
Multimedia Tools and Applications 8, 219–247 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Distributed Fault-Tolerant Design
for Multiple-Server VOD Systems

ING-JYE SHYU ejshue@csie.nctu.edu.tw
SHIUH-PYNG SHIEH ssp@csie.nctu.edu.tw
Department of Computer Science and Information Engineering, National Chiao-Tung University, Hsinchu,
Taiwan, R.O.C.

Abstract. Fault tolerance is an important design criterion for reliable and robust video-on-demand systems.
Conventional fault-tolerant designs use either a primary backup or an active replication method to provide system
fault tolerance. However, these approaches suffer from low utilization of the backup or replication system. In this
paper we propose two playback-recovery schemes for distributed video-on-demand systems called theforward
playback-recovery schemeand thebackward playback-recovery scheme. Unlike conventional fault-tolerant de-
signs, our schemes use existing playback resources to recover faulty playbacks without allocating new resources,
significantly reducing recovery overhead. To use the schemes effectively, we developed a distributed algorithm for
determining the order and gap information between the playbacks on the distributed video-on-demand servers so
that overhead for recovering from a server failure can be minimized. This algorithm achievesN−1 fault-tolerant
resiliency forN-server video-on-demand systems. In addition, three server-recovery policies are also presented
to guide surviving servers in applying the proper scheme to recover faulty playbacks, thus reducing overall re-
covery costs. Simulation results show that the proposed recovery schemes are effective and useful in designing
fault-tolerant multiple-server video-on-demand systems.

Keywords: fault tolerance, fault recovery, distributed algorithms, multimedia systems

1. Introduction

Video-on-demand (VOD) applications have recently received much attention from the
telecommunications, entertainment and computer industries [6, 7, 9, 12]. And in essential
or commercial VOD applications, fault tolerance is one of the most important issues be-
cause it allows systems to accommodate component failures [11, 16]. The most common
approach to providing fault tolerance uses redundancy, organizing the redundant compo-
nents as eitheractive replicationorprimary backupunits [3, 15, 19]. In a dual-server system
with an active replication scheme, both servers work in parallel in order to accommodate
failures. When the primary server fails, the secondary server accepts the workload of the
primary server. This scheme puts a heavy burden on the recovery server. By contrast, in the
primary backup scheme only one server is active at a time and the backup server becomes
active only when the primary server fails. These two schemes suffer from either heavy
recovery loads or low resource utilization. Our system uses multiple servers in parallel to
provide video playbacks, as in the active-replication approach, but two recovery schemes
are proposed to reduce failure-recovery overhead and prevent from low server utilization.

Figure 1 depicts the fundamental architecture of our multiple-server video-on-demand
system. All the video servers are connected by a high-speed private network, called the

220 SHYU AND SHIEH

Figure 1. The architecture of the multiple-server video system.

control channel, which is used to exchange recovery and synchronization information
among the video servers. Customers’ commands are delivered to one of the video servers
for a payback service. Note that in this paper the failure behaviour of the video server is
assumed to be synchronous fail-silent [23, 24]. This behaviour constrains the failed server
to stop providing video playbacks and to response to the other operational servers. The term
“synchronous” means that the video servers can mutually detect the failure states within a
certain time bound [3, 25].

Another challenge in implementing a video-on-demand system is providing continuous
playback [14, 18, 20, 21]. A double-buffering mechanism is used to ensure video playback
continuity [5, 22]. The concept behind is that: the video server allocates two buffers for
each playback as an intermediate which separately manage video data. One buffer is being
filled with video data from the storage while the other is sending data to customers. Both the
buffers alternate their roles in turn until the playback is completed. Figure 2(a) illustrates
the video data access hierarchyin a typical VOD environment. Asessionis defined as
the channel with enough bandwidth for reading video data from disk storage to the system
buffer. The bandwidth required to ensure playback continuity depends on the video format.
For example, playing an MPEG-1 video requires the bandwidth of at least 1.5 Mb/s [8, 10].

Figure 2. (a) Video data access hierarchy and (b) the simplified representation.

