JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 15, 217-241 (1999)

Design of a New Indexing Organization for
A Class-Aggregation Hierarchy in Object-Oriented
Databases$

CHien-l Leg, YE-IN CHANG* AND WEI-PANG Y ANG**
Institute of Information Education
National Tainan Teachers College
Tainan, Taiwan 700, R.O.C.
E-mail:leeci@ipx.ntntc.edu.tw
*Department of Applied Mathematics
National Sun Yat-Sen University
Kaohsiung, Taiwan 804, R.O.C.
E-mail: changyi@math.nsysu.edu.tw
**Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.
E-mail: wpyang@cis.nctu.edu.tw

In an object-oriented database, a class consists of a set of attributes, and the values of
the attributes are objects that belong to other classes; that is, the definition of a class forms
a class-aggregation hierarchy of classes. A branch of such a hierarchy is qelthd a
Several index organizations have been proposed to support object-oriented query languages,
includingmultiindex join index, nested indeandpath index All the proposed index orga-
nizations are helpful only for a query which retrieves the objects of the root class of a given
path using a predicate which specifies the value of the attribute at the end of the path. In this
paper, we propose a new index organization for evaluating queries,falliedex where
an index is allocated for each class and its attribute (or nested attribute) along the path.
From the analysis results, we show thatlhindexcan support any type of query along a
given path with a lower retrieval cost than all the other index organizations. Moreover, to
reduce the high update cost for a long given path, we split the path into several subpaths and
allocate a separate index to each subpath. Given a path, the number of subpaths and the
index organization of each subpath define an index configuration. Since a low retrieval
cost and a low update cost are always a trade-off in index organizations, we also propose
cost formulas to determine the index configuration which can provide the best performance
for various applications by taking into account various types of queries along a given path
and a set of queries with more than one nested predicate along a given path.

Keywords:access methods, complex objects, index selection, object-oriented databases,
query optimization

Received April 10, 1997; accepted December 14, 1997.

Communicated by Arbee L. P. Chen.

This research was supported in part by the National Science Council of Republic of China under Grant No. NSC-
84-2213-E-110-009.

217

218 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

1. INTRODUCTION

The new generation of computer-based applications, such as computer-aided designed
and manufacturing (CAD/CAM), multimedia databases (MMDB), and software develop-
ment environments (SDEs), requires more powerful technigues to generate and manipulate
large amounts of data. The traditional well-known record-based relational data model does
not provide the possibility of directly modeling complex data. Moreover, many complex
relationships among data, for example, instantiation, aggregation and generalization, can
not be well defined in the relational data model. Furthermore, the relational data model
does not provide mechanisms to associate data behavior with data definitions at the schema
level.

Object-oriented database management systems [1, 10, 12, 13, 19, 20, 22-24] repre-
sent one of the most promising directions in the database area for meeting the requirements
of advanced applications. An object-oriented data model not only provides great expres-
sive power for describing data and defining complex relationships among data, but also
provides mechanisms for behavioral abstraction. In an object-oriented data model [4, 6, 9],
any real-world entity is represented by only one data modeling concept, the object. Each
object is identified by a unique identifier (UID). The state of each object is defined at any
point in time by the value of its attributes. The attributes can have as values both primitive
objects (for example, strings, integers, or booleans) and non-primitive objects, which in
turn, consist of a set of attributes. Objects with similar attributes are grouped into classes.
A classC consists of a number of attributes, and the value of an attéboten object
belonging to the clasS is an object or a set of objects belonging to some otherClass
The clas<C’ is called thedomainof the attributeA of the clas<C, and this association is
called amaggregation relationshijppetween the class€andC’. The clas€’in turn con-
sists of a number of attributes, whose domains are other classes. In general, a class is a
hierarchy of classes afjgregation relationshipsalled araggregation hierarchy A branch
of such a hierarchy is calledhath An example of a class-aggregation hierarchy is shown
in Fig. 1. An example of a path against this class-aggregation hierai@tudent.study.
taughtby.work-in.name Several index organizations [3, 5, 8, 14, 16-18, 21, 25] proposed
to support object-oriented query languages, includinljiindex[18], join index[21], nested
index[3], path indeX3] andaccess support relatiofi4].

Course

Teacher Department

Student taught-by __L o |name name
study ~J——|classroom work-in +—% chairman
student ID, name
residence

City
name

name

population

Fig. 1. An example of a class-aggregation hierarchy.

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 219

Consider the following queryRetrieve all the students who study in some courses in
the Department of Computer Scienfa the class-aggregation hierarchy shown in Fig. 1
and the related instances shown in Fig. 2, where ‘study in the Department of Computer
Science’ is a nested predicate. (Note that nested predicates are often exprespathusing
expressionsthe above nested predicate can be expressgaidsnt.study.taught-by.work-
in.name= ‘Computer Science’.) Given a pattStudent.study.taught-by.work-in.nariesre
are four indices in aultiindexset. The first index is on the subp&tudent.studwand
contains the following pairs: (Coursel[i], {Student[o]}), (Course[j], {Student[p]}) and
(Course[K], {Student[q]}). The second index is on the subatirse.taught-bgnd con-
tains the following pairs: (Teacher[i], {Course[k], Course[l]}) and (Teacher[j], {Course[i],
Course[j]}). The third index is on the subpd#acher.work-irand contains the following
pairs: (Department[l], {Teacher][i]}) and (Department[m], {Teacher]j]}). The forth index is
on the subpatbepartment.namand contains the following pairs: (Computer Science,
{Department[l]}) and (Mathematics, {Department[m]}).

Student{o] Courseli] Teacherl[i] Department{l] City[i]
Courseli] Teacher([j] John Computer Science Lodon
8312457 1C-012 Department[1] David 5 million
City[i] English erre
Mary Teacher[j] Departmentfm] _Cityl

Course[j ipei

Student[p] " [J] Peter Mathematics 4Ta1.11);i.1

P Teacher(j] Department[m] | Watt muhon
Coursel[j] IC-314 .
8321388 Math. City[k]
City[j] Rome
Watt Coursefk] 2 million
Teacher][i]

Student[q] 1C-221
Course[k] Computer
8288377 Course[l]

City[k] .

Candy Teacher(i]
1C-331
Compiler

Fig. 2. Instances of classes in Fig. 1.

A join index[21] is similar to amultiindexexcept that §oin indexsupports both
forward and reverse traversal along the path; that is, two indices are allocated between each
class and its immediate attribute along the path. That is, for a given path, the number of
indices for goin indexis two times that for enultindex

For the same example shown aboveested indewill contain the pairs (Computer
Science, {Student[q]}) and (Mathematics, {Student[o], Student[p]}) whilpadh index
will contain the following pairs:

(Computer Science, {Student[q].Course[k].Teacher[i].Department[l]}) and

(Mathematics, {Student[o].Course[i]. Teacher[j].Department[m],

Student[p].Course[j]. Teacher[j].Department[m]}).

220 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

An access support relatioii4] is an organization very similar to a path index except
that anaccess support relatiopan store incomplete path instantiations using null values in
relations.

