
INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 217

Design of a New Indexing Organization for
A Class-Aggregation Hierarchy in Object-Oriented

Databases1

CHIEN-I LEE, YE-IN CHANG* AND WEI-PANG YANG**
Institute of Information Education
National Tainan Teachers College

Tainan, Taiwan 700, R.O.C.
E-mail:leeci@ipx.ntntc.edu.tw

*Department of Applied Mathematics
National Sun Yat-Sen University
Kaohsiung, Taiwan 804, R.O.C.

E-mail: changyi@math.nsysu.edu.tw
**Department of Computer and Information Science

National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

E-mail: wpyang@cis.nctu.edu.tw

In an object-oriented database, a class consists of a set of attributes, and the values of
the attributes are objects that belong to other classes; that is, the definition of a class forms
a class-aggregation hierarchy of classes. A branch of such a hierarchy is called a path.
Several index organizations have been proposed to support object-oriented query languages,
including multiindex, join index, nested index and path index. All the proposed index orga-
nizations are helpful only for a query which retrieves the objects of the root class of a given
path using a predicate which specifies the value of the attribute at the end of the path. In this
paper, we propose a new index organization for evaluating queries, called full index, where
an index is allocated for each class and its attribute (or nested attribute) along the path.
From the analysis results, we show that a full index can support any type of query along a
given path with a lower retrieval cost than all the other index organizations. Moreover, to
reduce the high update cost for a long given path, we split the path into several subpaths and
allocate a separate index to each subpath. Given a path, the number of subpaths and the
index organization of each subpath define an index configuration. Since a low retrieval
cost and a low update cost are always a trade-off in index organizations, we also propose
cost formulas to determine the index configuration which can provide the best performance
for various applications by taking into account various types of queries along a given path
and a set of queries with more than one nested predicate along a given path.

Keywords: access methods, complex objects, index selection, object-oriented databases,
query optimization

Received April 10, 1997; accepted December 14, 1997.
Communicated by Arbee L. P. Chen.
1This research was supported in part by the National Science Council of Republic of China under Grant No. NSC-
84-2213-E-110-009.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 15, 217-241 (1999)

217

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG218

1. INTRODUCTION

The new generation of computer-based applications, such as computer-aided designed
and manufacturing (CAD/CAM), multimedia databases (MMDB), and software develop-
ment environments (SDEs), requires more powerful techniques to generate and manipulate
large amounts of data. The traditional well-known record-based relational data model does
not provide the possibility of directly modeling complex data. Moreover, many complex
relationships among data, for example, instantiation, aggregation and generalization, can
not be well defined in the relational data model. Furthermore, the relational data model
does not provide mechanisms to associate data behavior with data definitions at the schema
level.

Object-oriented database management systems [1, 10, 12, 13, 19, 20, 22-24] repre-
sent one of the most promising directions in the database area for meeting the requirements
of advanced applications. An object-oriented data model not only provides great expres-
sive power for describing data and defining complex relationships among data, but also
provides mechanisms for behavioral abstraction. In an object-oriented data model [4, 6, 9],
any real-world entity is represented by only one data modeling concept, the object. Each
object is identified by a unique identifier (UID). The state of each object is defined at any
point in time by the value of its attributes. The attributes can have as values both primitive
objects (for example, strings, integers, or booleans) and non-primitive objects, which in
turn, consist of a set of attributes. Objects with similar attributes are grouped into classes.
A class C consists of a number of attributes, and the value of an attribute A of an object
belonging to the class C is an object or a set of objects belonging to some other class C′.
The class C′ is called the domain of the attribute A of the class C, and this association is
called an aggregation relationship between the classes C and C′. The class C′ in turn con-
sists of a number of attributes, whose domains are other classes. In general, a class is a
hierarchy of classes of aggregation relationships, called an aggregation hierarchy. A branch
of such a hierarchy is called a path. An example of a class-aggregation hierarchy is shown
in Fig. 1. An example of a path against this class-aggregation hierarchy is Student.study.
taught-by.work-in.name. Several index organizations [3, 5, 8, 14, 16-18, 21, 25] proposed
to support object-oriented query languages, including multiindex [18], join index [21], nested
index [3], path index [3] and access support relation [14].

Fig. 1. An example of a class-aggregation hierarchy.

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 219

Consider the following query: Retrieve all the students who study in some courses in
the Department of Computer Science, for the class-aggregation hierarchy shown in Fig. 1
and the related instances shown in Fig. 2, where ‘study in the Department of Computer
Science’ is a nested predicate. (Note that nested predicates are often expressed using path-
expressions; the above nested predicate can be expressed as Student.study.taught-by.work-
in.name = ‘Computer Science’.) Given a path = Student.study.taught-by.work-in.name, there
are four indices in a multiindex set. The first index is on the subpath Student.study and
contains the following pairs: (Course[i], {Student[o]}), (Course[j], {Student[p]}) and
(Course[k], {Student[q]}). The second index is on the subpath Course.taught-by and con-
tains the following pairs: (Teacher[i], {Course[k], Course[l]}) and (Teacher[j], {Course[i],
Course[j]}). The third index is on the subpath Teacher.work-in and contains the following
pairs: (Department[l], {Teacher[i]}) and (Department[m], {Teacher[j]}). The forth index is
on the subpath Department.name and contains the following pairs: (Computer Science,
{Department[l]}) and (Mathematics, {Department[m]}).

Fig. 2. Instances of classes in Fig. 1.

A join index [21] is similar to a multiindex except that a join index supports both
forward and reverse traversal along the path; that is, two indices are allocated between each
class and its immediate attribute along the path. That is, for a given path, the number of
indices for a join index is two times that for a multiindex.

For the same example shown above, a nested index will contain the pairs (Computer
Science, {Student[q]}) and (Mathematics, {Student[o], Student[p]}) while a path index
will contain the following pairs:

(Computer Science, {Student[q].Course[k].Teacher[i].Department[l]}) and
(Mathematics, {Student[o].Course[i].Teacher[j].Department[m],
Student[p].Course[j].Teacher[j].Department[m]}).

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG220

An access support relation [14] is an organization very similar to a path index except
that an access support relation can store incomplete path instantiations using null values in
relations.

In general, a multiindex [18] is allocated on each class traversed by the path, which
solves a nested predicate by scanning a number of indices equal to the path-length. Therefore,
a multiindex has a high retrieval cost but a low update cost. Since a nested index only
associates instances of the first class of the path with the values at the end of the path, a
nested index has a lower retrieval cost for querying on the first class with the nested predi-
cate on the last attribute of the path but has a high update cost for forward and backward
object traversals to access the database itself. A path index [3] provides an association
between an object at the end of the path and the instantiations ending with the object.
Therefore, a path index can be used to evaluate nested predicates on all classes along the
path; however, a path index has a high update cost.