A DISTRIBUTED FAULT-TOLERANT DESIGN 221

A streamis referred to as the channel for transferring video data to customers. A stream can
support multiple customers by using a multicasting mechanism [1]. Resources, including
a session, a stream and a set of double buffers, are defined as aservice unit, denoted byU ,
in this paper. The power of a video server is determined by how many service units it can
support simultaneously. A video playback is represented by the symbol7→, as shown in
figure 2(b). The vertical bar indicates the start point of a video, the arrow head indicates
the end, and the length of the symbol the video length. We logically divide a video file in
storage into continuous segments equal to the size of the intermediate buffer, video data
thus can be transferred segment by segment in the access hierarchy.

This paper is organized as follows. In Section 2, we propose two distributed playback-
recovery schemes, which guarantee minimal resources required for recovery since existing
service units in the survival servers are used to deliver the interrupted playbacks originally
provided by the faulty server. In Section 3, a distributed order-decision algorithm is proposed
for on-line construction of order information for all distributed service units. Thus, when
a server fails, this order information helps survival servers choose the service unit nearest
to the faulty one for recovery. Section 4 presents three recovery policies that coordinate
survival servers to consistently perform recovery process. In Section 5, simulation results
show that our proposed schemes are feasible for enhancing fault-tolerant capability in video
systems. Section 6 addresses our interesting research issues in the near future, and Section 7
concludes this paper. Step-by-step examination of the distributed order-decision algorithm
and proofs of its correctness are presented in the appendix.

2. Distributed playback-recovery schemes

The simplest approach to the recovering of an interrupted playback in a faulty server is
to allocate a new service unit in a survival server to continue providing playback instead.
We refer to this method as anallocation-based playback-recovery scheme. Note that this
scheme, while simple, entails great overhead because it demands additional service units
from the survival servers. In this section, we proposed two recovery schemes to reduce
such overhead, we first clarify some useful terminology before presenting these schemes.
The service unit in a faulty server is calledfaulty service unit, and the service unit used for
recovery in a survival server is calledrecovery service unit. A service unit contains two
segment buffers. The least segment sequence number of a service unit, sayU, is denoted
by S(U). For example,S(U2) as shown in figure 2(b) is 2. In addition, we also define a
leading relationshipfor any two service units: given two service unitUi andU j , U j leads
Ui iff S(Ui) < S(U j), no matter they are located at same server or not.

2.1. Forward playback-recovery scheme

The idea behind the forward playback-recovery scheme is to recover from a faulty service
unit by using an existing service unit that lags behind the faulty one. In this scheme, a
survival server, having a running service unit which is playing the same video as one of
the faulty service units, is responsible for recovering from this faulty one. That is, this
server uses the running service unit as a recovery service unit. In addition, the forward

222 SHYU AND SHIEH

Figure 3. The forward playback-recovery scheme.

playback-recovery scheme requires the faulty service unit having a leading relationship to
the recovery service unit. This scheme provides two methods to reduce the resources for
recovery: one is thereplay-join method, which directly delivers video data in the recovery
service unit to customers originally served by the faulty service unit, the other one is the
chase-join method, which allocates a temporary service unit in the survival server. This
temporary service unit begins delivering data from the same segment as the faulty service
unit, furthermore, its progress speed is adjusted to be reasonably slower so it can be merged
with the recovery service unit later. Merging allows the temporary service unit to be released
and thus saves a service unit. It is obvious that the replay-join method gives customers a
repeated viewing because the faulty service unit leads the recovery service unit. We use
an example to illustrate these methods. Consider the example shown in figure 3(a), where
customers A and B are initially served by service unitsU1 andU2 in Server 1 and Server 2,
respectively. Assume Server 1 fails. The replay-join method resumes customer A’s playback
by delivering video data from service unitU2 as depicted in figure 3(b). That is, customers A
and B share a common service unit. Note that customer A can continue watching the video,
but will get a replay ofS(U1)− S(U2) segments. The temporal difference betweenS(U1)

andS(U2) is defined as thegap time. That is, the gap time determines the length of video
replay on the customers. The chase-join method allocates a temporary service unitU3 to

A DISTRIBUTED FAULT-TOLERANT DESIGN 223

resume customer A’s playback. In this example, customer A continues watching the video
playback starting with the segmentS(U1) from U3 without any repeat. Furthermore, the
progress speed ofU3 is adjusted to a slower rate that still gives acceptable visual perception.
AsU2 catches up toU3, these two service units are merged andU3 is released. This method
is transparent to customers but requires a temporary service unit for a period, this period is
defined as themerging time, as shown in figure 3(c).