In general, anultiindex[18] is allocated on each class traversed by the path, which
solves a nested predicate by scanning a number of indices equal to the path-length. Therefore,
amultiindexhas a high retrieval cost but a low update cost. Simmsted indexnly
associates instances of the first class of the path with the values at the end of the path, a
nested indexas a lower retrieval cost for querying on the first class with the nested predi-
cate on the last attribute of the path but has a high update cost for forward and backward
object traversals to access the database itseffath index3] provides an association
between an object at the end of the path and the instantiations ending with the object.
Thereforea path indexcan be used to evaluate nested predicates on all classes along the
path; however, aath indexhas a high update cost.

All the above proposed index organizations will be helpful only to a query which
retrieves the objects of the root class of a given path using a predicate which specifies the
value of the attribute at the end of the path. Consider another Regrigve all the courses
taught by those teachers who are in the Departmenti[fje path-expression for this query
is Course.taught-by.work-in ‘Department[l]’. To answer this question, we have to scan
the second index and the third index in theltiindexdescribed above. Theested index
described above will not be helpful in answering the query whilpdtieindexdescribed
above will be only able to answer with a partial result ({Course[k]}) by scanning gdathe
index (Note that the answer to the query should be {Course[k], Course[l]}.) To reduce the
high retrieval cost in enultiindexand to overcome the problem where some queries in a
nested indexnd apath indexcannot be answered, in this paper, we propose a new index
organization for evaluating queries, callefilhindex where an index is allocated for each
class and each of its immediate and nested attributes along the path. For the same example
shown above, &ull indexwill contain 10 indices as shown in Table 1.

Table 1. An example of a full index.

Class Attribute Contents

Student Study (Course[i], {Student[o]}), (Course[j], {Student[p]}) and
(Course[k], {Student[q]})

Student Taught-by (Teacher [i], {Student[q]}) and
(Teacher][j], {Student[o], Student[p]})

Student Work-in (Department[l], Student[q]}) and
(Department[m], {Student[o], Student[p]})

Student Name (Computer Science, {Student[q]}) and
(Mathematics, {Student [0], Student[p]})

Course Taught-by (Teacher]i], {Course[k], Course[l]}) and
(Teacher]j], {Course[i], Course[j]})

Course Work-in (Department][l], {Course[k], Course[l]})and
(Department[m], {Course][i], Course[j]})

Course Name (Computer Science, {Course[K], Course[l]}) and
(Mathematics, {Course[i], Course[j]})

Teacher Work-in (Department[l], {Teacher[i]}) and
(Department[m], {Teacher[j]})

Teacher Name (Computer Science, {Teacher[i]}) and
(Mathematics, {Teacher]j]J})

Department Name (Computer Science, {Department[l]}) and

(Mathematics, {Department[m]})

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 221

A comparison of anultindex anested indexapath indexand afull indexis shown in
Fig. 3. From the analysis results, we can show tifiall endex can support any type of
guery along a given path against a class-aggregation hierarchy with a lower retrieval cost
than all the other index organizations. Therefore, our full index is suitable for queries
against a given path, where queries on subpaths might po¢dietable To reduce the
high update cost for a long given path, we can split the path into several subpaths and
allocate a separate index to each subpath [7, 14, 15]. Given a path, the number of subpaths
and the index organization of each subpath define an index configuration. But the increase
of the number of indices for subpaths will also increase the retrieval cost for scanning a
number of indices, which results in a high retrieval cost. Since a low retrieval cost and a
low update cost are always a trade-off in index organizations, we can establish a cost for-
mula to look for a compromise between these two requirements. In [7], the authors pro-
posed cost formulas to evaluate the costs of various index configurations. However, they
do not supporpartial instantiationgdefined in Section 2) and do not consider more than
one nested predicate along the path. In this paper, we also propose cost formulas to deter-
mine the index configuration which can provide the best performance for various applica-
tions by taking into account various types of queries along a given path and a set of queries
with more than one nested predicate along a given path.

(a) (b)

:a class . . .
ac :an index with a primary

:an attribute A B key onClass B

:aggregation relationship :an index with a primary

:has-attribute relationship key on Attribute C

O

Fig. 3. A comparison: (a) multiindex (b) anested indexc) apath index (d) afull index

The rest of this paper is organized as follows. In Section 2, we define different types
of queries along a given path. In Section 3, we introduce the projpdsedexand related
index operations. In Section 4, we present the cost modefddriadexand give some
analysis results of full indexcompared with those ofraultiindex apath indexand a
nested index In Section 5, we present cost formulas which determine an optimal index
configuration. Finally, Section 6 concludes this paper.

222 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

2. QUERY TYPES IN A CLASS-AGGREGATION HIERARCHY

An attribute of any class on a class-aggregation hierarchy is logically an attribute of
the root of the hierarchy; that is, the attribute is a nested attribute of the root class. A
predicate on a nested attribute is calleetsted predicateA pathis defined aC(1).A(1).A
(2)....A(n), whereC(i) is a class in a class-aggregation hierarchyA{ijds an attribute of
classC(i), 1<i <n. Thepath-lengthindicates the number of classes along a path; that is,
the value in. Aninstantiationof a path is defined as a sequencenaf 1) objects a®(1).
O(2)....0(n + 1), whereO(i) is an instance of clagXi), 1<i < (n+1). Apatial instantiation
of a path is defined as a sequence of objec®(i@(i +1).....Q(j), whereQ(i) is an in-
stance of clas€(i), 1<i <j < (nt1). Object-oriented query languages allow objects to be
restricted by predicates on both nested and non-nested attributes of objects. In the following,
we define types of queries along a given path against a class-aggregation hierarchy.

Definition 1: Given a path which is defined agltA(1).A(2)...A(n) (n= 1) and an aggre-
gation hierarchy H, a simple type of query is expressed using path-expressi@p.as C
@i).....AJ) ='0()’, wherel<i< j<n.

That is, a simple type of query retrieves the objects of a class along a given path using
a predicate on its nested (or non-nested) attribute, where the specified class need not be the
root of the path and the specified attribute need not be the end of the path. The following
gueryQ1 shows an example of a simple type of query against the class-hierarchy shown in
Fig. 1.

Q1: Retrieve all the students who study in the Department of Computer Science

Q1 contains the nested predicate ‘study in the Department of Computer Science’. Nested
predicates are often expressed upiati-expressionsFor example, the above nested predi-
cate can be expressedStsdent.study.taught-by.work-in.nam&Computer Science’.

Definition 2: Given a path which is defined aglLA(1).A(2).....An) (h=1) and an aggre-
gation hierarchy H, a k-degree complex type of query is expressed using path-expressions
asqi).Al)....AG)='0 (1)’ ,C>1).Al)....Aj2)='O (2)',-..,C(0).Al).....Aj)="O (i)', wherel <

m<k,1<i<j,<n.

That is, &k-degree complex type of query retrieves the objects of a class along a given
path using predicates on itk nested (or non-nested) attributes along the given path. The
following queryQ2 shows an example of a 2-degree complex type of query against the
class-hierarchy shown in Fig. 1, where the path-expressio/g&twdent.study.taught-by
‘Teacher[i] andStudent.study ‘Course]i]".

