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ABSTRACT

Symmetric filters and symmetric extension of image edges have
been widely used in wavelet image compression. Since the filters are
symmetric, it is possible to take advantage of the symmetric property
to reduce the computational complexity for the filtering. In this paper,
we present a fast convolution algorithm for the discrete wavelet trans-
form (DWT) and the inverse DWT (IDWT) such that the transform
time can be greatly reduced. Compared with regular convolution, the
new algorithm can decrease the multiplication operations by nearly one
half. Converted into real programming, it sped up the DWT and IDWT
in our experiments by at least 12% and 55%, respectively. Incorpo-
rated with enhancing zerotree coding, the proposed algorithm results
in a rapid and efficient coder. Experimental results showed that the
coder is competitive with other high performance coders. The pro-
posed convolution algorithm is also suitable for many types of wave-
let-based coding, including wavelet video coding.

I. INTRODUCTION

Transform coding is a favorite technique in im-
age compression. It has become a key component in
international video communication standards
(Pennebaker and Mitohell, 1993). In the past de.cade,
the discrete cosine transform (DCT) has bee.n tfygmost
popular transform because it provides almost optimal
performance and can be implemented at an accept-
able cost. However, recently the discrete wavelet
transform (DWT) has received more attention because

it can solve the blocking effect introduced by the DCT
and it is particularly well adapted to progressive trans-
mission (Antonini et al., 1992). Furthermore, the
pyramid-like multiresolution decomposition by the
DWT can produce some degree of self-similarity
across different scales, which is helpful in image com-
pression.

Shapiro (1993) has introduced the embedded
zerotree wavelet (EZW) algorithm, (Shapiro, 1993)
which takes advantage of the features of DWT, and
he has shown that the EZW is not only competitive

†Invited paper
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in its performance with the most complex techniques,
it is also extremely fast in its execution. In addition,
the set partitioning in hierarchical trees (SPIHT) (Said
and Pearlman, 1996) and the space-frequency quan-
tization (SFQ) algorithms (Xiong et al., 1997), etc.,
have also shown that DWT-based coders obtain per-
formances much superior to JPEG or to most of the
other DCT-based coders. Specifically, SPIHT inter-
rupts the simultaneous progression of efficiency and
complexity. It is almost the best coder in the litera-
ture no matter if the comparison concerns perfor-
mance or execution time. Because of the advantages
of DWT-based coders, Martucci et. al. (1997), have
transferred DWT-based techniques from gray level
image coding to video compression.

However, many of the high performance DWT-
based coders, such as EZW and SPIHT, have to take
most of the CPU time to perform the transformation.
Thus, reducing the transform time in DWT or inverse
DWT (IDWT) is the crucial issue in decreasing the
total execution time of these coders. This problem
has motivated researchers to develop fast convolu-
tion algorithms for DWT IDWT.

Two approaches are frequently used to improve
performance in wavelet image compression. One
approach selects a pair of biorthogonal linear phase
filters, and the other approach uses symmetric exten-
sion of the image edges (Said and Pearlman, 1996;
Xiong et al., 1997). It is well-known that orthogonal
wavelets have the merit of energy preservation. How-
ever, the orthogonal wavelets are highly constrained,
which allows for little design flexibility. For ex-
ample, it is desirable that the finite impulse response
(FIR) filters used are of the linear phase, since such
filters can be easily cascaded in the pyramidal filter
structures without phase compensation (Antonini et
al., 1992) and the corresponding coder can obtain
improved performance. Unfortunately, there are no
orthogonal linear phase FIR filters with the exact re-
construction property except for some trivial cases
(such as the Haar filter). To preserve the linear phase
(corresponding to the symmetry for the wavelet) prop-
erty, one can relax the orthogonality requirement by
using biorthogonal bases. In this case, biorthogonal
wavelets are not used for energy preservation. Some
biorthogonal filters (such as 9/7-tap (Antonini et al.,
1992)) are designed to be "close" to orthogonal, so
that the quantizers designed in the orthogonal case
can be well approximated. In a two-channel filter
bank, there are three forms of biorthogonal linear
phase filters that can achieve perfect reconstruction
(Vetterli et al., 1995). In the most popular form both
filters are symmetric and are of odd lengths in the
analysis bank. Since the filters are symmetric, sym-
metric extension of the image edges can be applied.
The advantage of using symmetric extension is that

the number of jumps between the transformed coef-
ficients can be reduced. These jumps are probably
introduced by the circular extension of the image
edges because the gray levels between the first pixel
and the last are generally different in the same row
or column.

Martucci (1994) used the so-called symmetric
convolution to convolve symmetrically extended se-
quences. To use symmetric convolution to filter a
sequence, one should first retrieve the right-half
samples of a symmetric filter. Next, apply the ap-
propriate symmetric extensions to the retrieved se-
quence and to the input sequence, and then obtain the
convolution results with the following two methods.
One method involves the application of a circular or
skew-circular convolution to both of the symmetri-
cally extended sequences, and then a rectangular win-
dow is used to extract their representative samples
out of the base period. The other method involves
taking an inverse discrete trigonometric transform
(DTT) from the product of the forward DTTs of these
two sequences. In this paper, we will develop a fast
convolution algorithm that is similar to the former
method, but our algorithm is a much more straight-
forward approach. The proposed algorithm is mainly
applied while the symmetric filter is of odd length
and the image edges are symmetrically extended.
Because both the filter and the image extension are
symmetric, many terms of the multiplied results will
be computed repeatedly while filtering an image.
Hence, if we can efficiently permute the nonrepeated
terms and sum up some of the terms for each differ-
ent transformed coefficient, then we can reduce the
multiplication operations by nearly one half. This is
the main idea proposed in this paper. The most at-
tractive feature of our new algorithm is the simplic-
ity of its final form. This approach provides easy
implementation without additional computational
complexity.