2.2. Backward playback-recovery scheme

In contrast with the forward playback-recovery scheme, the backward playback-recovery
scheme uses an existing service unit which leads the faulty service unit as the recovery
service unit (see figure 4(a)). Two join implementations can also be used with this scheme,
however, both of them interfere with the progress of the foreground playback. In the replay-
join method, existing serviceU2 is used to recover from the faulty playback by delivering
the video data from segmentS(U1) (figure 4(b)). This forces customer B to watch a repeat
from segmentS(U1). The chase-join method also allocates a temporary service unitU3

and delivers video from segmentS(U1), as shown in figure 4(c). In this scheme,U3’s
playback cannot be sped up due to the pre-determined bandwidth limitation of a service
unit (although certain techniques can be used to accelerate the playbacks without requiring
extra disk bandwidth by skipping the frames [2]. However, in this paper we assume that
acceleration of a playback needs extra disk bandwidth. Thus, in order to merge theU2 and
U3 playbacks, Server 2 slows downU2’s playback speed, interfering with the foreground
playback quality.

Occasionally, the gap time between a recovery service unit and a faulty one will be so
large that customers may have to watch excessively long replay periods. A time bound,
called therecovery time bound, is defined to limit this problem. When it is used, only faulty
service units, having a gap time shorter than the recovery time bound, will be recovered
using the forward or backward playback-recovery scheme. If the time bound is exceeded,
the allocation-based playback-recovery scheme is used instead, even though it requires
extra service units. In Section 5, a simulation is used to show the recovery characteristics
of these three schemes under a given recovery time bound.

The replay-join method does not need an extra service unit to perform recovery while
the chase-join method does need a temporary one, but releases it later. Although these
two recovery schemes mitigate recovery overhead by reducing the resources required, both
methods also impose a period of recovery time (interval of replay or merging as shown in
figures 3 and 4). However, it is a tradeoff between recovery time and recovery overhead
for customers and service providers. From the customer viewpoint, the recovery time
should be as short as possible, and this can be achieved by adjusting the playback speed of
either the recovery service unit or the temporary service unit in advance. Golubchik et al.
have provided adjustment techniques for merging two service units into one using adaptive
piggybacking methods [13]. However, from the service provider’s standpoint, it is desirable
to recover as many faulty playbacks as possible. The ability to recover more playbacks can
be enhanced by cutting down the number of service units required for recovery. This
is an essential issue of the recovery schemes proposed above. Therefore, in this paper,

224 SHYU AND SHIEH

Figure 4. The backward playback-recovery scheme.

we focus primarily on how to conserve service units during recovery. Our approach is to
shorten the recovery time by selecting a service unit nearest to a faulty service unit as the
recovery service unit, and through the merging technique. However, the problem arising
in a distributed environment is that these video servers lack a common clock mechanism to
determine the distance and order information between service units across different servers.
Therefore, in the next section, we will present a distributed algorithm that can order all the
distributed service units according to the gap time of service units.

3. Distributed order-decision algorithm

In practice, the customers’ requests arrive randomly at each video server, as shown in
figure 1. Each server then allocates a service unit to provide video playback. Information
concerning service units’ order with respect to other servers are not maintained. As a result,
when a server fails, it is difficult to effectively apply the above recovery schemes because we
can not determine which running service unit is nearest to the faulty service unit. To solve
this problem, we developed an algorithm called thedistributed order-decision algorithm
(DODA) to on-line construct the order relationship among the allocated service units across
the distributed video servers.