Q2: Retrieve all the students who are taught by Teacher[i] and who study in Courseli]

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 223

Definition 3: Given a path which is defined aglEA(1).A(2).....An)(n= 1) and an aggre-
gation hierarchy H, a general set of queries is expressed using path-expressi¢gnsAas C
(i)....AJD) =0 (0)",C(i).Alio)....Aj2)="0 (j2)",-....C(Ii)-Aiy)....Aj)="O (j)’, where 1< m<

K 1< in< jm< N.

That is, there is more than one query along a given path. The following ex@iple
shows two queries in a general set against the class-hierarchy shown in Fig. 1, where their
path-expressions afgtudent.study ‘Courseli]’ andCourse.taught-by.work-in.nanre
‘Mathematics’, respectively.

Q3: Retrieve all the students who study in Course[i], and retrieves all the courses taught by
those teachers who are in the Department of Mathematics.

3. AFULL INDEX

In this section, we first give the formal definition oful index Then, we describe
four operations on fll index which areretrieval, update, insertioanddeletion

3.1 Organization

Definition 4: Given a path P which is defined ag1CA(1).A(2)....An)(n = 1) and an
aggregation hierarchy H, a full indgfeX) on P is defined as a set of indices, which are
FXIFEXZ,... . FXD EXZ, ..., FX", where FX! is an index on class(§ and attributeA(j), 1
<igjsn

For example, let a pathStudent.study.taught-by.work-in.naofeH be that shown
in Fig. 1 and the instances of classéeld ipe those shown in Fig. 2fall indexconsisting of
ten indices is described as follows.

The first indexFX; on classStudentand attributestudycontains the following pairs:

(Courseli], {Student|o]}),

(Course[j], {Student[p]}) and

(Course[K], {Student[q]}).

The second inde®X? on classStudentand attributeaught-bycontains the follow-
ing pairs:

(Teacher][i], {Student[q]}) and

(Teacher[j], {Student[o], Student[p]}).

The third indexrX2on classStudentand attributevork-in contains the following
pairs:

(Department]l], {Student[q]}) and

(Department[m], {Student[o], Student[p]}).

The fourth indexFX; on classStudentnd attributenameof classDepartmenton-
tains the following pairs:

(Computer Science, {Student[q]}) and

(Mathematics, {Student[o], Student[p]}).

The fifth indexFX on classCourseand attribut¢aught-bycontains the following
pairs:

224 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

(Teacher[i], {Course[K], Course[l]}) and

(Teacher[j], {Course][i], Course[j]}).

The sixth indexFXZon clasCourseand attributevork-in contains the following pairs:

(Department|l], {Coursel[k], Course[l]}) and

(Department[m], {Course][i], Course][j]}).

The seventh inde&X; on clasCourseand attributeameof classDepartmenton-
tains the following pairs:

(Computer Science, {Course[k], Course[l]}) and

(Mathematics, {Course][i], Course[j]}).

The eighth inde¥XZon classTeacherand attributavork-in contains the following
pairs:

(Department]l], {Teacher]i]}) and

(Department[m], {Teacher[j]}).

The ninth indeXX; on classTeacherand attributenameof classDepartmentcon-
tains the following pairs:

(Computer Science, {Teacher[i]}) and

(Mathematics, {Teacher[j]}).

The tenth inde¥X; on clasDepartmentand attributenamecontains the following
pairs:

(Computer Science, {Department[l]}) and

(Mathematics, {Department[m]}).

3.2 Operations

A full indexsupports fast retrieval of all types of queries defined in Section 2. An
evaluation of a nested predicate against the nested attAfjlitef classC(i) requires a
lookup of a single inde¥X/, where 1< i <j<n. Suppose that an instar©g) of classC
(i) along the path has an obje&ati+ 1) as the value of the attribuggi). Now, O(i) is
updated to a new obje®X (i +1). An update to thiull indexproceeds as follows.

First, we perform a lookup of ind&X'and replac®(i + 1) of O(i) with a new object
O’ (i+1). Second, we update the indeX® using the indeX**andFX, where 1< m<
i andi < k< n. Third, we update the indg™using the inde¥X™and FXT, wherei <
m<n.

As in the examples shown in Figs. 1 and 2, suppose the object in atilogté-by
of Coursgi] is updated fronTeachefj] to Teachefi]. Then, a series of update operations
on thefull indexare performed as follows.

First, we perform a lookup of the indEXZ and replac@eachefj] of Coursgi] with
Teachefi]; that is,FXZ contains the following pairs:

(Teacherf[i], {Course][i], Course[k], Course[l]}) and

(Teacher[j], {Course[j]}).

Second, we update the indeX? usingFX; andFXZ; that is,FX?contains the fol-
lowing pairs:

(Teacher[i], {Student|o], Student[q]}) and

(Teacher[j], {Student[p]}).

Then, we update the ind&X’usingFX>andFX?; that is,FX contains the following
pairs:

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 225

(Department]l], {Student[o], Student[q]}) and

(Department[m], {Student[p]}).

Moreover, we update the indeX;' usingFX’andFX; ; that is,FX; contains the fol-
lowing pairs:

(Computer Science, {Student[o], Student[q]}) and

(Mathematics, {Student[p]}).

Third, we update the inddX;usingFX; andFx2; that is,FXScontains the follow-
ing pairs:

(Department]l], {Courseli], Course[k], Course[l]}) and

(Department[m], {Course[j]}).

Then, we update the ind&X; usingFX3andFX; ; that is,FX; contains the follow-
ing pairs:

(Computer Science, {Course][i], Course[k], Course][l]}) and

(Mathematics, {Course[j]}).

Insertion and deletion operations are similar to update operations. We perform an
insertion/deletion operation of an object on ing&Xinstead of the replacement operation
in the first step of the update to the index.

4. PERFORMANCE ANALYSIS

In this section, we will describe the cost model and analyze some performance results
of afull index Moreover, a comparison of the performance of these related indexing schemes
will also be presented.

4.1 Cost Model

In this paper, we use a cost model which is similar to the one proposed in [3, 7], in
which the data structure used to model indices is base@drea[2, 11]. Similar to their
model [3, 7], we assume that the values of attributes are uniformly distributed among the
instances of the class, and that all the key values have the same length. However, in [3, 7],
since anested indeand apath indexcan not support any query for partial instantiations,
they need to make one more assumption: no partial instantiations; that is, each instance of a
classC(i) is referenced by instances of cl&s- 1), 1 <i < n. In this paper, we remove this
assumption so as to support a query of any type for partial instantiationdlimeexby
taking into account ‘NULL values of instances. Given a 2th).A(1).....An), the param-
eters that we consider in the cost model are grouped as follows (table on next page).
Moreover, to compare these indexing schemes on the same basis, we use the same
assumptions and parameters as those in [3] except that we consider the case where an at-
tribute A(i) has a set of values, instead of a single value, and the average number of values
in a set ian(i). Therefore, we usBV(i) to denote the number of distinct values Agi)

andD(i) = 5%8)5 to denote the number of distinct sets. In this case, W(i¢rhas a

single value (i.em(i) = 1),DV(i) = D(i). That is, we consider a more general caggin

It is straightforward to extend the cost models [3] of a multiindex, path index, and nested
index to consider the case where an attribute has a set of values instead of a single value. In
this paper, we do have use the extended cost models of these indexing schemes in our
performance comparison described in section 4.5. Note that, here, to simplify our presenta-
tion of the performance analysis, we omit some parameters used in [3] since they can be

226 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

easily derived from the other parameters. The values of those parameters which are not
critical to the comparison are here kept constant; these parameters were also kept constant
in [3].