In the following sections, we will address the
algorithm for the one dimensional (1-D) case, whose
results can be extended to filter higher dimensional
sequences by using the 1-D case for each dimension,
independently. Section II describes the regular con-
volution in 1-D DWT and IDWT, which is often used
in real programming. Section III and Section IV il-
lustrate the frameworks of the proposed fast convo-
lution algorithms for DWT and IDWT, respectively.
The analysis concerning the computational complex-
ity is shown in Section V. Experimental results,
including the execution time, are shown in Section
VI. To contrast the performance of different exten-
sions of the image edges, we incorporate the proposed
algorithm into our previous coder based on an enhanc-
ing zerotree coding (Wu and Su, 1998). Some recon-
structed images at a bit rate 0.5 bits per pixel (bpp)
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and the results of the peak signal to noise ratios
(PSNR) at various bit rates are illustrated in this sec-
tion. The conclusion of this paper is given in Section
VII.

II. The 1-D DWT AND IDWT

The two-channel 1-D DWT of a sequence a[n]
(see Fig. 1) is defined as

= T,h[2k-n]a[n]
n

Analysis Synthesis

where A[k] and B[k] represent the sequences produced
from the lowpass and the highpass channels, respec-
tively. Eq. (1) describes a convolution scheme fol-
lowed by a downsampler with sampling period being
2. With biortho-gonal wavelets, the corresponding
IDWT to reconstruct a[n] is given as

a[n]=ao[n]+ax[n]

(2)

where ao[n] anc* a i M indicate that the reconstructed
sequences are contributed to by the lowpass and
highpass channels, respectively. In order to have a
perfect reconstruction, we set

g[n]=(-\yh[l-n], g[n]=(-

T,h[n]h[n+2m] =

-n], and

(3)

So far, there is nothing different from usual
subband coding schemes. To distinguish the wavelet
decomposition from the usual subband coding
schemes, the following constraints in the filters are
also imposed (Anotnini et al., 1992)

= 0 and £ ( - l)"h[n] = 0 . (4)

In the above equations, all of the filters and the
sequence are infinite. However, the finiteness on fil-
ters and the sequence have to be considered in the
real application. The immediate problem of Eq. (1)
is how to compute the product h[2k-n]a[n] if the in-
dex in the bracket is out of the defined range. For
example, the filter h[n] is assumed to be with only
positive index terms defined at 0, ..., L- l , and the
computation in Eq. (1) may ask for h[-l] which is not
defined. One possible solution for solving this fi-
nite length issue is to perform the N-point circular

Convolve with filter X

,2 I Downsamplingby 2

Upsampling by 2

Fig. 1. Two-channel filter bank and the associated wavelets.

convolution (Oppenheim and Schafer, 1989) (assume
that the sequence length is N and N>L). To do this,
the filter h[n) has to be zero-padded. Since the prod-
uct of a value multiplied with a zero does not con-
tribute anything to the convolution sum, the compu-
tation is tedious and a waste of time. A better method
is to sum up only the possible nonzero terms. This
can be done by computing Eq. (1) based on the filter
length. Therefore, we rewrite Eq. Eq. (1) to

= Zh[n]a[2k-n],

(5)

This is feasible in the linear and time invariant (LTI)
systems. Consequently, the number of multiplication
operations (NMOs) in Eq. (5) is L for each A[k] or
B[k]. It is, generally, far fewer than those required
in Eq. (1) (the required NMOs is N for each A[k] or
B[k]). For the same reason, Eq. (2) is rewritten as

a[n] = £ h[k]A[(k + n)l2\ + Z g[k]B[(k + n)l2],
k k

for k+n=2l, leZ. (6)

We refer to this type of convolution based on the fil-
ter length as the regular convolution, which is com-
monly used in real programming.

In Eq. (5), the same problem is how to compute
the products when the index of a[n] is out of the de-
fined interval. There are two possible solutions to
solve this. One solution is to extend the sequence
a[n] by circular extension (Fig. 2(a)), and the other
is to extend it by symmetric extension (Fig. 2(b)).
Circular extension and symmetric extension for the
image edges are shown in Fig. 2(c) and Fig. 2(d), re-
spectively. Circular extension is the most widely used
solution in digital signal processing. This extension
is suitable for all filters, but introducing possible
jumps at the endpoints is its disadvantage because
generally a[N-l] does not equal a[0]. The jumps
introduced into the process will lower the coding
performance when using the EZW-like algorithms.
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.|-nl=.|Vn|

- 1 0 1 2 . . NO N-l N Hi

(a) Circular cxlcmim

•J-")-.)"! ^N.|*n|-«[N-l-n|

I 1 1 1 1 1 1
N-2 N-l N N - l N+2 ..

n Symmcirt cxwn

(•ii! 1 Circular extension and symmetric extension (s) eircttlai
extension in a sequence ihi symmetric extension in n se-
quence H I circular extension oJ Image edgesfd] tymmei
iii extension oi Image edges

As For symmetric extension, ii is onlj suitable i«u
symmetric or antisymmetric tillers. However, ii is
widely applied to image compression (Anotonini et