All the above proposed index organizations will be helpful only to a query which
retrieves the objects of the root class of a given path using a predicate which specifies the
value of the attribute at the end of the path. Consider another query: Retrieve all the courses
taught by those teachers who are in the Department[l]. The path-expression for this query
is Course.taught-by.work-in = ‘Department[l]’. To answer this question, we have to scan
the second index and the third index in the multiindex described above. The nested index
described above will not be helpful in answering the query while the path index described
above will be only able to answer with a partial result ({Course[k]}) by scanning all the path
index. (Note that the answer to the query should be {Course[k], Course[l]}.) To reduce the
high retrieval cost in a multiindex and to overcome the problem where some queries in a
nested index and a path index cannot be answered, in this paper, we propose a new index
organization for evaluating queries, called a full index, where an index is allocated for each
class and each of its immediate and nested attributes along the path. For the same example
shown above, a full index will contain 10 indices as shown in Table 1.

Table 1. An example of a full index.

Class Attribute Contents

Student Study (Course[i], {Student[o]}), (Course[j], {Student[p]}) and
(Course[k], {Student[q]})

Student Taught-by (Teacher [i], {Student[q]}) and
(Teacher[j], {Student[o], Student[p]})

Student Work-in (Department[l], Student[q]}) and
(Department[m], {Student[o], Student[p]})

Student Name (Computer Science, {Student[q]}) and
(Mathematics, {Student [o], Student[p]})

Course Taught-by (Teacher[i], {Course[k], Course[l]}) and
(Teacher[j], {Course[i], Course[j]})

Course Work-in (Department[l], {Course[k], Course[l]})and
(Department[m], {Course[i], Course[j]})

Course Name (Computer Science, {Course[k], Course[l]}) and
(Mathematics, {Course[i], Course[j]})

Teacher Work-in (Department[l], {Teacher[i]}) and
(Department[m], {Teacher[j]})

Teacher Name (Computer Science, {Teacher[i]}) and
(Mathematics, {Teacher[j]})

Department Name (Computer Science, {Department[l]}) and
(Mathematics, {Department[m]})

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 221

Fig. 3. A comparison: (a) a multiindex; (b) a nested index; (c) a path index; (d) a full index.

A comparison of a multiindex, a nested index, a path index and a full index is shown in
Fig. 3. From the analysis results, we can show that a full index can support any type of
query along a given path against a class-aggregation hierarchy with a lower retrieval cost
than all the other index organizations. Therefore, our full index is suitable for queries
against a given path, where queries on subpaths might not be predictable. To reduce the
high update cost for a long given path, we can split the path into several subpaths and
allocate a separate index to each subpath [7, 14, 15]. Given a path, the number of subpaths
and the index organization of each subpath define an index configuration. But the increase
of the number of indices for subpaths will also increase the retrieval cost for scanning a
number of indices, which results in a high retrieval cost. Since a low retrieval cost and a
low update cost are always a trade-off in index organizations, we can establish a cost for-
mula to look for a compromise between these two requirements. In [7], the authors pro-
posed cost formulas to evaluate the costs of various index configurations. However, they
do not support partial instantiations (defined in Section 2) and do not consider more than
one nested predicate along the path. In this paper, we also propose cost formulas to deter-
mine the index configuration which can provide the best performance for various applica-
tions by taking into account various types of queries along a given path and a set of queries
with more than one nested predicate along a given path.

The rest of this paper is organized as follows. In Section 2, we define different types
of queries along a given path. In Section 3, we introduce the proposed full index and related
index operations. In Section 4, we present the cost model for a full index and give some
analysis results of a full index compared with those of a multiindex, a path index and a
nested index. In Section 5, we present cost formulas which determine an optimal index
configuration. Finally, Section 6 concludes this paper.

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG222

2. QUERY TYPES IN A CLASS-AGGREGATION HIERARCHY

An attribute of any class on a class-aggregation hierarchy is logically an attribute of
the root of the hierarchy; that is, the attribute is a nested attribute of the root class. A
predicate on a nested attribute is called a nested predicate. A path is defined a C(1).A(1).A
(2).....A(n), where C(i) is a class in a class-aggregation hierarchy and A(i) is an attribute of
class C(i), 1 ≤ i ≤ n. The path-length indicates the number of classes along a path; that is,
the value is n. An instantiation of a path is defined as a sequence of (n + 1) objects as O(1).
O(2).....O(n + 1), where O(i) is an instance of class C(i), 1 ≤ i ≤ (n+1). A patial instantiation
of a path is defined as a sequence of objects as O(i).O(i +1).....O(j), where O(i) is an in-
stance of class C(i), 1 ≤ i ≤ j ≤ (n+1). Object-oriented query languages allow objects to be
restricted by predicates on both nested and non-nested attributes of objects. In the following,
we define types of queries along a given path against a class-aggregation hierarchy.

Definition 1: Given a path which is defined as C(1).A(1).A(2)...A(n) (n ≥ 1) and an aggre-
gation hierarchy H, a simple type of query is expressed using path-expression as C(i).A
(i).....A(j) = ‘O(j)’, where 1 ≤ i ≤ j ≤ n.

That is, a simple type of query retrieves the objects of a class along a given path using
a predicate on its nested (or non-nested) attribute, where the specified class need not be the
root of the path and the specified attribute need not be the end of the path. The following
query Q1 shows an example of a simple type of query against the class-hierarchy shown in
Fig. 1.

Q1: Retrieve all the students who study in the Department of Computer Science.

Q1 contains the nested predicate ‘study in the Department of Computer Science’. Nested
predicates are often expressed using path-expressions. For example, the above nested predi-
cate can be expressed as Student.study.taught-by.work-in.name = ‘Computer Science’.

Definition 2: Given a path which is defined as C(1).A(1).A(2).....A(n) (n ≥ 1) and an aggre-
gation hierarchy H, a k-degree complex type of query is expressed using path-expressions
asC(i).A(i)....A(j1)=‘O (j1)’,C(i).A(i)....A(j2)=‘O (j2)’,....,C(i).A(i).....A(jk)=‘O (jk)’, where 1 ≤
m ≤ k, 1 ≤ i ≤ jm ≤ n.

That is, a k-degree complex type of query retrieves the objects of a class along a given
path using k predicates on its k nested (or non-nested) attributes along the given path. The
following query Q2 shows an example of a 2-degree complex type of query against the
class-hierarchy shown in Fig. 1, where the path-expressions are Student.study.taught-by =
‘Teacher[i]’ and Student.study = ‘Course[i]’.

Q2: Retrieve all the students who are taught by Teacher[i] and who study in Course[i].