Parameter Description
DV(i) Number of distinct values held in attribut), including the NULL value,

1<is<n
m(i) Average number of values for a set for attribit@}y 1<i<n.
D(i) Number of distinct sets for attribugi), 1 <i < n; that is,
= CPV()D
DO = 5m() O
N(i) Cardinality of clas€(i), including the NULL value, ¥i <n.
K(i) Average number of instances of cl&X§) with the same set of values for
attributeA(i): that is, K (i) = %5
uUIDL Length of the object-identifier in bytes.
PS Page size in bytes.
d Order of a nonleaf node.
f Average fanout from a nonleaf node.
pp Length of page pointer.
ki Average length of a key value for the indexed attribute.
ol Length of a header in an index record.
DS Length of the directory at the beginning of the record, when the record size

is greater than the page size.

4.2 Retrieval Cost

Let K(i, j) be the average number of instances of d{gshaving the same set of
values held in the nested attribétg), where < i<j<n; thatisK(i,]) = rIll_I K(r). XF’ de-
notes the average length of a leaf-node index record for the fixtiéxthefull indexand

XF' =K(i,j)m@i)UIDL + Kl +oal, XF' < PS

XF! =K(i,j)m@i)UIDL +kl +ol + DS, XF' >PS,

j)m(i)UIDL + ki + ol
) ()PS BU|DL+ op).

where DS= g((i’

The number of leaf page®’ for the indexFX/ is

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 227

0D() O
LR’ = Jps XF' < PS
|:_i
. IXE' O -
LP!' = D(J)B—' , XE' > PS
i PSH i

The number of index pag®E’ accessed in the indgx/ for a nested predicate on
classC(i) with a nested attributé(j) is

RC! =h(i,])+1, XF! < PS

where h(i, j)(= [log; D(j)[) is the number of nonleaf nodes that must be accessed in the
index FX/. When the record size is larger than the page size Xi.> PS, np is the

. XR'C
number of leaf pages needed to store the recordnpe: ,Eﬁ[. Therefore,
RC! =n(i,j)+np, XF! > PS
4.3 Maintenance Cost

The index maintenance cost derived from update, deletion or insertion operations for
an instance of a clagXi) is denoted byJ, D andl, respectively. To simplify the analysis,
we consider only the costs of leaf-page modifications and exclude the costs of index page
splits. The costBM, of an update on the indelX! is the sum of the cost of removing the
UID of objectO(i) from the record associated with its attrib@g + 1) and the cost of
adding it to the new valu®@ (i + 1); that is,

CBM, =CO (1+pl),
whereCO denotes the cost of finding the leaf node containing the key value and the cost of
reading and writing the leaf node, gpids the probability that the old and new values are
on different leaf nodes.

When a leaf page is modified, one page access is needed to read the leaf page contain-
ing the update record, and another page access is needed to write this page; intgddition,

i) pages are accessed to determine the leaf node containing the record to be updated.
Therefore,

CO=h(i,i)+2, XF' < PS

When the record size is larger than the page sizeargdthe number of leaf pages

i
needed to store the record, irp= %’(%B there ardn(i, i) + 1 pages which must be ac-

cessed to find the header of the record with the old value. From the header of the record, it
is possible to determine the page from whitH2 must be deleted or to whichlAD must
be added. If this page is different from the page containing the header of the record, a

np-1
further page access must be performed. This probability is give%ﬁay. Therefore,

228 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

CO:h(i,i)+2+n$“;l, XF' > PS

The probability that the current and new values are on different leaf nodes is

pl =1, XF' > PS
DpsErl
XF i
pl=1- oiy-1 <A <PS

Moreover, an update operation on the inde¥ will cause other associated indices
to be updated as stated in Subsection 3.2. When anfixdéxupdated (km<i, i<k <
n), the total cost for this update consists of the update@®Bist} on the indexXx* and the
retrieval cost RCY. (Note that one cosRCY is for findingO(k + 1) to determine which
objectO(k + 1) for objectO(k) is to be updated, and the other ®@fis for findingO’(k +
1) to determine which new obje@t(k + 1) is to be updated.)

Therefore, the total update castis

. i-1
U, =CBM/ + 3 3 (CBMX +2RCX)+ S (CBM™ +2RC™).
m=1k=i m=i+1
Since there is only a deletion of an old value or an insertion of a new value on the
indexFX/, plis 0. Therefore, the cost of deletibnand the cost of insertidnare given by

i-1n n
D =1, =CO+ 3 5 (CBM{ +2RC{) + ¥ (CBM™ +2RCY).

m=1k=i m=i+1

4.4 Storage Cost
The number of nonleaf pagedL P’ for the indexFX! is

o

. f
NLP/ = EL_fO §+ %f + X[,
M M

where LO = min(D(j), LP')and each term is successively divided bptil the last ternX
is less thar.
Then, the total storage cd&€Cfor afull indexis

SC=3 3 (LP'+NLR)).

i=1j=i
4.5 A Comparison

In this subsection, we will show a number of interesting resultfutifindex(denoted
asFX) on the basis of the analysis cost model described in the above subsections and com-
pare the performance of thal indexwith that of amultiindex(denoted aMX), anested
index(denoted adlX) and gpath index(denoted aPX) [3]. (Note that since jin indexis

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 229

similar to amultiindexand araccessupportrelationis similar to gpath indexwe omit the
performance for goin indexand that for amccess support relationBy using different
values of parameters, we can simulate some interesting situations for different application
requirements. However, some parameters are kept constant in all the simulations, namely,
N(1)=200,000,UIDL=8, kI=2, ol=6, pp=4, =218 d=146 andPS=4096. The values of
these parameters are the same as those in [3].

Fig. 4 shows the retrieval costs for simple queries with a path-expr&$joN1)....
A(3) ='0O(3), using anultiindex anested indexapath indexand &ull index respectively,
wheren = 3, m(1) = m(2) = m(3) = 1, K(2) = K(3) = 10, andK(1) is varied from 1 to 50.
Fig. 5 shows the retrieval costs for simple queries with a path-expr&&joi(1)....A3)
='0(3), using amultiindex anested indexapath indexand afull index, respectively,
wheren = 3, K(1) = K(2) = K(3) = 10, m(2) = m(3) = 1, andm(1) is varied from 1 to 5.
From these two figures, we observe that the retrieval costs for these four indexes are in-
creased with the values 1) orm(1). The reason is that E§3) orm(3) increase, the size
of a leaf-node index record increases, which may result in an increase of the number of leaf
pages for the index record. Consequently, the retrieval costs increase. Moreover, since the
multiindexrequires scanning of three indices to access the desired objectsltiredex
has the highest retrieval cost. Thé indexhas a lower retrieval cost than tmeiltindex
and thepath index The reason is that tlfll indexrequires only one lookup in the index
FX?, but themultiindexrequires one lookup for each index andghth indexhas to per-
form a lookup for an index larger than thdl index In this case, theested indeis the
same as the indéxX; of thefull index Therefore, theested indexas the same retrieval
cost as théull index

120
x_\A
100 1
Retrieval Cost 80 7 n=3,K2)=K3)=10
(number of 60
disk accesses) = NX
40 1 —{p PX
PR—T—Y 0.4
20 1 —#—— FX
0 - T T T
0 10 20 30 40 50

K(1)

Fig. 4. The retrieval cost under different value&¢f).