<,!.. 1992; Said and Pearl man, ll>%; Shapiro. 1993;
Xu'ii'j <•/ «/.. ll>l)7i because some symmetric filters
exhibit better properties (sucfa as regularity). For
example, the favorite one is the 9/7-tap filters of
i Vnotonini <•/ a/., ll>l)2). Note thai the symmetric
e x t e n s i o n as s h o w n in Fig, 2<hi is cal led wtaole-poini
synunetrj (no repeal of endpoint) (Martucci ct oi..
1997), but another symmetric eMeiision called tiall
point symtnetrj (repeat "i endpoinU ' s noi shown

11 e re,

Because the symmetric extension exhibits bet-
ter performance, we oave developed a fasi convolu
lion algorithm focused on the odd-length symmetric
filters and the symmetric extension in the sequence
ends. For simplicity, WC will assume that a pair <>|
biorthogonal wavelet Fitters are given and defined al

The Filter lengths OJ these two filters are 2/»+l and
2<y+1. respectively. Moreover, the "symmetric cen-
ter" of both filters is at »i=(>. Without loss of general-
ity, the sequence n\n\ is available Tor the lime
interval, n«0, I N-\. We will assume A to be the
power of two.

III. FAST CONVOLUTION ALGORITHM FOR
I)\VT

Oversiimpling is undesirable in image compres-
sion. Therefore, the essential question is hou i<>
choose -i method thai maintains a constant numbei «il
pixels required to describe the image. Thai is. for an
/V-points input sequence we nave to select exactly JV
nonreduiulani points limn the lowpass and bighpass
channels

Taking the finiteness of summation into account,
we rewrite F,q. (5) to become

A\k\= h[n)a\2k - n \ .

H\L\= I (7)

where g{n] is calculated bj L-.q. (3). Because the
s\ mmetric center of j?|«l is at n= 1 and the filler
/J|H| is symmetric aboul B—0. we have the following
identities

(|-/i[— n| and g\ \+>i\=fi\ \—n] (Si

Applying ihe whole-point symmetric extension to
both ends of the sequence a\n\. we gel the following
relations:
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a[-n]=a[n] and a[N-l-n]=a[N-\+n]. (9) A[-k]=A[k] A[N/2-l-k] = A[N/2+k]

Then substituting Eqs. (8) and (9) into Eq. (7) yields

and

A[-k]=A[k] and A[N/2-l-k]=A[N/2+lc] (10)

B[-k]=B[k+l] and B[N/2-k]=B[N/2+k]. (11)

Rewrite Eq. (10) as a symmetric form

A[ccL-k]=A[ctL+k] and A[aR-(k+\/2)]=A[aR+(k+l/2)],

(12)

where the left symmetric center aL=0 and the right
symmetric center aR=(N-\)/2. Consequently, the se-
quence A[k] exhibits a whole-point symmetry on the
left side but a half-point symmetry on the right side.
Because of the symmetry of the sequence A[k], we
only need to store the set of M2-points, i.e. A[0], A[l],
..., A[N/2-\], and then use the relations in Eq. (10) to
reproduce the remains. Similarly, there are two sym-
metric centers in the sequence B[k] as well. Rewrite
Eq. (11) into a symmetric form as

B[pL-(k+U2)]=B[PL+(k+l/2)] and B[pR-k]=B[pR+k].

(13)

From this equation the left symmetric center of the
sequence B[k] is /3L=l/2 and the right is pR=N/2. Thus,
the sequence B[k] represents half-point symmetry on
the left side and whole-point symmetry on the right
side. One possible selection for storing the sequence
is to record the set of A72-points B[l], B[2], ...,
B[N/2]. Then we can refer to the relation in Eq. (11)
to get the other terms. As a result, the total number
of nonredundant points stored for these two se-
quences, A[k] and B[k], is exactly equal to N. This
satisfies the demands to filter an N-points sequence
and then to maintain exactly N points from the
lowpass and highpass channels. With no informa-
tion lost in these N nonredundant points, perfect
reconstruction is possible. Fig. 3 illustrates these re-
lations.

In Fig. 3, the input sequence starts with a[0]
and ends at a[N-\]. Then we extend this sequence
by continuing to take a[-l]=a[l] , a[-2]=a[2], and
so forth on the left side of this sequence. On the
right side of this sequence, we take a[N]=a[N-2],
a[N+l]=a[N-3], and so on. While evaluating a coef-
ficient, the filter is applied to the corresponding
position. For example, to calculate A[0], the
symmetric center of the filter h[n], that is h[0], is
above at a[0]. Fig. 3(a) and Fig. 3(b) demonstrate

rA[-l] • A[0] A[l]
I i i ^

AfN/2-l] A[N/2]

h[-2]...

1 1 1 1 1 —
a[2] o(l] a[0] a[l] a[2] ....

symmetric extension

al-n] = a[n]

B[-k] = B[k+l]

(a)

1 I i 1 I
a[N-3] a[N-2] a[N-l] a[N-2] a[N-3]

symmetric extension

a[N-l-n] = a[N-l+n]

B[N/2+k) = B[N/2-k]

.a[2] a[l] a[0] a[l] a[2]

symmetric extension

a[N-3] a[N-2] ] a[N-2] a[N-3].

symmetric extension

a[N-l-n] - afN-l+n]

(b)

Fig. 3. The filter positions while evaluating the kth wavelet coef-
ficient, (a) filter positions at lowpass channel (b) filter po-
sitions at highpass channel.

the filter positions for evaluating each A[k] and B[k],
individually. The negative indexes in the filters just
indicate that these filters are time-reversed in the con-
volution. Note that we have to shift the filter posi-
tion to the right by two steps when computing the
next coefficient because the downsampling is per-
formed after the convolution. From Fig. 3, one can
easily verify the relations shown in Eqs. (10) and (11).