A DISTRIBUTED FAULT-TOLERANT DESIGN 225

3.1. Preliminaries and assumptions

This algorithm is accomplished by exchanging a set of messages, including thesetup
message, themodificationmessage and theterminationmessage, via the control channel.
The maximal and minimal transmission time of the control channel are denoted byTmaxDelay

andTminDelay, which determine the precision of the gap and order information derived. The
setup message informs the servers the allocation of a new service unit, the modification
message modifies the order relationship constructed by the previous setup and modification
messages when the order needs a change. The termination message informs the servers
a playback is completed. A server need broadcast a setup message when it allocates a
service unit to serve in response to a request. The setup message is denoted bysmk

i and
the broadcast time instant of this message byTBk

i , wherek stands for serverk andi for the
sequence number of this service unit. Each service unit is assigned asequence numberfor
identification. The server that broadcasts the setup message is referred to as thesenderand
the other servers asreceivers. Using the arrival timeline of a setup message, as shown in
figure 5, we can determine the order relationship between the service units of the sender
and receiver. The timeline of a receiver can be partitioned into two types of intervals, the
distinguishable time intervaland theindistinguishable time interval. The indistinguishable
time interval,TI j , is an interval from the creation time of service unitj plusTminDelay to the
creation time plusTmaxDelay(the creation time is the time that service uniti is allocated and
the time instant broadcasting a setup message for this service unit). The distinguishable time
interval,TDj−1, is an interval from the creation time of service unitj−1 plusTmaxDelayto the
next service unitj ’s creation time plusTminDelay. In figure 5(a), the white circles represent
the time instant at which a setup message is broadcasted andTArepresents the time instant at
which a setup message arrives at a server. The horizontal axes in the figure represent the time
lines for each server. Accordingly, we can derive three order relationships between any two
service units: (1)Sender Leading Receiver(SLR), (2)Receiver Leading Sender(RLS) and
(3) Concurrent. If a receiver receives a setup message, saysmi , within the distinguishable
intervalTDj−1, we can infer the service unitUi is leading the service unitUj if the latest
created service unit in the receiver isU j , because the minimal transmission time ofsmi

is larger thanTminDelay. Thus, these two service units have an SLR relationship and the
propertyS(Ui) > S(Uj) holds, as shown in figure 5(a). If a setup message, saysmi arrives

Figure 5. Relationships between sender and receiver.

226 SHYU AND SHIEH

at a receiver within the distinguishable interval sayTDj−1, and the most recent created
service unit in the receiver isU j−1, we can infer that the receiver’s latest service unitUj−1

leadsUi , because the maximal transmission time ofsmi won’t be greater thanTmaxDelay.
These two service units have an RLS relationship and the propertyS(U j−1) > S(Ui) holds,
as shown in figure 5(b). If a setup message arrives at a receiver within the indistinguishable
interval, sayTI j−1, the receiver cannot determine the order relationship forUi andU j−1.
In this case, the receiver considersUi andU j−1 to be concurrent. Figure 5(c) shows the
concurrent relationship. However, the sender (Server 1) may figure out a SLR relationship
if smj−1 arrives server 1 withinTDi−1. Therefore in order to eliminate the inconsistent
recognition, extra modification message is needed to negotiate. In Section 3.2, we will
explain the modification process in detail.

A message consists of four fields:〈server ID〉, 〈type〉, 〈vector〉 and〈checkpoint data〉.
The〈server ID〉 field indicates which server sent the message. The〈type〉 field identifies the
message as a setup, modification or termination type. The modification message is further
classified as either an SLR or RLS modification. Only a setup message has the〈checkpoint〉
field, which contains the stream and customer information of the service unit. The〈vector〉
field has threen-entry vectors: theorder vector(V), theforward gap-time vector(F) and
the backward gap-time vector(B), wheren is the number of servers. The order vector
records information concerning about the order relationship known to the sender, in which
each entry represents the highest known service unit’s sequence number for each other
individual server. For example, an order vectorV = [ex, ey, ez]2, sent by Server 2, informs
the receivers that server 2’sU2

ey
is ordered behindU1

ex
in Server 1 andU3

ez
in Server 3. This

also implies thatU1
0 to U1

ex
in Server 1 leadU2

ey
and so do in Server 3. The forward and

backward gap-time vectors record the approximate gap times between current service units
and those ahead of it. The difference is that the forward gap-time vector is approximated
by the preceding service unit and the backward gap-time vector by succeeding service unit.
For example, a backward gap-time vectorB = [gb

x, g
b
y, g

b
z] in conjunction with the above

V represents that the gap time betweenU2
ey

andU1
ex

is approximated asgb
x by Server 1, that

betweenU2
ey

andU3
ez

asgb
z by Server 3. Note thatgb

y is the gap time betweenU2
ey

andU2
ey−1.