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 223

Definition 3: Given a path which is defined as C(1).A(1).A(2).....A(n)(n ≥ 1) and an aggre-
gation hierarchy H, a general set of queries is expressed using path-expressions as C(i1).A
(i1)....A(j1) =‘O (j1)’,C(i2).A(i2)....A(j2)=‘O (j2)’,....,C(ik).A(ik)....A(jk)=‘O (jk)’, where 1 ≤ m ≤
k, 1 ≤ im ≤ jm ≤ n.

That is, there is more than one query along a given path. The following example Q3
shows two queries in a general set against the class-hierarchy shown in Fig. 1, where their
path-expressions are Student.study = ‘Course[i]’ and Course.taught-by.work-in.name =
‘Mathematics’, respectively.

Q3: Retrieve all the students who study in Course[i], and retrieves all the courses taught by
those teachers who are in the Department of Mathematics.

3. A FULL INDEX

In this section, we first give the formal definition of a full index. Then, we describe
four operations on a full index, which are retrieval, update, insertion and deletion.

3.1 Organization

Definition 4: Given a path P which is defined as C(1).A(1).A(2)....A(n)(n ≥ 1) and an
aggregation hierarchy H, a full index (FX) on P is defined as a set of indices, which are
FX FX FX FX FX where FXn

n
n

i
j

1
1

1
2

1 2
2, ,...., , ,...., , is an index on class C(i) and attribute A(j), 1

≤ i ≤ j ≤ n.
For example, let a path = Student.study.taught-by.work-in.name of H be that shown

in Fig. 1 and the instances of classes in H be those shown in Fig. 2; a full index consisting of
ten indices is described as follows.

The first indexFX1
1 on class Student and attribute study contains the following pairs:

(Course[i], {Student[o]}),
(Course[j], {Student[p]}) and
(Course[k], {Student[q]}).
The second indexFX1

2 on class Student and attribute taught-by contains the follow-
ing pairs:

(Teacher[i], {Student[q]}) and
(Teacher[j], {Student[o], Student[p]}).
The third indexFX1

3on class Student and attribute work-in contains the following
pairs:

(Department[l], {Student[q]}) and
(Department[m], {Student[o], Student[p]}).
The fourth index FX1

4 on class Student and attribute name of class Department con-
tains the following pairs:

(Computer Science, {Student[q]}) and
(Mathematics, {Student[o], Student[p]}).
The fifth indexFX2

2 on class Course and attribute taught-by contains the following
pairs:

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG224

(Teacher[i], {Course[k], Course[l]}) and
(Teacher[j], {Course[i], Course[j]}).
The sixth indexFX2

3on class Course and attribute work-in contains the following pairs:
(Department[l], {Course[k], Course[l]}) and
(Department[m], {Course[i], Course[j]}).
The seventh indexFX2

4 on class Course and attribute name of class Department con-
tains the following pairs:

(Computer Science, {Course[k], Course[l]}) and
(Mathematics, {Course[i], Course[j]}).
The eighth indexFX3

3on class Teacher and attribute work-in contains the following
pairs:

(Department[l], {Teacher[i]}) and
(Department[m], {Teacher[j]}).
The ninth indexFX3

4 on class Teacher and attribute name of class Department con-
tains the following pairs:

(Computer Science, {Teacher[i]}) and
(Mathematics, {Teacher[j]}).
The tenth indexFX4

4 on class Department and attribute name contains the following
pairs:

(Computer Science, {Department[l]}) and
(Mathematics, {Department[m]}).

3.2 Operations

A full index supports fast retrieval of all types of queries defined in Section 2. An
evaluation of a nested predicate against the nested attribute A(j) of class C(i) requires a
lookup of a single index FXi

j , where 1 ≤ i ≤ j ≤ n. Suppose that an instance O(i) of class C
(i) along the path has an object O(i+ 1) as the value of the attribute A(i). Now, O(i) is
updated to a new object O´(i +1). An update to the full index proceeds as follows.

First, we perform a lookup of indexFXi
iand replace O(i +1) of O(i) with a new object

O′ (i+ 1). Second, we update the indexFXm
k using the indexFXm

k−1 andFXk
k , where 1 ≤ m <

i and i ≤ k ≤ n. Third, we update the indexFXi
m using the indexFXi

m−1and FXm
m , where i <

m ≤ n.
As in the examples shown in Figs. 1 and 2, suppose the object in attribute taught-by

of Course[i] is updated from Teacher[j] to Teacher[i]. Then, a series of update operations
on the full index are performed as follows.

First, we perform a lookup of the indexFX2
2 and replace Teacher[j] of Course[i] with

Teacher[i]; that is,FX2
2 contains the following pairs:

(Teacher[i], {Course[i], Course[k], Course[l]}) and
(Teacher[j], {Course[j]}).
Second, we update the indexFX1

2 usingFX1
1 andFX2

2 ; that is,FX1
2 contains the fol-

lowing pairs:
(Teacher[i], {Student[o], Student[q]}) and
(Teacher[j], {Student[p]}).
Then, we update the indexFX1

3usingFX1
2 andFX3

3; that is,FX1
3contains the following

pairs:

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 225

(Department[l], {Student[o], Student[q]}) and
(Department[m], {Student[p]}).
Moreover, we update the indexFX1

4 usingFX1
3andFX4

4 ; that is,FX1
4 contains the fol-

lowing pairs:
(Computer Science, {Student[o], Student[q]}) and
(Mathematics, {Student[p]}).
Third, we update the indexFX2

3usingFX2
2 andFX3

3; that is,FX2
3contains the follow-

ing pairs:
(Department[l], {Course[i], Course[k], Course[l]}) and
(Department[m], {Course[j]}).
Then, we update the indexFX2

4 usingFX2
3andFX4

4 ; that is,FX2
4 contains the follow-

ing pairs:
(Computer Science, {Course[i], Course[k], Course[l]}) and
(Mathematics, {Course[j]}).
Insertion and deletion operations are similar to update operations. We perform an

insertion/deletion operation of an object on indexFXi
i instead of the replacement operation

in the first step of the update to the index.

4. PERFORMANCE ANALYSIS

In this section, we will describe the cost model and analyze some performance results
of a full index. Moreover, a comparison of the performance of these related indexing schemes
will also be presented.

4.1 Cost Model

In this paper, we use a cost model which is similar to the one proposed in [3, 7], in
which the data structure used to model indices is based on a B-tree [2, 11]. Similar to their
model [3, 7], we assume that the values of attributes are uniformly distributed among the
instances of the class, and that all the key values have the same length. However, in [3, 7],
since a nested index and a path index can not support any query for partial instantiations,
they need to make one more assumption: no partial instantiations; that is, each instance of a
class C(i) is referenced by instances of class C(i - 1), 1 < i ≤ n. In this paper, we remove this
assumption so as to support a query of any type for partial instantiations in a full index by
taking into account ‘NULL’ values of instances. Given a path C(1).A(1).....A(n), the param-
eters that we consider in the cost model are grouped as follows (table on next page).