In the above, we have addressed how to select
the nonredundant coefficients of the sequence A [k]
and B[k]. Now, we will develop an efficient algo-
rithm to calculate these coefficients. For simplicity,
in the following discussion, evaluating A[k] and B[k]
means to calculate the principal terms:

A[k], k=0, ..., N/2-l and B[k], k=l, ..., Nil. (14)

Two skills are used in the proposed algorithm.
First, to avoid the jumps between the coefficients
and to create a pyramid structure, the coefficients
of A[k] and B[k] in Eq. (14) will be stored back to
the locations of a[n] in the order of A[k] first. Sec-
ond, to reduce the NMOs, we omit the computation
for the terms of the repeated products. For example,
as shown in (10), the coefficient A[0] can be decom-
posed as the sum of the 2p+l productsas

A[0]=h[-p]a[p}+...+h[-l)a[l]+h[0]a[0]

(15)

Since h[n]=h[-n] and a[n]=a[-n], the product
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N/2-2 N/2-1 N/2-2 N/2-1

C0[n]

C,[n]

%[*)

C3[n]

C4[n]

C5[n]

CM

h[O]a[O]

h[l]a[l]

h[2]a[2]

hl3]a{3]

h[4]a[4]

h[5]a[5]

htp]a[p]

h[0]a[2]

h[l]a[3]

h[2]a[4]

h[3]a[5]

h[4]a[6]

h[5]a[7]

h[p]a[p+2]

h[0]a[4]

h[l]a[5]

h[2)a[6]

h[3]a[7]

h[4]a[8]

h[5]a[9]

h[p]a[p+4]

h[0]a[6]

h[l]a[7]

h[2]a[8]

h[3]a[9]

h[4]a[10]

h[5]a[ll]

h[p]a[p+«]

h(O]a[N^]

h[l]a[N-3]

h[2]a[N-2]

h[3]a[N-l]

h[4]atO]

h[5]aIH

h[p]a[i>4]

h[0]a[N-2]

h[l]a[N-l]

h[2]a[0]

h[3]a[l]

hH]a[2]

h(5]a[3]

h[p]a[p-2]

D,[n]

D^n]

D3(n]

D4[n]

D5[n]

D6[n]

D q + l [ n ]

gll]a[l] g[l]a[3]

g[2]a[0] g[2]a[2]

g[3]a(N-l] g[3]a[l]

g[4]a[N-2] g[4]a[0]

g[51a[N-3] g[5Ja[N-l]

g[6]a[N-4] g[6]a[N-2]

g[q+l)a[N-q+l]

g[l]a[5]

g[2]a[4]

g[3]a[3]

g[4]a[2]

g[5]a[l]

g[6]a[0]

g[l]a[7]

g[2]a[6]

g[3]a[5]

g[4]a[4]

g[5]a(3]

g[6]al2]

g[l]a[N-3] g[l]a[N-l]

g[2]a[N-4] g[2]a[N-2]

g[3]a[N-5] g[3]a[N-3]

g[4]a[N-6] g[4Ja[N-4]

g[5]a[N-7] g[5]a[N-5]

g[6]a(N-8] g[6]a[N-6]

g[q+l]a[N-q-3] g[q+l]a[N-q-l]

(a)

n= N/2-1 N/2-2 N/2-1 0

circular extension

(b)

Fig. 4. Evaluation of the principal terms of A[k]. (a) arrangement
of the products (b) corresponding points and the way to
calculate each A[k].

(a)

n= N/2-1: 0

D,[n]

Djln]

D3[n]

D4[n]

D5[n]

D6[n]

wall

circular extension

N/2-2 N/2-1

circular extension

(b)

Fig. 5. Evaluation of the principal terms of B[k]. (a) arrangement
of the products (b) corresponding points and the way to
calculate each B[k].

h[l]a[-l] is equal to fc[-l]a[l]. Thus, the multiplica-
tion operation on the /i[l]a[-l] can be discarded if
/i[-l]#[l] is already available. Similarly, the coeffi-
cient A[l] can be expressed as

A[l]=h[-p]a[2+p)+...+h[-l)a[3]+h[0]a[2]+h[l]a[\]

(16)

Because /i[l]a[l] is identical to /i[-l]a[l], we can
omit the multiplication operation on this term if
we sequentially calculate A[l] after A[0]. Thus,
the main idea to reduce the computational com-
plexity is to list all the values of the possible and
non-repeated products while evaluating the co-
efficients in Eq. (14), and then sum up some of
them for each different coefficient. Fig. 4 and
Fig. 5 illustrate the frameworks to calculate the
sequences A[k] and B[k], respectively.

As shown in Fig. 4(a), we utilize a matrix C to
temporarily store all the possible terms of the
nonrepeated products for evaluating A[k]. The (i,n)
element of C is defined as

Ci[n]=h[i]a[((2n+i))N], i=0, ..., p, n=0, ...,

(17)

where the notation ((n))N denotes (n modulo N).