A forward gap-time vectorF = [g f
x , g

f
y , g

f
z] in conjunction with aboveV represents that

the gap time betweenU2
ey

andU1
ex

is approximated asg f
x and that betweenU2

ey
andU3

ez
as

g f
z by Server 2. This algorithm is quite complex, in the appendix we explain in detail about

how to generate these vectors. In the following section, we briefly describe the key ideas
behind our algorithm.

3.2. Algorithm

In DODA, two phases of negotiation are needed before a complete order information is con-
structed. The first phase,Absolute Order Generation, yields an absolute order relationship
by exchanging setup and modification messages between servers. However, this absolute
order does not suffice to construct a unique ordered sequence for the service units across
video servers because of the concurrent relationship. This insufficiency is thus compensated
for by the another phase,Relative Order Generation.

A DISTRIBUTED FAULT-TOLERANT DESIGN 227

Absolute order generation. This phase generates the leading relationship for all the dis-
tributed service units. Each server broadcasts a setup message to other servers only when
a new service unit is allocated in response to a playback request. The broadcasting server
constructs a setup message that contains an order vector recording the highest sequence
numbers of service units of all other servers, and forward and backward gap-time vectors
which records the approximate gap time information. While receiving a setup message,
the receiver checks which interval the message arrived within. According to the arrival
interval, the receiver can determine the order between the service unit represented by the
setup message and its most recent service unit. If the setup message is received within a dis-
tinguishable time interval, SLR or RLS relationship can be obtained, otherwise, concurrent
relationship is recorded. For example, in the SLR case as shown in figure 5(a), the order
vector ofU1

i in Server 1 enclosed insm1
i , may contains two possible order information,

eitherV1
i = [i, j−1]1 orV1

i = [i, j−2]1. The vector reflects the order information inferred
by serveri . If the order vector isV1

i = [i, j − 1]1, it represents that server 1 only knows
thatU2

j−1 ledU1
i whenU1

i was created. The result is consistent with server 2’s information,
thus need not send any modification message. If the order vector isV1

i = [i, j − 2]1, it
means that Server 1 had not yet received a setup message of creatingU2

j−1, or considers
the relationship betweenU1

j−2 andU2
i to be concurrent. In order to rectify this incorrect

order relationship, Server 2 should broadcast a modification message that contains a vector
V1

i = [i, j − 1]1 to inform other servers thatU2
j−1 ledU1

i . Furthermore, server 2 must also
also construct a modification message forU2

j becausesm2
j sent incorrect order information

V2
j = [i − 1, j]2. Thus, while receivingsm1

i within TD2
j−1, Server 2 broadcasts a modifi-

fication message containing an order vectorV2
j = [i, j]2 to inform other servers thatU1

i

should leadU2
j .

Relative order generation. If all setup messages are received within distinguishable time
intervals, the order relationships among service units can be determined easily and correctly.
Unfortunately, ordering is sometimes unclear due to the concurrent relationship. This makes
the relative order relationship difficult to be determined when setup messages are received
within indistinguishable time intervals. For example, given two setup messagessm1

i and
sm2

j−1 containing order vectors,V1
i = [i, j − 2]1 andV2

j−1 = [i − 1, j − 1]2, respectively,
and both of them are received within indistinguishable time intervals,TI2

j−1 andTI1
i , as

shown in figure 5(c). In this case, no adequate information is available to determine which
one goes first. A simple way to resolve this concurrent problem is to assume that the server
with the smaller server ID number has the precedence. This assumption is referred to as
thesmall server identification first. Therefore,U1

i would be considered to leadU2
j−1. The

detail is described in theOrder-Decisionprocedure given in Appendix A.1.