Moreover, to compare these indexing schemes on the same basis, we use the same
assumptions and parameters as those in [3] except that we consider the case where an at-
tribute A(i) has a set of values, instead of a single value, and the average number of values
in a set is m(i). Therefore, we use DV(i) to denote the number of distinct values for A(i)

andD i DV i
m i() ()

()=

 to denote the number of distinct sets. In this case, when A(i) has a

single value (i.e., m(i) = 1), DV(i) = D(i). That is, we consider a more general case in A(i).
It is straightforward to extend the cost models [3] of a multiindex, path index, and nested
index to consider the case where an attribute has a set of values instead of a single value. In
this paper, we do have use the extended cost models of these indexing schemes in our
performance comparison described in section 4.5. Note that, here, to simplify our presenta-
tion of the performance analysis, we omit some parameters used in [3] since they can be

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG226

easily derived from the other parameters. The values of those parameters which are not
critical to the comparison are here kept constant; these parameters were also kept constant
in [3].

Parameter Description

DV(i) Number of distinct values held in attributes A(i), including the NULL value,
1 ≤ i ≤ n

m(i) Average number of values for a set for attributes A(i), 1 ≤ i ≤ n.
D(i) Number of distinct sets for attribute A(i), 1 ≤ i ≤ n; that is,

D i DV i
m i() ()

()=

N(i) Cardinality of class C(i), including the NULL value, 1 ≤ i ≤ n.
K(i) Average number of instances of class C(i) with the same set of values for

attribute A(i); that is, K i
N i
D i()

()
()=

UIDL Length of the object-identifier in bytes.
PS Page size in bytes.
d Order of a nonleaf node.
f Average fanout from a nonleaf node.
pp Length of page pointer.
kl Average length of a key value for the indexed attribute.
ol Length of a header in an index record.
DS Length of the directory at the beginning of the record, when the record size

is greater than the page size.

4.2 Retrieval Cost

Let K(i, j) be the average number of instances of class C(i) having the same set of

values held in the nested attribute A(j), where 1 ≤ i ≤ j ≤ n; that is,K i j K r XFi
j

r i

j

(,) ()= ∏
=

. de-

notes the average length of a leaf-node index record for the indexFXi
j in the full index and

XF K i j m i UIDL kl ol XF PS

XF K i j m i UIDL kl ol DS XF PS

where DS
K i j m i UIDL kl ol

PS UIDL pp

i
j

i
j

i
j

i
j

= + + ≤
= + + + >

= + +

+

(,) () , ,

(,) () , ,
(,) ()

().

The number of leaf pagesLPi
j for the indexFXi

j is

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 227

LP

D j

PS
XF

XF PS

LP D j
XF
PS XF PS

i
j

i
j

i
j

i
j i

j

i
j

=

≤

=

 >

()

,

() .

,

 ,

The number of index pagesRCi
j accessed in the indexFXi

j for a nested predicate on
class C(i) with a nested attribute A(j) is

RC h i j XF PSi
j

i
j= + ≤(,) , ,1

where h i j D jf(,)(log ()=) is the number of nonleaf nodes that must be accessed in the
index FXi

j . When the record size is larger than the page size, i.e., XF PS npi
j > , is the

number of leaf pages needed to store the record, i.e., np
XF
PS

i
j

=

 . Therefore,

RC h i j np XF PSi
j

i
j= + >(,) , .

4.3 Maintenance Cost

The index maintenance cost derived from update, deletion or insertion operations for
an instance of a class C(i) is denoted by U, D and I, respectively. To simplify the analysis,
we consider only the costs of leaf-page modifications and exclude the costs of index page
splits. The costCBMi

i of an update on the index FXi
i is the sum of the cost of removing the

UID of object O(i) from the record associated with its attribute O(i + 1) and the cost of
adding it to the new value O´(i + 1); that is,

CBMi
i = CO (1+pl),

where CO denotes the cost of finding the leaf node containing the key value and the cost of
reading and writing the leaf node, and pl is the probability that the old and new values are
on different leaf nodes.

When a leaf page is modified, one page access is needed to read the leaf page contain-
ing the update record, and another page access is needed to write this page; in addition, h(i,
i) pages are accessed to determine the leaf node containing the record to be updated.
Therefore,

CO h i i XF PSi
i= + ≤(,) , .2

When the record size is larger than the page size and np is the number of leaf pages

needed to store the record, i.e.,np
XF
PS

i
j

=

 , there are h(i, i) + 1 pages which must be ac-

cessed to find the header of the record with the old value. From the header of the record, it
is possible to determine the page from which a UID must be deleted or to which a UID must
be added. If this page is different from the page containing the header of the record, a

further page access must be performed. This probability is given by
np

np
−1

. Therefore,

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG228

CO h i i
np

np XF PSi
i= + + − >(,) .2

1
,

The probability that the current and new values are on different leaf nodes is

pl XF PS

pl

PS
XF
D i XF PS

i
i

i
i

i
i

= >

= −

 −

− ≤

1

1

1

1

, ,

() .

,

Moreover, an update operation on the index FXi
i will cause other associated indices

to be updated as stated in Subsection 3.2. When an indexFXm
k is updated (1 ≤ m ≤ i, i< k ≤

n), the total cost for this update consists of the update cost CBMm
k on the indexFXm

k and the
retrieval cost 2RCk

k . (Note that one cost RCk
k is for finding O(k + 1) to determine which

object O(k + 1) for object O(k) is to be updated, and the other costRCk
k is for finding O′(k +

1) to determine which new object O′(k + 1) is to be updated.)

Therefore, the total update cost Ui is

U CBM CBM RC CBM RCi i
i

m
k

k
k

i
m

m
m

m i

n

k i

n

m

i

= + + + +∑∑∑
= +==

−
() ().2 2

11

1

Since there is only a deletion of an old value or an insertion of a new value on the
indexFXi

i , pl is 0. Therefore, the cost of deletion Di and the cost of insertion Ii are given by

D I CO CBM RC CBM RCi i m
k

k
k

i
m

m
m

m i

n

k i

n

m

i

= = + + + +∑∑∑
= +==

−
() ().2 2

11

1

4.4 Storage Cost

The number of nonleaf pages NLPi
j for the indexFXi

j is

NLP LO
f

LO
f
f Xi

j =

+

+ + ,

where LO D j LPi
j= min((),) and each term is successively divided by f until the last term X

is less than f.
Then, the total storage cost SC for a full index is

SC LP NLPi
j

i
j

j i

n

i

n

= +∑∑
==

().
1

4.5 A Comparison

In this subsection, we will show a number of interesting results of a full index (denoted
as FX) on the basis of the analysis cost model described in the above subsections and com-
pare the performance of the full index with that of a multiindex (denoted as MX), a nested
index (denoted as NX) and a path index (denoted as PX) [3]. (Note that since a join index is

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 229

similar to a multiindex and an access support relation is similar to a path index, we omit the
performance for a join index and that for an access support relation.) By using different
values of parameters, we can simulate some interesting situations for different application
requirements. However, some parameters are kept constant in all the simulations, namely,
N(1)=200,000, UIDL=8, kl=2, ol=6, pp=4, f=218, d=146 and PS=4096. The values of
these parameters are the same as those in [3].