Fig. 6 shows the retrieval costs for simple queries with a path-expr&&iof1)....
A(n) =‘O(n)’, using &ull index amultindex anested inde&and goath indexrespectively,
wherem(y) = 1, K(y) = 2, 1<y <nandnis varied from 2 to 10. For the same reasons in Fig.
4, themultiindexhas the highest retrieval cost, andftlieindexand thenested indekave
the lowest retrieval cost. Moreover, sinamaltiindexis allocated to each class traversed
by the path, which involves solving a nested predicate by scanning a number of indices
equal to the path-length, the retrieval cost ofrtiudtindexincreases asincreases. Avath
indexprovides an association between an object at the end of the path and the instantiations

230 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

120
I
100
Retrieval Cost 80 7
(number of 60 -
disk accesses) —a— NX
40 —o— PX
20 e MX
. — = —— et FX
1 2 3 4 5

m(1)

Fig. 5. The retrieval cost under different valuesn(t).

Retrieval Cost

(number of

disk accesses) NX

MX
FX

Fig. 6. The retrieval cost under different values of the path-lenyth (

ending with the object. Therefore, the index size péth indexincreases as increases,
which results in an increase of the retrieval cost. Since the iRp&0of afull indexand a
nested indewnly associates instances of the first class of the path with the values at the end
of the path, dull indexand anested indekave lower retrieval costs, and these costs are not
affected byn.

Consider simple queries with path-expressiofly.A(1)....A(j) = ‘O(j)’, where 1< j
<n,my) =1,K(y) = 2, I<y<nandnis varied from 2 to 10. Supposenaltiindex anested
index apath indexand afull indexhave been allocated for simple queries with a path-
expressiorC(1).A(1)...A(n) = ‘O(n)’, respectively. Since path indexand anested index
can not support any query for partial instantiations as stated before, a lookup in a real data-
base is required. Therefore, the retrieval costs faséed indeand apath indexwill be
very high. In Fig. 7, we compare the average retrieval cost baseaatindexand &full
indexfor all the queries with path-expressidd@).A(1)....A(j) = ‘O(j)’, where 1<j < n,
which have the same probability. From this figure, we can find thditindexcan provide
a constant retrieval cost because only one lookup on an index is required for each query
while the retrieval cost for multiindexincreases as increases for because scanning of a
number of indices is required for each query.

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 231

The Average 20 -
Retrieval Cost
15 A
(number of
disk accesses) 10] " MX
5] TN . * . . . — K
0 T L L T T T L)
2 3 4 5 6 7 8 Q@ 10
n

Fig. 7. The average retrieval cost for simple queries.

Fig. 8 shows the average retrieval cost for queries in a general set with path-expres-
sionsC(i).A(i)....Aj) ='O(j)’, where I<i<n, i <j<nandnis varied from 2 to 10. For the
same reasons in Fig. 7, we can find thatleindexcan provide a constant retrieval cost
while the retrieval cost for multiindexincreases as increases.

80 7
70 7
60
The Average 50
Retrieval Cost
40 7
(number of 30 4
disk accesses) 20 1 — MX
10 ——e— FX
0 T > > + * * *
2 4 5 6 7 8 9 10
n

Fig. 8. The average retrieval cost for queries in a general set.

Fig. 9 shows the average update costs for a p@i FA(1)... A(n), using dull index
amultindex anested indeand apath indexrespectively, where(y) = 1,K(y) = 4, 1<y
<nandnis varied from 2 to 10. Anultindexhas the lowest average update cost because a
single index is updated for each update operation. As stated in [3], for an update on an
objectO(i), apath indexrequires the cost offarward traversaland the cost of B-tree
update, and aested indexequires the cost offarward and abackward traversahnd the
cost of aB-treeupdate. (Note thatfarward traversalis defined as the accesses of objects
O(i + 1),...,0(n) such thaO(i + 1) is referenced by obje@®i) through attributé(i), ..., and
O(n) is referenced by obje@(n-1) through attributé\(n -1). On the other hand beack-
ward traversalis defined as the accesses of obj€xis- 1),...,0(2) such thaO(i —1) is
referenced by obje€(i) through attributé\(i —1), ..., andO(1) is referenced by obje€y2)
through attributéd(1).) The cost for &orward traversalis in proportion ta, and the cost
for abackwardtraversalis in proportion to 43]. Therefore, aested indexas a higher

232 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

300

250 A
The Average
Update Cost 200]
(number of 150 7 —a— NX
disk accesses) 100 —1+— PX

Fig. 9. The average update cost.

average update cost thapath index and gpath indexhas a higher average update cost
than amultindex (Note that as stated in [3], the update cost of the traversal operations for
a nested index is also related to the size of the real database involved in the path while the
update cost of our full index is independent of the size of the real database involved in the
path.) Since in &ll index an update operation in an index may cause some other update
operations in other indices, the average update cosfdtiriadexis higher than one for a
multindex Moreover, the number of updated indices for an updatdut mdexis in
proportion ton?, and the cost for these updated indices is higher than the co$oformed
traversalin apath index Therefore, dull indexhas a higher average update cost than a
path index Whenn is small, since the cost forbmckwardtraversalin anested indejs
lower than the cost for the updated indicesfnlandex anested indekas a lower average
update cost thanfall index On the other hand, where 5, afull indexhas a lower average
update cost thanreested index

Fig. 10 shows the storage costs fdulhindex amultiindex anested indeand a
path indexwheren = 3,m(1) =m(2) =m(3) = 1,K(2) =K(3) = 10, andK(1) varies from 1
to 50. Obviously, théull indexcan reduce the retrieval cost at the cost of increasing the
storage cost; therefore, thdl indexhas a higher storage cost than all the others. \When
= 3, there are six indices in thdl index but there are three indices in theltindexand
there is only one index in tleested indeand thepath index Since gath indexrecords all
the instantiations ending with the object at the end of the path and some instantiations may
share some referencegpah indexhas a certain degree of redundancy and has a higher
storage cost thanraultindex Moreover, wheiK(i) is high enough, thpath indexmay
have a higher storage cost thanftiileindex Fig. 11 shows the storage costs féulbindex
and apath indexwheren = 3,m(1) =m(2) =m(3) = 1,K(2) =K(3) = 1, andK(1) varied
from 50 to 80. From this figure, we can find that wik€m) > 57, thepath indexhas a
higher storage cost than thdl index

5. OPTIMAL INDEX CONFIGURATION

To reduce the high update cost for a long given path, we can split the path into several
subpaths and allocate a separate index to each subpath [7,14]. Given a path, the number of
subpaths and the index organization of each subpath define an index configuration. But the

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 233

3000

2500
Storage n=3, KQ)=K@3)=10

Cost 2000 1
(number 1500 4 = NX
of pages) o ; e PX

1000 1 e MX

500 A

0 r r . r
0 10 20 30 40 50
K()

Fig. 10. The storage cost f&(2) =K(3)=10 under different values &{1).