Fig. 4(b) shows the corresponding points and the
method used to calculate A[k]. The paths, starting
with the first row of C and ending at the last row,
only go all the way in either southwest or south. We
call the path going toward the southwest path_\,
and the path going toward the south path_2. Given
k, we initially set A[fc]=C0[&] and sum up all the
points on the two corresponding paths. Let the
starting point of the two paths begin with C0[k]. By
this approach, A[k] is now available. The next
point of each path will be positioned on the next
row of C. However, the column it locates on depends
on the direction of the path. If the current point on
the path is C,[ra], the next point will be either
C,+i[((m-l))W2] for the southwest or Ci+\[m] for the
south. After we apply the circular extension at the
columns of C, a wall is defined as a boundary on the
gap between h[i]a[N-2] and /i[/]a[0], or between
h[i]a[N-\] and fc[/]a[l] for i=0, 1, ..., p. For a de-
tailed explanation, consider the case z=0 and 1 first.
The wall is along the gap between h[0]a[N-2],
h[0]a[0] and h[\]a[N-\], h[l]a[l]. For the case
i=2 and 3, the wall is between h[2]a[N-2], h[2]a[0]
and h[3]a[N-l], h[3]a[l]. Continuing the pro-
cess, we illustrate the results in Fig. 4(b). It is
only when path_\ encounters the wall that then it
changes its regular direction to the south, and vice
versa for path_2. The algorithm is summarized as
follows.
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Algorithm 1. Evaluate A[k].
Step 1. Initialize

Assign A[fc]=C0[&] and set /=0.
Step 2. Sum up all the points located on the two paths

toA[k].
Step 2.1) Start path_\ and path_2 from C0[k].

Let the initial directions of path_\
and pathjl be southwest and south,
respectively.

Step 2.2) Check the terminal condition of
summation.
Increase /by 1. If i>p then stop.

Step 2.3) Decide the direction of path_\.
If path_1 is in its current direction
traveling to the next point and it is
blocked by the wall, then the direc-
tion of path_\ will be changed to
the south.

Step 2.4) Decide the direction of pathjl.
If pathjl is in its current direction
traveling to the next point and is
blocked by the wall, then the direc-
tion of pathjl will be changed to
the southwest.

Step 2.5) Add both of the next points on
path_\ and pathjl to A[k]. Go back
to Step 2.2).

For example, one can trace the bold solid lines
indicated in Fig. 4(b) to evaluate A[2]. Both paths
are illustrated encircling the path number. First we
let A[2]=C0[2], and then continuously add all the
points located on these paths together until the paths
reach the pth row of matrix C. Path_\ travels
the points, d [ l ] , C2[0], C3[N/2-l], C4[A72-2],
C5[W2-2], ... , and Cp[N/2-2]. This shows that the
direction of path_\ is changed after touching the point
C4[/v72-2]. As for the points on pathjl, which fol-
low the order C,[2], C2[2], C3[2], ..., and Cp[2], the
direction of pathjl is unchanged. To verify this re-
sult, substituting k with 2 into Eq. (7) and applying
the relations in Eq. (8) and Eq. (9), we get

A[2]=h[-p]a[4+p]+...+h[-l]a[5]+h[0]a[4]+h[l]a[3]+

...+h[p]a[4-p)

=h[p]a[4+p]+...+h[l]a[5]+h[0]a[4]+h[l)a[3]

=sum of path J2+h[0]a[4]+ sum of path_\. (18)

That is the exact result obtained by Algorithm 1.
Note that the direction checking in Algorithm 1

(step 2.3 and step 2.4) is only necessary for a few
terms of A[k]. For most of the terms of A [A;], the paths
will follow the initial direction all the way until the

Change the direction of
path_\ to be south.

n, unchanged

L
Change the direction of
pathjl to be southwest.

Fig. 6. Flowchart for evaluating A[k\.

end. For A[0], ... , A[p-l], we just have to check the
direction of path_\. As for the last Trunc{pl2) terms
of A[k], (the Trunc(x) function returns an integer-type
value that is the value x rounded toward zero), only
the direction checking for path_2 is necessary. Once
the direction is changed, the path will follow the new
direction and there will be no additional modifica-
tions.

Similarly, as shown in Fig. 5(a), a matrix D is
used to temporarily record all the possible terms of
the nonrepeated products for evaluating B[k]. The
(i,n) element in this matrix is defined as

(19)i=l, ..., q+l,n=0, ..., 7W2-1.

To obtain B[k], we follow the steps stated in Algo-
rithm 1 and replace A[k) by B[k], C0[k] by D,[fc-1], p
by q+l, southwest by southeast, and set the initial
value of /to 1, respectively. The next point of Dj[m]
on a path is either Di+\[((m+l))N/2\ in the southeast
direction or D,+1[m] in the south direction here. As
with the first example, it is only necessary to check
the directions of the paths for just a few coefficients
of B[k). Fig. 5(b) shows the corresponding points
and the method to calculate each B[k]. The bold solid
lines denote the paths for B[2]. One can decompose
B[2] by Eq. (7) into several product terms, and use
the same approach mentioned in Eq. (18) to verify
this result.

Flowcharts to calculate each A[k] and B[k] are
individually shown in Fig. 6 and Fig. 7, respectively.
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START ) .!bf;n?.."Vn!.

Assign B[k]=Dx[k-\]
Set/=1

JJjNlO

JTNO

1

J N O

n2 unchanged

1

i

Yes

( END )

Yes

Change the direction of
path_\ to be south,

n, unchanged
1

Yes
i
»

Change the direction of
path_2 to be southeast.

1

Fig. 7. Flowchart for evaluating B[k].

o[N-l-n] = a()[N-l+n]

a(TN-2]a()[N-l]a0[N].

A[l] 0 A[0] 0 A[l]

symmetric extension

A[k]

(a)

0 A[N/2-l]0 A[N/2-l] 0

symmetric extension

A[N/2-l-k] = A[N/2+k]

a,[-n] = a,[n] a ,rN-l-n] = a JN-l+n]

0 B[l] 0 B[l] 0

symmetric extension

(b)

B[N/2-l] 0 B[N/2] 0 B[N/2-l]

symmetric extension

B[N/2+k]-B[N/2-k]

Fig. 8. Filter positions while reconstructing the nth coefficient.
(a) filter positions at lowpass channel (b) filter positions
at highpass channel.