Fig. 4 shows the retrieval costs for simple queries with a path-expression C(1).A(1)....
A(3) = ‘O(3)’ , using a multiindex, a nested index, a path index and a full index, respectively,
where n = 3, m(1) = m(2) = m(3) = 1, K(2) = K(3) = 10, and K(1) is varied from 1 to 50.
Fig. 5 shows the retrieval costs for simple queries with a path-expression C(1).A(1)....A(3)
= ‘O (3)’ , using a multiindex, a nested index, a path index and a full index, respectively,
where n = 3, K(1) = K(2) = K(3) = 10, m(2) = m(3) = 1, and m(1) is varied from 1 to 5.
From these two figures, we observe that the retrieval costs for these four indexes are in-
creased with the values of K(1) or m(1). The reason is that as K(3) or m(3) increase, the size
of a leaf-node index record increases, which may result in an increase of the number of leaf
pages for the index record. Consequently, the retrieval costs increase. Moreover, since the
multiindex requires scanning of three indices to access the desired objects, the multiindex
has the highest retrieval cost. The full index has a lower retrieval cost than the multiindex
and the path index. The reason is that the full index requires only one lookup in the index
FX1

3, but the multiindex requires one lookup for each index and the path index has to per-
form a lookup for an index larger than the full index. In this case, the nested index is the
same as the indexFX1

3 of the full index. Therefore, the nested index has the same retrieval
cost as the full index.

Fig. 4. The retrieval cost under different values of K(1).

Fig. 6 shows the retrieval costs for simple queries with a path-expression C(1).A(1)....
A(n) = ‘O(n)’ , using a full index, a multiindex, a nested index and a path index, respectively,
where m(y) = 1, K(y) = 2, 1 ≤ y ≤ n and n is varied from 2 to 10. For the same reasons in Fig.
4, the multiindex has the highest retrieval cost, and the full index and the nested index have
the lowest retrieval cost. Moreover, since a multiindex is allocated to each class traversed
by the path, which involves solving a nested predicate by scanning a number of indices
equal to the path-length, the retrieval cost of the multiindex increases as n increases. A path
index provides an association between an object at the end of the path and the instantiations

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG230

ending with the object. Therefore, the index size of a path index increases as n increases,
which results in an increase of the retrieval cost. Since the index FX n

1 of a full index and a
nested index only associates instances of the first class of the path with the values at the end
of the path, a full index and a nested index have lower retrieval costs, and these costs are not
affected by n.

Consider simple queries with path-expressions C(1).A(1)....A(j) = ‘O(j)’ , where 1 ≤ j
≤ n, m(y) = 1, K(y) = 2, 1 ≤ y ≤ n and n is varied from 2 to 10. Suppose a multiindex, a nested
index, a path index and a full index have been allocated for simple queries with a path-
expression C(1).A(1)....A(n) = ‘O(n)’, respectively. Since a path index and a nested index
can not support any query for partial instantiations as stated before, a lookup in a real data-
base is required. Therefore, the retrieval costs for a nested index and a path index will be
very high. In Fig. 7, we compare the average retrieval cost based on a multiindex and a full
index for all the queries with path-expressions C(1).A(1)....A(j) = ‘O(j)’ , where 1 ≤ j ≤ n,
which have the same probability. From this figure, we can find that a full index can provide
a constant retrieval cost because only one lookup on an index is required for each query
while the retrieval cost for a multiindex increases as n increases for because scanning of a
number of indices is required for each query.

Fig. 6. The retrieval cost under different values of the path-length (n).

Fig. 5. The retrieval cost under different values of m(1).

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 231

Fig. 8. The average retrieval cost for queries in a general set.

Fig. 7. The average retrieval cost for simple queries.

Fig. 8 shows the average retrieval cost for queries in a general set with path-expres-
sions C(i).A(i)....A(j) =‘O(j)’ , where 1 ≤ i ≤ n, i ≤ j ≤ n and n is varied from 2 to 10. For the
same reasons in Fig. 7, we can find that a full index can provide a constant retrieval cost
while the retrieval cost for a multiindex increases as n increases.

Fig. 9 shows the average update costs for a path = C(1).A(1)....A(n), using a full index,
a multiindex, a nested index and a path index, respectively, where m(y) = 1, K(y) = 4, 1 ≤ y
≤ n and n is varied from 2 to 10. A multiindex has the lowest average update cost because a
single index is updated for each update operation. As stated in [3], for an update on an
object O(i), a path index requires the cost of a forward traversal and the cost of a B-tree
update, and a nested index requires the cost of a forward and a backward traversal and the
cost of a B-tree update. (Note that a forward traversal is defined as the accesses of objects
O(i + 1),..., O(n) such that O(i + 1) is referenced by object O(i) through attribute A(i), ..., and
O(n) is referenced by object O(n−1) through attribute A(n −1). On the other hand, a back-
ward traversal is defined as the accesses of objects O(i - 1),..., O(2) such that O(i − 1) is
referenced by object O(i) through attribute A(i −1), ..., and O(1) is referenced by object O(2)
through attribute A(1).) The cost for a forward traversal is in proportion to n, and the cost
for a backward traversal is in proportion to 2n[3]. Therefore, a nested index has a higher

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG232

average update cost than a path index, and a path index has a higher average update cost
than a multiindex. (Note that as stated in [3], the update cost of the traversal operations for
a nested index is also related to the size of the real database involved in the path while the
update cost of our full index is independent of the size of the real database involved in the
path.) Since in a full index, an update operation in an index may cause some other update
operations in other indices, the average update cost for a full index is higher than one for a
multiindex. Moreover, the number of updated indices for an update in a full index is in
proportion to n2, and the cost for these updated indices is higher than the cost for a forward
traversal in a path index. Therefore, a full index has a higher average update cost than a
path index. When n is small, since the cost for a backward traversal in a nested index is
lower than the cost for the updated indices in a full index, a nested index has a lower average
update cost than a full index. On the other hand, when n ≥ 5, a full index has a lower average
update cost than a nested index.