3000
2500 1
Storage]
Cost 2000
(number 1500 -
of pages)
1000 1 " el 28
500 - —e— X
0 Y T T T T
50 55 60 65 70 75 80
K@)

Fig. 11. The storage cost fiir(2) =K (3) = 1 under different value &f (1).

increase of the number of indices for subpaths will also increase the retrieval cost of scan-
ning a number of indices, which results in a high retrieval cost. Since a low retrieval cost
and a low update cost are always a trade-off in index organizations, we can establish a cost
formula to look for a compromise between these two requirements. In [7], the authors
proposed cost formulas to evaluate the costs of various index configurations. However,
they do not suppogartial instantiationsand do not consider more than one nested predi-
cate along the path. In this section, we will propose cost formulas to determine the index
configuration which can provide the best performance for various applications by taking
into account various types of queries along a given path and a set of queries with more than
one nested predicate along a given path.

For example, suppose that we have a pai(il3A(1)... A(3), where path-length = 3.
This path can be split in several different ways. All the possible way to split this flath
<i<4) are grouped as follows, whelé denotes thigh subpath in thigh split way, and on
the subpati®’, P'_c and P'_a denote the starting class and the ending attribute,
respectively:

Let us consider the split wasy, we can allocate an index organizalOtion such as a
multiindeXMX), anested indgX), apath indexPX) or afull indexFX), on each subpath.
For example{FX-> P}, NX-> P/} denotes that fll indexis allocated on subpath/,
and that aested indejs allocated on subpaRyf, respectively.

234 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

Split Way Subpaths Boundary

S R’ =C(1).AQ) P' c=1:P'_a=1
P? =C(2).A(2) P’ _¢c=2:P*_a=2
P®=C(3).A(3) P’ c=3:P’_a=3

S, : P =C(1).A(1).A(2) P _c=1:P_a=2
P? = C(3).A(3) P? c=3:P’_a=3

S, P =C(1).AQ1) Pl_c=1:P _a=1
P? = C(2).A(2).A(3) P? c=2:P/_a=3

S, P =C(1).A1).A(2).A(3) Pl _c=1:P _a=3

In general, given a pat®(1).A(1)...A(n), the set of ways of splittin§is{s,,s,,...s}.
wherer denotes the number of ways of splitting the path, and each way of sgitlizg
<r)is{P',....,P%, whereg denotes the number of subpaths of The organization sets for
s arelTS ={IT'->P',...,IT9- > P% where IT* O{MX,NX,PX,FX}, 1<i<rand 1<k
<g.

5.1 Access Cost
Given a patiC(1).A(1)... A(n), a wayof splitting sand its index organization 948§
(1<t<r), the retrieval cost for a query with a path-expresSighA(i)....Aj) = ‘O(+1)’ (1
<i<j<n)is denoted a€ost_A(i,j) and is obtained as follows:
Cost_A(i,j)=RC(i,R' _c)+
+RC(R' _c R _a)
+RC, (P _c,P™_a)+....
+RG(R"_c.R"™_a)
+RG(R" _aj),

whereP' ™ _c<i<P' _c¢,P"_a<j<P™ _al<|<msg andgisthe number of subpaths
of s. MoreoverRC,(a,b)=RC?, whenITY =FX’, PY _c<a<b<P’_aand 1<y<g;

that is, gull indexis allocated on subpaR{. If 1TYis ‘MX, ‘NX or ‘PX, RC,(a b)can be
obtained as described in [3].

5.2 Maintenance Cost
Given a patiC(1).A(1)...A(n), a way of splittings and its index organization 48iS

(L<t<r), the update cost fdd(i + 1) of O(i) (1 <i < n) is denoted a€ost_U(i) and is
obtained as follows:

Cost_U,(i)=U'(i), R

(9]

_c<i<P'_a

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 235

Moreover,U/ (i) =U,, whenIT' =*‘FX and k| < g; that is, gull indexis allocated
on subpatt®'. If IT' is ‘MX, ‘NX or ‘PX’, U/ (i) can be obtained as described in [3].
Similar to the update cost, the deletion g@gst_[)i) and the insertion co§ost_|(i) can
be easily obtained.

5.3 Cost Formulas

The total cost of an index configuration with a way of splitdrand its a correspond-
ing organization sdf, for a query with a path-expressioXi).A(i)....Aj) = ‘O(+ 1)’ (1<
i <j<n)isdenoted as

aCost_A(i,j)+ 3 B,Cost_U,(m)+ 3 y,Cost_D,(m)+ 3 5,Cost_I,(m),
m=1 m=1 m=1
whereg + %ﬁm+ %ym+ %5m =1.
m=1 m=1 m=1

Moreover, the total cost of an index configuration with a way of spligiagd its a
corresponding organization $&t for a set of queries with path-expressi@fs).A(i,)....A
(1)="0(j1+1),C(i2)-Alin)....A[2) ='O (j2*+1),...., Ci). Ay, ... Aj) =0 (it 1) k=1, 1<

g<kandl<ig< j;< n) is denoted as
k n n n
5 a,Cost_Alig,jg)*+ 3 B,Cost_U,(m)+ 3y, Cost_D,(m)+ 3 &,Cost_I,(m),
g=1 m=1 m=1 m=1
k n n n
where zaq + ZBm+ Zym+ zdm =1
g=1 m=1 m=1 m=1

Therefore, given a path(1).A(1)... A(n) and a set of queries with path-expressions
(i)-Aiy)....Aj1)="0 (j1+1),C(i2).-Alin).... A[2)="0O (j2+1),....,ClI)- Ali)-...Ajw) ='O (jir+ 1) (k
21, 1< g<kandl< ig< j4< n) the optimal index configuration can be obtained by trying
all possible split types combined with all possible index organization sets and then finding
one which can provide the minimum cost.

5.4 Simulation Results

In this subsection, we will discuss several simulations to find an optimal index con-
figuration for queries along a given path against a class-aggregation hierarchy. In all these
simulations, we assumed along that 8, N(1) = 200,000m(y) = 1,K(y) =2, (1<y<n),

UIDL = 8,kl = 2,0l = 6,pp=4,f = 218,d = 146 and®S= 4096. Since the cost for an
insertion(or a deletion) is in proportion to the cost for an update, we only consider the
retrieval and update costs by letting the probabilities of insertion and deletion be 0 in the
following simulations.he retrieval probability (denotedRasaries from 1 to O; at the same
time, the update probability (denoted@svaries from 0 to 1.

Fig. 12 shows the optimal index configurations for a simple query with a path-expres-
sionC(1).A(1)....A(8) = ‘O(8)’. Fig. 13 shows the optimal index configurations for 2-
degree complex type queries with the same probability of being performed, the path-ex-
pressions of which ag(1).A(1)....A(8) = ‘O(8)’ andC(1).A(1)....A(4) = ‘O(4)’, respectively.