We treat both ri\ and n2 in these figures as the col-
umns on path_l and pathjl, respectively.

IV. FAST CONVOLUTION ALGORITHM FOR
IDWT

We will first discuss how to reconstruct the
sequence a[n] from the stored principal terms of A[k]
and B[k] by a method similar to the method in Sec-
tion III. Later, we will efficiently list all the pos-
sible nonrepeated product terms and sum up some of
them for each a[n].

Considering the finiteness of the summation of
Eq. (6), we can rewrite it to

a[n]=ao[n]+aj[n]

q p + \

= X ti[k]A[(k+n)f2]+ Z g[k]B[(k + n)f2],
k = -q k = -p + 1

for k+n=2l, /eZ, (20)

where g[k] is calculated from Eq. (3). The symmet-
ric centers of g[k] and h[k] are at &=1 and at k=0,
respectively. Thus, the constraints on these two fil-
ters are

h[k]=h[-k] and g[l+k]=g[l-k]. (21)

To calculate a[n] as shown in Eq. (20), first we indi-
vidually extend the sequences A[k] and B[k] by Eqs.
(10) and (11), respectively, and then upsample them

by interpolating zeros. Next, applying the filters as
Eq. (21) to these two sequences, we can obtain the
relationship as shown in Eq. (9).

Figure 8(a) denotes the reconstructed sequence
from the lowpass channel. According to Eq. (10),
the sequence A[k] is a whole-point symmetric exten-
sion on the left side, but a half-point symmetric ex-
tension on the right side. After the extension, we
upsample this sequence by interpolating zeros. Then
using the filter, we get

ao[-n]=ao[n] and ao[N-l-n]=ao[N-l+n]. (22)

Similarly, Fig. 8(b) shows the reconstructed sequence
from the highpass channel. The sequence B[k] is a
half-point symmetry on the left side, and a whole-
point symmetry on the right side. Substituting the
symmetry filter as shown in Eq. (21) into Eq. (20),
we have

a\[-n]=ai[n] and ai[N-l-n]=ai[N-l+n]. (23)

With the symmetric property of these two sequences,
what we need to do is to calculate the index terms of
ao[n] and ax[n\ at n=0, ..., N-l, and sum them up point
by point to obtain the reconstructed sequence a[n].

To efficiently convolve A[k] and B[k] with fil-
ters , we use two matrices E and F to temporarily
record all the possible terms of the nonrepeated prod-
ucts to reconstruct a[n]. The matrix E stores the
products reconstructed from the lowpass channel, and
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E^k

E4(k

\i

EiLk

Ejtk

Ejfk

Eqlk

k=
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tnt symmetry

h[0]A[2]

h[2]A[2]

h[4]A[2]

h[q-l]A[2]

h[l]A[2]

h(3]A[2]

h|5]A[2]

h[q]A[2]

0

2

•bW
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h[0]A[3]

h[2]A(3]

h[4]A[3]

h[q-l]A[3] ....

h[l]A[3]

h[3]A[3]

h[5)A[3J

h[q]A[3]

0

3

%ra

^«i

X.

^ ^

h[0]A[N/2-2] h[0]A[N/2-l]

h[2]A[N/2-2] h[2]A[N/2-l]

h[4]A[N/2-2] h[4]A[N/2-lJ

h[q-l]A[N/2-2]h[q-l]A[N/2-l]

h[l)A[N/2-2] h[l]A[N/2-l]

h[3]A[N/2-2] hl3]A[N/2-l]

h[5]A[N/2-2] h(5]A[N/2-l]

h[q)A[N/2-2] h[q]A[N/2-l]

N/2-2 N/2-1 -N/2-1

ao[N-4] ^[N-2] :

half-point symmetry

(b)

Fig. 9. Reconstruction of the sequence from the lowpass channel,
(a) arrangement of the products (b) corresponding points
and the way to calculate each value.

Ffi[k]

F,[k]

F5[k]

g[2]B[l] g[2]B[2] g[2]B[3| g[2]B[4]

g[4]B[l] i[4]B[2] g[4]B[3] i[4]B|4]

g[6]B[l] i[6]B[2] g[6]B[3] i(6]B[4]

g[p]B[l] g[p]B[2] g[p]B[3] g[p]B[4]

i(l]B[l] g"[l]B[2] g[l]B[3] i(l]B[4J

g(3]B[l] i[3]B[2] g[3]Bt3] i(3]B[4]

g[5]B[l] g[5]B[2] g[5]B(3] g[5]B[4]

g[2]B[N/2-l] g[2]B[N/2]

~g[4|B[N/2-H .~g[4]B[N/2]

~g[6]B[N/2-U "

g[p]B[N/2-l] g(p]BfN/21

g[l]B[N/2]

~g[3]B[N/2-l] lg[3]B[N/2]

~g[5]B[N/2-l] ~g[5]B[N/2]

g[p+l]B[2] g[p+l]B[3] g[p+l]B[4] g[p+l]B(N/2-l] g[p+l]B[N/2]

k= 0 0 I

(a)

2 3 N/2-2 N/2-1 N/2-2

half-point symmetry whole-point symmetry

(b)

Fig. 10. Reconstruction of the sequence from the highpass chan-
nel, (a) arrangement of the products (b) corresponding
points and the way to calculate each value.

the matrix F keeps the products reconstructed from
the highpass channel. The (i,k) element of these two
matrices is individually defined as:

Ei[k]=h[i]A[k], i=0, ..., q, k=0, -l, (24)

and

Fi[k]=g[i]B[k+l], i=0, ..., p+l, k=0, ..., N/2-1, (25)

Figures 9(a) and 10(a) list the elements in these
two matrices, respectively. Fig. 9(b) and Fig. 10(b)
show the corresponding points and the way to calcu-
late each reconstructed value. We assume that p is
even and q is odd in these figures for simple illustra-
tion. However, there are no constraints on p and q in
our design. To calculate the even terms of a[n], we
will unite the even terms of ao[n] and a\[n\. The se-
quence ao[n] is obtained by summing up the elements
in the matrix E while the sequence a^[n] is given from
the matrix F. To evaluate the even terms of ao[n],
we assign E0[n] to ao[2n] and then add together all
the points located on the two paths to ao[2n]. These
paths travel in the even-index rows of matrix E. As
shown in Fig. 9(b), these two paths independently
travel in the southwest and southeast directions. The

elements in matrix E are extended by the whole-point
symmetry on the left side, and by the half-point sym-
metry on the right side. As a result, one can easily
add all the points on the paths without changing di-
rections. For simplicity, these paths start with the
same point EQ[U\ and will terminate at the largest
even-index row of matrix E. The initial point, E0[n],
does not need to be added to ao[2n] again. To calcu-
late the even terms of ci\[n\, we have to sum up all
the points on the two corresponding paths that travel
in the even-index rows of matrix F. As shown in Fig.
10(b), these two paths start with F2[n-\] and F2[n]
for G|[2n], then go southwest and southeast, respec-
tively. To maintain the directions of the paths, the
elements in matrix F are extended by the half-point
symmetry and by the whole-point symmetry on the
left side and on the right side, individually. Figure
11 illustrates the complete flowchart to calculate the
even terms of a[ri\.

Similarly, to evaluate the odd terms of a[n], we
have to add the odd terms of ao[n] and ax[ri] together.
The odd terms of ao[n] are obtained from the odd-
index rows of matrix E while the odd terms of «)[«]
are found in the odd-index rows of matrix F. One
can follow an approach similar to the one in the last
paragraph to acquire the odd terms of a[n]. The
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( START )

Fig. 11. Flowchart of evaluating the even terms of the recon-
structed sequence a[n]

flowchart is shown in Fig. 12.
Note that k\ and k2 in Fig. 11 and Fig. 12 are

used to denote the columns on path_\ and path_2,
respectively.

V. COMPUTATIONAL COMPLEXITY

Assume that the size of an image is N by N. We
perform a one-dimensional DWT on the rows and
columns of the image. Thus, we have to execute the
DWT up to 2N times. For an Appoint circular convo-
lution, it requires N multiplication operations to
evaluate each transformed coefficient. As a result,
the NMOs taken in a row will be equal to N2. Thus,
the total NMOs are 2N3 for a one scale DWT. For the
next scale, the value of N is reduced by one half. The
NMOs turn out to be 2JV3+2(A72)3 for a 2-scale DWT.
Consequently, for ,s-scale DWT, the total NMOs are
up to

2(N/2l~ ' ) 3 = 16(1 - 2~3s)N3/7 . (26)

For regular convolution, it takes 2p+l and 2q+l
multiplication operations to calculate each A[k] and
B[k], respectively. Then the NMOs for a row equal
to be (2p+l)N/2+(2q+l)N/2=(p+q+l)N. Thus, the
regular convolution will demand 2(p+q+l)N2 multi-
plication steps for a one scale DWT. Advancing to
the next scale, N is reduced by one half but the NMOs
for each A[k] and B[k] are unchanged. So the num-
ber of multiplication operations for an s-scale DWT
will be

. (27)

Table 1. The comparison of computational
compolexity among yV-point circular con-
volution, regular convolution and the
proposed fast convolution with image size
N by N (Pixels), s-Scale DWT,

Convolution The number of
multiplication operations

N-point circular
convolution
Regular convolution
Fast convolution

S(p+q+l)(l-2-2s)N2/3
4(p+q+2)(l-2-2s)N2/3

Fig. 12. Flowchart of evaluating the odd terms of the reconstructed
sequence a[n]

Since our fast convolution algorithm omits the
computations on the repeated products, the NMOs of
the convolution are the sum of the total elements in
matrices C and D for a row of an image. That is,
(p+\)N/2+(q+l)N/2=(p+q+2)N/2. For the next scale,
N is reduced by one half but the NMOs for each A[k]
and B[k] are unchanged. Thus, this new convolution
will take

(p+q+ 2)(A72'-')2 = 4(p + q -2~2s)N2/3 (28)

1 = 1

multiplication operations for an 5-scale DWT. Com-
paring Eq. (27) with Eq. (28), we see that the NMOs
have been reduced nearly to one half. Table 1 lists
the comparison of computational complexity among
these three convolutions.

VI. NUMERICAL RESULTS

To compare the performance of symmetric and

A
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Table 2. The Performance comparison of the symmetric extension and the circular extension in the im-
age edges using the EZC coder.