Fig. 10 shows the storage costs for a full index, a multiindex, a nested index and a
path index, where n = 3, m(1) = m(2) = m(3) = 1, K(2) = K(3) = 10, and K(1) varies from 1
to 50. Obviously, the full index can reduce the retrieval cost at the cost of increasing the
storage cost; therefore, the full index has a higher storage cost than all the others. When n
= 3, there are six indices in the full index, but there are three indices in the multiindex and
there is only one index in the nested index and the path index. Since a path index records all
the instantiations ending with the object at the end of the path and some instantiations may
share some references, a path index has a certain degree of redundancy and has a higher
storage cost than a multiindex. Moreover, when K(i) is high enough, the path index may
have a higher storage cost than the full index. Fig. 11 shows the storage costs for a full index
and a path index, where n = 3, m(1) = m(2) = m(3) = 1, K(2) = K(3) = 1, and K(1) varied
from 50 to 80. From this figure, we can find that when K(1) ≥ 57, the path index has a
higher storage cost than the full index.

5. OPTIMAL INDEX CONFIGURATION

To reduce the high update cost for a long given path, we can split the path into several
subpaths and allocate a separate index to each subpath [7,14]. Given a path, the number of
subpaths and the index organization of each subpath define an index configuration. But the

Fig. 9. The average update cost.

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 233

Fig. 10. The storage cost for K(2) = K(3)=10 under different values of K(1).

Fig. 11. The storage cost for K (2) = K (3) = 1 under different value of K (1).

increase of the number of indices for subpaths will also increase the retrieval cost of scan-
ning a number of indices, which results in a high retrieval cost. Since a low retrieval cost
and a low update cost are always a trade-off in index organizations, we can establish a cost
formula to look for a compromise between these two requirements. In [7], the authors
proposed cost formulas to evaluate the costs of various index configurations. However,
they do not support partial instantiations and do not consider more than one nested predi-
cate along the path. In this section, we will propose cost formulas to determine the index
configuration which can provide the best performance for various applications by taking
into account various types of queries along a given path and a set of queries with more than
one nested predicate along a given path.

For example, suppose that we have a path = C(1).A(1)....A(3), where path-length = 3.
This path can be split in several different ways. All the possible way to split this path si (1
≤ i ≤ 4) are grouped as follows, where Pi

j denotes the jth subpath in the ith split way, and on
the subpathPi

j , Pi
j _c and Pi

j _a denote the starting class and the ending attribute,
respectively:

Let us consider the split way s3; we can allocate an index organiza10tion such as a
multiindex(MX), a nested index(NX), a path index(PX) or a full index(FX), on each subpath.
For example, { , }FX P NX P− > − >3

1
3
2 denotes that a full index is allocated on subpath P3

1,
and that a nested index is allocated on subpathP3

2 , respectively.

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG234

In general, given a path C(1).A(1)....A(n), the set of ways of splitting S is{ , ,... }s s sr1 2 ,
where r denotes the number of ways of splitting the path, and each way of splitting si (1 ≤ i
≤ r) is{ ,...., }P Pi i

g1 , where g denotes the number of subpaths of si . The organization sets for
si areITS IT P IT Pi i i i

g
i
g= − > − >{ ,...., }1 1 where IT MX NX PX FXi

k ∈{ , , , }, 1 ≤ i ≤ r and 1 ≤ k
≤ g.

5.1 Access Cost

Given a path C(1).A(1)....A(n), a wayof splitting st and its index organization set ITSt

(1 ≤ t ≤ r), the retrieval cost for a query with a path-expression C(i).A(i)....A(j) = ‘O(j +1)’ (1
≤ i ≤ j ≤ n) is denoted as Cost_At(i,j) and is obtained as follows:

Cost A i j RC i P c

RC P c P a

RC P c P a

RC P c P a

RC P a j

t t t
l

t t
l

t
l

t t
l

t
l

t t
m

t
m

t t
m

_ (,) (, _)

(_ , _)

(_ , _)

(_ , _)

(_ ,),

= +
+
+ +
+
+

+ +

1 1

whereP c i P c P a j P a l m gt
l

t
l

t
m

t
m− +< ≤ ≤ < ≤ ≤ ≤1 1 1_ _ , _ _ , and g is the number of subpaths

of st. Moreover,RC a b RCt a
b(,) = , whenITt

y = ‘FX’ , P c a b P at
y

t
y≤ ≤ ≤_ _ and 1 ≤ y ≤ g;

that is, a full index is allocated on subpathPt
y . If ITt

y is ‘MX’, ‘ NX’ or ‘PX’, RC a bt (,)can be
obtained as described in [3].

5.2 Maintenance Cost

Given a path C(1).A(1)....A(n), a way of splitting st and its index organization set ITSt

(1 ≤ t ≤ r), the update cost for O(i + 1) of O(i) (1 ≤ i ≤ n) is denoted as Cost_Ut(i) and is
obtained as follows:

Cost U i U i P c i P at t
l

t
l

t
l_ () (), _ _ .= ≤ ≤

Split Way Subpaths Boundary

s P C A P c P a

P C A P c P a

P C A P c P a

s P

1 1
1

1
1

1
1

1
2

1
2

1
2

1
3

1
3

1
3

2 2
1

1 1 1 1

2 2 2 2

3 3 3 3

: (). () _ : _

(). () _ : _

(). () _ : _

:

= = =
= = =
= = =

== = =
= = =

= = =
=

C A A P c P a

P C A P c P a

s P C A P c P a

P C A A

(). (). () _ : _

(). () _ : _

: (). () _ : _

(). ().

1 1 2 1 2

3 3 3 3

1 1 1 1

2 2

2
1

2
1

2
2

2
2

2
2

3 3
1

3
1

3
1

3
2

 (() _ : _

: (). (). (). () _ : _

3 2 3

1 1 2 3 1 3

3
2

3
1

4 4
1

4
1

4
1

P c P a

s P C A A A P c P a

= =

= = =

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 235

Moreover, U i Ut
l

i() = , whenITt
l = ‘FX’ and 1 ≤ l ≤ g; that is, a full index is allocated

on subpathPt
l . If ITt

l is ‘MX’, ‘ NX’ or ‘PX’, U it
l () can be obtained as described in [3].

Similar to the update cost, the deletion cost Cost_Dt(i) and the insertion cost Cost_It(i) can
be easily obtained.