Fig. 14 shows the optimal index configurations for 8-degree complex type queries with the
same probability of being performed, the path-expressions of whi€(Br&(1)....A(j) =

‘O(j)’, 1<j < 8. Fig. 15 shows the optimal index configurations for four queries in a
general set with the same probability of being performed, the path-expressions of which are

236 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

C(1)-A(2)....A(8) = ‘O(8)", C(2).A(2)....A(5) ='O(5)", C(3)-A3)....A(7) = ‘O(7) andC(4).
A(4)....A(8) = ‘O(8)’, respectively. Fig. 16 shows the optimal index configurations for
gueries in a general set with the same probability of being performed, the path-expressions
of which C(i).A(i)....A(j) = ‘0(j)’, 1< i<j<8.

From these figures, in general, we can find thfatlandexon the pattC(1).A(1).....
A(8) is an optimal index configuration when the retrieval probability is high. The reason is
that afull indexcan support any type of query along a given path with a lower retrieval cost
than all the other index organizations, and the update probability is so small that the update
cost is negligible. Therefore, the path does not have to be split into several subpaths to
reduce the update cost. As the retrieval probability decreases (that is, the update probability
increases), the update cost is not negligable, which results in a need for the path to be split
to reduce the update cost. And for each split subpddiii,index anested indewr apath
indexis allocated according to the query status on this subpath. Siested indexnd a
path indexcannot suppogartial instantiations afull indexis always a good choice to for
allocation on each subpath as shown on Figs. 14 and 16. When the update probability is
high, amultiindexon the pathC(1).A(1)....A(8) is a good choice because of the low re-
quired update cost and the negligable retrieval cost.

6. CONCLUSIONS

In this paper, we have proposed a new index organization for evaluating queries,
called afull index where an index is allocated for each class and its attribute (or nested
attribute) along the path. From the analysis results, we have foundftilandex can

CI €2y CB3) C4) C(5) C6) C(7) C(8)

R U . Al AQ) AB) A A AB) A(D A®B)
1.00] 0.00 : 3 NX >
0.99] 001 E —_NX >
098] 0.02 : j NX : —»
095 005 ‘ e — NX —
0.90] 0.10 : EX__p, _ NX »> . PX_
0.80] 0.20 — FX o NX PX_
0.70] 0.30 —EX . NX >: PX >
0.60| 0.40 : EX o NX NX g NX
0.50] 0.50 —MX__,. NX o NX__ . NX
040] 0.60 —MX_p DNX , __NX 5 NX
030! 070 : MX " >
0.20| 0.80 : J MY S —»
010] 090 . ‘ MX_ ' >
0.00 | 1.00 : : MX 1 >
Fig. 12. The optimal index configurations for a query of a simple type.

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 237

R U C1) C2) C@B) CM4) C(5) C) C(7) C(8)

. A(l) A(2) A(B) AM) A(5) A(6) A(T) A(B)
1.00| 0.00 I — : >
0.99] 0.01 EX : BX »
0.98| 0.02 FX > j PX -
095] 005 EX gy NX o 2.4 >
0.90] 0.10 — X p NX X >
0.80| 020 _F_X—_>_NX_>___NX_>._N.X_’
0.70| 0.30 : EX—p NX p NX) NX 5
0.60] 0.40 X ——p NX 5 NX pNX)
0.50| 0.50 MX—p NX MX >
040| 0.60 MX : >
030 070 MX »
020] 080 MX >
0.10| 0.90 MX >
0.00 | 1.00 MX >

Fig. 13. The optimal index configurations for 2-degree complex type queries.
1) C2) C(3) CH4) C(5) C6) C(7) C(@8)
R U A(l) A@2) AGB) A A(S5) A(6) A7) A®®)
1.00| 0.00 : EX —»
0.99| 0.01 EX p—MX_ .
098] 0.02 FX > —MX >
095] 0.0s EX > MX_ >
0.90] 0.10 X » MX >
0.80 | 0.20 EX __p. MX -
0.70] 0.30 FX MX >
0.60 | 0.40 EX . MX >
0.50] 0.50 MX —>
0.40| 0.60 MX -
030 0.70 MX >
0.20] 0.80 MX »>:
0.10] 0.90 MX -
0.00] 1.00 MX >

Fig. 14. The optimal index configurations for 8-degree complex type queries.

238 CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

C1)y C@2) C@B3) CH C(5) <) C(7) C(8)

R U , A(l) A(2) AQB) A4 A(5) A(B) A7) A®)
1.00| 0.00 ' - EX j >
0.99] 0.01 : EX : >
0.98] 0.02 : FX » NX _p NX 3 MY,
095 0.05 —FX__pMy NX , NX 5 MY
0.90] 0.10 — X M NN PP
0.80§ 0.20 : MX NX p NX » MX),
0.70] 0.30 I MX p—NX—p—DNX___p MX,
0.60| 0.40 ——MX p——2—p X5 VY,
0.50] 0.50 : MX p—NX—Pp—DN—Pp- VP
0.40] 0.60 : MX NX § MX >
0.30] 0.70 MX >
0.20] 0.80 ——DMX >
0.10{ 0.90 ' : MX >
0.00| 1.00 MX. >

Fig. 15. The optimal index configurations for four queries in a general set.

C(l)y C2y C€3) CW C(5) C6 C(7) C(8)
R U ‘ A(l) AQR) AQ) A A A(6) A(D A®)
1.00] 0.00 EX >
099} 0.01 : EX_ . —EX__ > MX p
0.98| 0.02 : EX o X __ __» MX .
095 005 — FX o ___MX >
090! 0.10 ; EX__p —_MX >
0.80{ 0.20 : : MX >
0.70] 0.30 5 3 MX >
0.60 | 0.40 3 ‘ MX >
0.50| 0.50 ; : MX >
0.40] 0.60 : - MX >
0301 070 : MX >
0.20] 0.80 :] MX >
0.10] 0.90 : 3 MX >
0.00] 1.00 : E MX >

Fig. 16. The optimal index configuration for queries in a general set.

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 239

support any type of query along a path against a class-aggregation hierarchy with a lower
retrieval cost than all the other index organizatioma#iindex anested indeand apath

index®. Moreover, to reduce the high update cost for a long given path, we split the path
into several subpaths and allocate a separate index on each subpath. Since a low retrieval
cost and a low update cost are always a trade-off in index organizations, we have presented
a cost formula which can be used to look for a compromise between these two requirements.
In [7], the authors have proposed cost formulas which can be used to evaluate the costs of
various index configurations. However, they do not suppemtial instantiationsand do

not consider more than one nested predicate along the path. In this paper, we have proposed
cost formulas which can be used to determine the best index configuration to provide the
best performance for various applications by taking into account various types of queries
along a given path and a set of queries with more than one nested predicates along a given
path. From the simulation results, in generélillindexis an optimal index configuration
against a path when the retrieval probability is high. How to provide an efficient index
organization for queries along more than one path against a class-aggregation hierarchy is a
direction for future research.

REFERENCES

1. S. Abiteboul and R. Hull, “IFO: a formal semantic database modl€N Transac-
tions on Database Systenwel. 12, No. 4, 1987, pp. 525-565.

2. R. Bayer and E. McCreight, “Organization and maintenance of large ordered indexes,
” Acta InformationVol. 1, No. 3, 1972, pp. 173-189.

