signals, their parameters can be detected by
the method herein. The potential application of our
approach is to detection/noise cancellation in a com-
munication field without any auxiliary noise sources.

d(m,k)

NOMENCLATURE

a(M,k)

a\M,k)
a(m,k)
b(m)

scaling coefficient with translation in-
dex k at M-th scale level
extracted scaling coefficient
estimated scaling coefficient
a scaling factor

B\(t), B2(t) fBm signals
Cq constant value
d(m,k) wavelet coefficient with translation in-

dex k at m-th scale level
de(m,k) extracted wavelet coefficient

estimated wavelet coefficient
vectors composed of d(m,k), k=0, 1, 2,
..., - ^ — 1 , for x and x{, respectively

q-th order Renyi information dimension
expected value

8

h
Hm-X

H
P(x)
P
r

7

RB

Wm

Z
o
8
Ax=81

mirror imer
-^r x , matrix2m 2m-{

mirror filter
\ 7 \T

2m X
2 m-l m a t n X

fBm parameter
probability density function
probability
correlation coefficient for the designed sig-
nals
correlation coefficient for the estimated sig-
nals
autocorrelation function of B
Wiener filter
integer set
standard deviation
step size
cube size
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