5.3 Cost Formulas

The total cost of an index configuration with a way of splitting st and its a correspond-
ing organization set ITt for a query with a path-expression C(i).A(i)....A(j) = ‘O(j + 1)’ (1 ≤
i ≤ j ≤ n) is denoted as

α β γ δCost A i j Cost U m Cost D m Cost I mt m t m t m t
m

n

m

n

m

n

_ (,) _ () _ () _ (),+ + + ∑∑∑
=== 111

whereα β γ δ+ + + =∑∑∑
===

m m m
m

n

m

n

m

n

1
111

.

Moreover, the total cost of an index configuration with a way of splitting st and its a
corresponding organization set ITt for a set of queries with path-expressions C(i1).A(i1)....A
(j1)=‘O (j1+1)’,C(i2).A(i2)....A(j2) =‘O (j2+1)’,...., C(ik). A(ik), A(jk) =‘O (jk+1)’ (k ≥ 1, 1 ≤
q ≤ k and 1 ≤ iq ≤ jq ≤ n) is denoted as

α β γ δq t q q m t m t m t
m

n

m

n

m

n

q

k

Cost A i j Cost U m Cost D m Cost I m_ (,) _ () _ () _ (),+ + + ∑∑∑∑
==== 1111

where α β γ δq m m m
m

n

m

n

m

n

q

k

+ + + =∑∑∑∑
====

1
1111

.

Therefore, given a path C(1).A(1)....A(n) and a set of queries with path-expressions C
(i1).A(i1)....A(j1)=‘O (j1+1)’,C(i2).A(i2)....A(j2)=‘O (j2+1)’,....,C(ik). A(ik)....A(jk) =‘O (jk+1)’ (k
≥ 1, 1 ≤ q ≤ k and 1 ≤ iq ≤ jq ≤ n) the optimal index configuration can be obtained by trying
all possible split types combined with all possible index organization sets and then finding
one which can provide the minimum cost.

5.4 Simulation Results

In this subsection, we will discuss several simulations to find an optimal index con-
figuration for queries along a given path against a class-aggregation hierarchy. In all these
simulations, we assumed along that n = 8, N(1) = 200,000, m(y) = 1, K(y) = 2, (1 ≤ y ≤ n),
UIDL = 8, kl = 2, ol = 6, pp = 4, f = 218, d = 146 and PS = 4096. Since the cost for an
insertion(or a deletion) is in proportion to the cost for an update, we only consider the
retrieval and update costs by letting the probabilities of insertion and deletion be 0 in the
following simulations.he retrieval probability (denoted as R) varies from 1 to 0; at the same
time, the update probability (denoted as U) varies from 0 to 1.

Fig. 12 shows the optimal index configurations for a simple query with a path-expres-
sion C(1).A(1).....A(8) = ‘O(8)’. Fig. 13 shows the optimal index configurations for 2-
degree complex type queries with the same probability of being performed, the path-ex-
pressions of which are C(1).A(1).....A(8) = ‘O(8)’ and C(1).A(1).....A(4) = ‘O(4)’, respectively.
Fig. 14 shows the optimal index configurations for 8-degree complex type queries with the
same probability of being performed, the path-expressions of which are C(1).A(1).....A(j) =
‘O(j)’ , 1 ≤ j ≤ 8. Fig. 15 shows the optimal index configurations for four queries in a
general set with the same probability of being performed, the path-expressions of which are

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG236

C(1).A(1).....A(8) = ‘O(8)’, C(2).A(2).....A(5) = ‘O(5)’, C(3).A(3).....A(7) = ‘O(7)’ and C(4).
A(4).....A(8) = ‘O(8)’, respectively. Fig. 16 shows the optimal index configurations for
queries in a general set with the same probability of being performed, the path-expressions
of which C(i).A(i).....A(j) = ‘O(j)’ , 1 ≤ i ≤ j ≤ 8.

From these figures, in general, we can find that a full index on the path C(1).A(1).....
A(8) is an optimal index configuration when the retrieval probability is high. The reason is
that a full index can support any type of query along a given path with a lower retrieval cost
than all the other index organizations, and the update probability is so small that the update
cost is negligible. Therefore, the path does not have to be split into several subpaths to
reduce the update cost. As the retrieval probability decreases (that is, the update probability
increases), the update cost is not negligable, which results in a need for the path to be split
to reduce the update cost. And for each split subpath, a full index, a nested index or a path
index is allocated according to the query status on this subpath. Since a nested index and a
path index cannot support partial instantiations, a full index is always a good choice to for
allocation on each subpath as shown on Figs. 14 and 16. When the update probability is
high, a multiindex on the path C(1).A(1).....A(8) is a good choice because of the low re-
quired update cost and the negligable retrieval cost.

6. CONCLUSIONS

In this paper, we have proposed a new index organization for evaluating queries,
called a full index, where an index is allocated for each class and its attribute (or nested
attribute) along the path. From the analysis results, we have found that a full index can

Fig. 12. The optimal index configurations for a query of a simple type.

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 237

Fig. 13. The optimal index configurations for 2-degree complex type queries.

Fig. 14. The optimal index configurations for 8-degree complex type queries.

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG238

Fig. 16. The optimal index configuration for queries in a general set.

Fig. 15. The optimal index configurations for four queries in a general set.

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 239

support any type of query along a path against a class-aggregation hierarchy with a lower
retrieval cost than all the other index organizations (a multiindex, a nested index and a path
index). Moreover, to reduce the high update cost for a long given path, we split the path
into several subpaths and allocate a separate index on each subpath. Since a low retrieval
cost and a low update cost are always a trade-off in index organizations, we have presented
a cost formula which can be used to look for a compromise between these two requirements.
In [7], the authors have proposed cost formulas which can be used to evaluate the costs of
various index configurations. However, they do not support partial instantiations and do
not consider more than one nested predicate along the path. In this paper, we have proposed
cost formulas which can be used to determine the best index configuration to provide the
best performance for various applications by taking into account various types of queries
along a given path and a set of queries with more than one nested predicates along a given
path. From the simulation results, in general, a full index is an optimal index configuration
against a path when the retrieval probability is high. How to provide an efficient index
organization for queries along more than one path against a class-aggregation hierarchy is a
direction for future research.

REFERENCES

1. S. Abiteboul and R. Hull, “IFO: a formal semantic database model,” ACM Transac-
tions on Database Systems, Vol. 12, No. 4, 1987, pp. 525-565.

2. R. Bayer and E. McCreight, “Organization and maintenance of large ordered indexes,
” Acta Information, Vol. 1, No. 3, 1972, pp. 173-189.

3. E. Bertino and W. Kim, “Indexing techniques for queries on nested objects,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, No. 2, 1989, pp. 196-214.

4. E. Bertino and L. Martino, “Object-oriented database management systems: concepts
and issues,” Computer, Vol. 24, No. 4, 1991, pp. 33-47.

5. E. Bertino, “An indexing technique for object-oriented databases,” in Proceedings of
IEEE International Conference on Data Engineering, 1991, pp. 160-170.