3. E. Bertino and W. Kim, “Indexing techniques for queries on nested objHeEY
Transactions on Knowledge and Data Engineerifgy. 1, No. 2, 1989, pp. 196-214.

4. E. Bertino and L. Martino, “Object-oriented database management systems: concepts
and issues,ComputerVol. 24, No. 4, 1991, pp. 33-47.

5. E. Bertino, “An indexing technique for object-oriented databaseBfoceedings of
IEEE International Conference on Data Engineerifi§91, pp. 160-170.

6. E. Bertino and L. MartinoQbject-Oriented Database Systems: Concepts and
Architectures Addison-Wesley Publishing Inc., New York, 1993.

7. E. Bertino, “Index configuration in object-oriented databad&sy Large Data Bases
Journal Vol. 3, No. 3, 1994, pp. 355-399.

8. E. Bertino and P. Foscoli, “Index organizations for object-oriented database systems,”
IEEE Transactions on Knowledge and Data Engineenfoy 7, No. 2, 1995, pp. 193-
209.

9. R.G.G. CattellDbject Data Management: Object-Oriented and Extended Relational
Database SystemAddison-Wesley Publishing Inc., New York, 1994.

10. S. Christodoulakis, J. Vanderbroek, J. Li, T. Li, S. Wan, Y. Wang, M. Papa and E.
Bertino, “Development of a multimedia information system for an office environment,

” in Proceedings of the Tenth International Conference on Very Large Data,Bases
1984, pp. 261-271.

11. D. Comer, “The ubiquitous B-treéd§CM Computing Surveysol. 11, No. 2, 1979, pp.
121-137.

12. H. Ishikawa, F. Suzuki, F. Kozakura, A. Makinouchi, M. Miyagishima, Y. Izumida, M.
Aoshima and Y. Yamane, “The model, language, and implementation of an object-
oriented multimedia knowledge base management sys#e@i Transactions on
Database Systeriol. 18, No. 1, 1993, pp. 1-50.

240

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

CHIEN-I LEE, YE-IN CHANG AND WEI-PANG YANG

A. Karmouch, L. Orozco-Barbosa, N. D. Georganas and M. Goldberg, “A multimedia
medical communications systert2EE Journal on Selected Areas in Communications
Vol. 8, No. 3, 1990, pp.325-339.

A. Kemper and G. Moerkotte, “Access support in object baseBrbaeedings of the
ACM International Conference Management of D490, pp. 364-374.

A. Kemper and G. Moerkotte, “Access support relations: an indexing method for object
bases,Information System&/ol. 17, No. 2, 1992, pp.117-145.

W. Kim and F. Lochovsky, “Indexing techniques for object-oriented databases,” in W.
Kim and F. Lochovsky (ed.Dbject-oriented Concepts, Databases, and Applications
Addison-Wesley Publishing Inc., New York, 1989.

C. C. Low, B. C. Ooi, and H. Lu, “H-Trees: a dynamic associative search index for
OODB,” ACM International Conference Management of Da@92, pp. 134-143.

D. Maier and J. Stein, “Indexing in an object-oriented databasBrboeedings of
IEEE Workshop on Object-Oriented Data Base Management Sydte@s,pp. 171-

182.

C. Meghini, F. Rabitti and C. Thanos, “Conceptual modeling of multimedia documents,
" IEEE ComputerVol. 24, No. 10, 1991, pp. 23-30.

E. Oomoto and K. Tanaka, “OVID: Design and implementation of a video-object
database systemEEE Transactions on Knowledge and Data Engineerifug. 5,

No. 4, 1993, pp. 629-643.

P. Valduriez, “Join indicesACM Transactions on Database Systg¥u. 12, No. 2,
1987, pp. 218-246.

D. Woelk, W. Kim and W. Luther. “An object-oriented approach to multimedia databases,
" in Proceedings of ACM International Conference Management of, D&&6, pp.
311-325.

D. Woelk, “Multimedia information management in an object-oriented database system,
" in Proceedings of the 13th Very Large Data Bases Conferdé88a, pp. 319-329.

A. Yoshitaka, S. Kishida, M. Hirakawa and T. Ichikawa, “Knowledge-assisted content-
based retrieval for multimedia databaséSFEE Multimedia 1994, Vol. 1, No. 4, pp.
12-21.

Z. Xie and J. Han, “Join index hierarchies for supporting efficient navigations in object-
oriented databases,” Proceedings of the 20th Very Large Data Bases Conference
1994, pp. 522-533.

Chien-I Lee (Zi1&) was born in Taipei, Taiwan, R.O.
C., 1965. He received the B.S. degree in computer science
from Feng Chia University in 1987 and the M.S. degree in
applied mathematics from National Sun Yat-Sen University in
1993. He received the Ph.D. degree in computer science from
National Chiao Tung University in June 1997 and then joined
the Institute of Information Education, National Tainan Teacher
College, Tainan, Taiwan. He is currently an assistant professor,
and his research interests include object-oriented databases,
access methods, multimedia storage servers, video-on-demand,
information retrieval and web databases.

INDEXING ORGANIZATION IN OBJECTORIENTED DATABASES 241

Ye-In Chang (58 E&) was born in Taipei, Taiwan, in
1964. She received the B.S. degree in computer science and
information engineering from National Taiwan University,
Taipei, Taiwan, in 1986, and the M.S. and Ph.D. degrees in
computer and information science from Ohio State University,
Columbus, Ohio, in 1987 and 1991, respectively.

Since 1991, she has been on the faculty of the Depart-
ment of Applied Mathematics at National Sun Yat-Sen
University, Kaohsiung, Taiwan, where she is currently a
Professor. Her research interests include database systems, dis-
tributed systems, multimedia information systems and com-
puter networks.

Wei-Pang Yand#z#t#B)was born on May 17, 1950 in
Hualien, Taiwan, Republic of China. He received the B.S. de-
o gree in mathematics from National Taiwan Normal University
] in 1974, and the M.S. and Ph.D. degrees from National Chiao
3 Tung University in 1979 and 1984, respectively, both in com-
puter engineering.
J Since August 1979, he has been on the faculty of the
4 Department of Computer Science and Information Engineer-
ing at National Chiao Tung University, Hsinchu, Taiwan. In
the academic year 1985-1986, he was awarded the National
Postdoctoral Research Fellowship and was a visiting scholar
at Harvard University. From 1986 to 1987, he was the Director of the Computer Center of
National Chiao Tung University. In August 1988, he joined the Department of Computer
and Information Science at National Chiao Tung University, and acted as the Head of the
Department for one year. Then he went to IBM Almaden Research Center in San Jose,
California for another one year as visiting scientist. From 1990 to 1992, he was the Head of
the Department of Computer and Information Science again. His research interests include
database theory, database security, object-oriented databases, image databases, and Chi-
nese database retrieval systems.

Dr. Yang is a senior member of IEEE, and a member of ACM. He was the winner of
the 1988 and 1992 AceR Long Term Award for Outstanding M.S. Thesis Supervision, the
1993 AceR Long Term Award for Outstanding Ph.D. Dissertation Supervision, and the
winner of the 1990 Outstanding Paper Award of the Computer Society of the Republic of
China. He also received the Outstanding Research Award of the National Science Council
of the Republic of China.