Extension

Symmetric
extension

Circular
extension

Images

Barbara
Goldhill
Lena
Mandrill
Barbara
Goldhill
Lena
Mandrill

Bit rate=0.2 bpp

27.88
30.00
33.31
22.75
27.70
29.88
33.02
22.73

PSNR(dB)
Bit rate=0.5 bpp

32.65
33.30
37.20
25.65
32.47
33.17
37.02
25.61

Bit rate=l bpp

37.77
36.57
40.39
29.24
37.64
36.48
40.25
29.19

circular extensions of an image, we used our previ-
ous study, the enchancing zerotree coding (EZC) (Wu
and Su, 1998), to test four images, namely Barbara,
Goldhill, Lena, and Mandrill. The EZC coder
achieved fairly good results for image compression
due to the following three reasons. First, the EZC
uses a content-dependent scheme to decompose
subbands such that the transformed coefficients get
closer to zero. Second, the EZC applies a flag at each
subband to denote whether all the coefficients in this
subband should be encoded corresponding to the cur-
rent quantizer. Finally, the optimal compensations
on the retrieved coefficients are performed in the EZC
coder. All the test images used in this section were 8
bpp, and 512x512. These images can be obtained at
the URL, http://links.uwaterloo.ca/greyset2.base.html
site.

Table 2 shows the coding results from applying
the EZC coder to these test images at various bit
rates. Both the symmetric extension and the circular
extension are reported for comparison. We utilized
the 9/7-tap filter (Antonini et al., 1992) for this
coder. As shown in Table II, the performance of
the symmetric extension is superior to the cir-
cular extension. The former can improve the perfor-
mance, achieving 0.1 to 0.29 dB for most images.
Some reconstructed images for these two extensions
are shown in Fig. 13. Although there is no percep-
tible difference between these two extensions,
one still can use the symmetric extension to avoid
possible jumps at the transformed coefficients.
Note that the reported bit rates are calculated
from the actual compressed files and the PSNRs are
from the reconstructed images given by the decoding
algorithm. This coder is available by using an anony-
mous ftp to cc.nctu.edu.tw under the directory
pub/EZC.

To exhibit the improvement in CPU time,
both the regular convolution and our new convolu-
tion algorithms were tested on two IBM com-
patible personal computers (PC). One PC was

equipped with an AMD K6-166 MHz CPU and
the other was equipped with an Intel Pentium-133
MHz CPU. The results of the average CPU time
are listed in Table III. Three pairs of filters 9/7-tap,
9/3-tap (Antonini et al., 1992), and 13/11-tap
(Villasenor et al., 1995) were used in our experi-
ments. For the PC with the AMD CPU, the fast con-
volution algorithm can increase the execution time
up to at least 12% and 55% while executing DWT
and IDWT, respectively. However, it can achieve at
least a 17% improvement for DWT and an 86% im-
provement for IDWT using the PC equipped with
the Intel CPU. All of the execution time results point
out that the proposed algorithm can reduce the trans-
form time. The test programs were written in object-
Pascal language Delphi 3.0. Of course, one can
further reduce the execution time by the assembly
language.

VI. CONCLUSION

In this paper, a fast convolution algorithm for
DWT/IDWT was proposed. This algorithm focused
on the odd length symmetric filters and the symmet-
ric extension of an image. The aim of this paper was
to reduce the transform time, which is the essential
problem for many wavelet-based image processing al-
gorithms. The proposed algorithm can decrease the
number of multiplication operations by nearly one
half according to the mathematical analysis on the
computational complexity. Converting it to a real pro-
gram, we can speed up both the DWT and IDWT to
at least 12% and 55%, respectively. The most attrac-
tive feature of the new algorithm is its simplicity in
its final form. The proposed structure can be easily
implemented in the hardware design for image or
video compression systems.
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Table 3. Mir comparison of average CPU time (sec) of regular convolution and the proposed fast convo-
lution with [mage Size 51 2 h> 512. 5-SCaie decomposition, and the t'illter length 19.7|, (9,3) and

Convoluiioii AMI ) Kh- lhhMH/ CPU Intel Pentium l.UMH/ CPU

19.71 19.3) (13,1 0.7) (9,3) (13,1

DWT IDWT DWT IDWT DWT IDWT DWT 1DWT DWT IDWT DWT iDWT
Regular
convolution

Fast
convolution
' I of reduced
lime

33 1.57 2.13 2.64 1.86 1M 1.52 2.40 2.61 4.30

1.38 1.20 1.19 1.01 1.82 1.64 I .43 1,60 1,16 1.26 2.23 2.30

I v , (,:-, I : • , 55( i 17', 6 1 8 30$ S(/,f 31 '/< WV'i 11<Y( K7'/.

Fij 1 ( I hi- comparison o! the reconstructed images ui the BJ ntowti t< extension and ihc circular extension at bii ralt=OJ5 hpp. (a) Barbara.
symmetric extension, and I'SNK- '2 (o ilB (b) Barbara, circuloi extension, and PSNR»32.47 JH. [c) Lean, symnKtrit extensioQ,
and PSNR=37.20 dfi (d) l ena, drculwr extension, and PSNR-.i7.i)2 .IB.

Council of ihc ROC under Granl NSC 87-2213-E-009-
043.

NOMENCLATURE

input set|uGncG

flotw] reconstructed sequeace ai Lowpass chan-
nel

ii\\n\ reconstructed sequence ai tiigbpass
channel

A \ h \ ouipui transformed sequence at lowpsss
channel
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B[k]

CM

DM

gin]
gin]
h[n]
h[n]

Trunc(x)

output transformed sequence at highpass
channel
temporary matrix used to store all the
possible product terms for evaluating
Aik]
temporary matrix used to store all the
possible product terms for evaluating
•B[k]

temporary matrix used to store all the
possible product terms for evaluating
aoin]
temporary matrix used to store all the
possible product terms for evaluating
a\[n]
analysis highpass filter
synthesis highpass filter
analysis lowpass filter
synthesis lowpass fitler
n modulo N
round x near zero
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