6. E. Bertino and L. Martino, Object-Oriented Database Systems: Concepts and
Architectures, Addison-Wesley Publishing Inc., New York, 1993.

7. E. Bertino, “Index configuration in object-oriented databases,” Very Large Data Bases
Journal, Vol. 3, No. 3, 1994, pp. 355-399.

8. E. Bertino and P. Foscoli, “Index organizations for object-oriented database systems,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 2, 1995, pp. 193-
209.

9. R.G.G. Cattell, Object Data Management: Object-Oriented and Extended Relational
Database Systems, Addison-Wesley Publishing Inc., New York, 1994.

10. S. Christodoulakis, J. Vanderbroek, J. Li, T. Li, S. Wan, Y. Wang, M. Papa and E.
Bertino, “Development of a multimedia information system for an office environment,
” in Proceedings of the Tenth International Conference on Very Large Data Bases,
1984, pp. 261-271.

11. D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, Vol. 11, No. 2, 1979, pp.
121-137.

12. H. Ishikawa, F. Suzuki, F. Kozakura, A. Makinouchi, M. Miyagishima, Y. Izumida, M.
Aoshima and Y. Yamane, “The model, language, and implementation of an object-
oriented multimedia knowledge base management system,” ACM Transactions on
Database System, Vol. 18, No. 1, 1993, pp. 1-50.

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG240

13. A. Karmouch, L. Orozco-Barbosa, N. D. Georganas and M. Goldberg, “A multimedia
medical communications system,” IEEE Journal on Selected Areas in Communications,
Vol. 8, No. 3, 1990, pp.325-339.

14. A. Kemper and G. Moerkotte, “Access support in object bases,” in Proceedings of the
ACM International Conference Management of Data, 1990, pp. 364-374.

15. A. Kemper and G. Moerkotte, “Access support relations: an indexing method for object
bases,” Information Systems, Vol. 17, No. 2, 1992, pp.117-145.

16. W. Kim and F. Lochovsky, “Indexing techniques for object-oriented databases,” in W.
Kim and F. Lochovsky (ed.), Object-oriented Concepts, Databases, and Applications,
Addison-Wesley Publishing Inc., New York, 1989.

17. C. C. Low, B. C. Ooi, and H. Lu, “H-Trees: a dynamic associative search index for
OODB,” ACM International Conference Management of Data, 1992, pp. 134-143.

18. D. Maier and J. Stein, “Indexing in an object-oriented database,” in Proceedings of
IEEE Workshop on Object-Oriented Data Base Management Systems, 1986, pp. 171-
182.

19. C. Meghini, F. Rabitti and C. Thanos, “Conceptual modeling of multimedia documents,
” IEEE Computer, Vol. 24, No. 10, 1991, pp. 23-30.

20. E. Oomoto and K. Tanaka, “OVID: Design and implementation of a video-object
database system,” IEEE Transactions on Knowledge and Data Engineering, Vol. 5,
No. 4, 1993, pp. 629-643.

21. P. Valduriez, “Join indices,” ACM Transactions on Database Systems, Vol. 12, No. 2,
1987, pp. 218-246.

22. D. Woelk, W. Kim and W. Luther. “An object-oriented approach to multimedia databases,
” in Proceedings of ACM International Conference Management of Data, 1986, pp.
311-325.

23. D. Woelk, “Multimedia information management in an object-oriented database system,
” in Proceedings of the 13th Very Large Data Bases Conference, 1987, pp. 319-329.

24. A. Yoshitaka, S. Kishida, M. Hirakawa and T. Ichikawa, “Knowledge-assisted content-
based retrieval for multimedia databases,” IEEE Multimedia, 1994, Vol. 1, No. 4, pp.
12-21.

25. Z. Xie and J. Han, “Join index hierarchies for supporting efficient navigations in object-
oriented databases,” in Proceedings of the 20th Very Large Data Bases Conference,
1994, pp. 522-533.

Chien-I Lee=E�� F=was born in Taipei, Taiwan, R.O.
C., 1965. He received the B.S. degree in computer science
from Feng Chia University in 1987 and the M.S. degree in
applied mathematics from National Sun Yat-Sen University in
1993. He received the Ph.D. degree in computer science from
National Chiao Tung University in June 1997 and then joined
the Institute of Information Education, National Tainan Teacher
College, Tainan, Taiwan. He is currently an assistant professor,
and his research interests include object-oriented databases,
access methods, multimedia storage servers, video-on-demand,
information retrieval and web databases.

INDEXING ORGANIZATION IN OBJECT-ORIENTED DATABASES 241

Ye-In Chang=E�� F was born in Taipei, Taiwan, in
1964. She received the B.S. degree in computer science and
information engineering from National Taiwan University,
Taipei, Taiwan, in 1986, and the M.S. and Ph.D. degrees in
computer and information science from Ohio State University,
Columbus, Ohio, in 1987 and 1991, respectively.

Since 1991, she has been on the faculty of the Depart-
ment of Applied Mathematics at National Sun Yat-Sen
University, Kaohsiung, Taiwan, where she is currently a
Professor. Her research interests include database systems, dis-
tributed systems, multimedia information systems and com-
puter networks.

Wei-Pang YangE�� Fwas born on May 17, 1950 in
Hualien, Taiwan, Republic of China. He received the B.S. de-
gree in mathematics from National Taiwan Normal University
in 1974, and the M.S. and Ph.D. degrees from National Chiao
Tung University in 1979 and 1984, respectively, both in com-
puter engineering.

Since August 1979, he has been on the faculty of the
Department of Computer Science and Information Engineer-
ing at National Chiao Tung University, Hsinchu, Taiwan. In
the academic year 1985-1986, he was awarded the National
Postdoctoral Research Fellowship and was a visiting scholar

at Harvard University. From 1986 to 1987, he was the Director of the Computer Center of
National Chiao Tung University. In August 1988, he joined the Department of Computer
and Information Science at National Chiao Tung University, and acted as the Head of the
Department for one year. Then he went to IBM Almaden Research Center in San Jose,
California for another one year as visiting scientist. From 1990 to 1992, he was the Head of
the Department of Computer and Information Science again. His research interests include
database theory, database security, object-oriented databases, image databases, and Chi-
nese database retrieval systems.

Dr. Yang is a senior member of IEEE, and a member of ACM. He was the winner of
the 1988 and 1992 AceR Long Term Award for Outstanding M.S. Thesis Supervision, the
1993 AceR Long Term Award for Outstanding Ph.D. Dissertation Supervision, and the
winner of the 1990 Outstanding Paper Award of the Computer Society of the Republic of
China. He also received the Outstanding Research Award of the National Science Council
of the Republic of China.