3.3. Computation of the gap time

The precise gap time between any two successive service units can be computed by sub-
tracting their creation time (allocation time) instants, however, in a distributed environment,
a server is unable to determine the exact creation time instant of another server’s service
unit. A safe way to conserve the precision is to approximate the gap time by subtracting

228 SHYU AND SHIEH

Figure 6. Computation of the gap time.

a TminDelay from its arrival time. As an example in figure 6, Server 2 approximatesU1
i ’s

creation time by subtracting aTminDelay from TA1
i . Thus, the backward gap time between

U2
j andU1

i is equal to(TA1
i − TminDelay)− TB2

j . The time line of server 1′ is an illusion of
Server 1 considered by Server 2. If Server 1 fails, Server 2 can estimate the length of replay
or merge time from the backward gap time to determine whetherU2

j is the best candidate
to recoverU1

i . The forward gap time is calculated by Server 1 usingTB2
j −(TA1

i −TminDelay).
The subtraction of aTminDelayensures that the calculated gap time will not be over-estimated
though it does result in playback repetition for customers. These mechanisms are listed in
theSendandReceiveprocedures of phase 1, and given in the appendix.

3.4. Order expression

Each server executes the distributed order decision algorithm individually and interacts with
the other servers by exchanging messages. A newly allocated service unit causes the server
to broadcast a setup message and executes this algorithm. After two phases described above
have been completed, the order and gap time information is obtained by interpreting these
enclosed vectors, and can be represented as:

b
gb

1−→ b
gb

n−1−→
U1 U2, . . . , Un−1 Un←−

g f
2

f ←−
g f

n

f

which is referred to asrecovery information, wheregb andg f are the gap time between the
two successive service units. The symbolsb→ and← f stand for the gap time,gb andg f ,

respectively, as calculated by succeeding and preceding service units. The recovery infor-
mation represents thatU1 leadsU2, U2 leadsU3 and so on. Through DODA coordination,
all video servers share a common view of the recovery information about all distributed
service units. Thus, when a server suffers a failure, the other survival servers can use this
consistent information to perform recovery.

4. Server failure treatment

In Section 2, we proposed two playback-recovery schemes, the forward playback-recovery
scheme and the backward playback-recovery scheme, to handle recovery process. These

A DISTRIBUTED FAULT-TOLERANT DESIGN 229

two recovery schemes greatly reduce the recovery overhead through the replay-join method
or the chase-join method, however, there is still playback repetition or resource requirement
(allocation of temporary service units). Thus, proper selection of a suitable recovery scheme
as well as a join method for the faulty service unit will make the length of the playback
repetition and the holding time of the temporary service unit shorter.

4.1. Playback recovery

Recovery information is useful in helping the forward playback-recovery scheme and the
backward playback-recovery scheme choose a closest recovery service unit. For example,

given any two successive service units with a recovery information
b

gb
j−→U j Ui .←−

g f
i

f According

to this recovery information, the video server could useUi to recoverU j by using the for-
ward playback-recovery scheme whenU j becomes a faulty service unit, and the cost isg f

i .
That is, with the replay-join method, a replay ofg f

i is for the customers onU j ; and with the
chase-join method, a temporary service unit would retrieve video data from the time instant
of S(Ui)− g f

i , and the merging time is also proportional to the gap timeg f
i . Similarly, If

theUi becomes a faulty service unit,Uj can be the recovery service unit by the backward
playback-recovery scheme and the recovery cost isgb

j . As a result, we can obtain overhead
criteria of each recovery scheme from the recovery information and are thus able to select
a good recovery scheme for each faulty service unit. In the next section, we state three
policies for synchronizing the scheme selection among video servers.

4.2. Recovery scheme selection criteria

In order to perform recovery correctly, survival servers must have a policy to coordinate
the selection of the recovery service units for those faulty service units, otherwise some
faulty service units would be recovered by more than one service units or none. Below, we
present three recovery policies to guide the servers in response to a server failure.

Forward policy. The forward policy is highly intuitive. Before any failure occurs, all video
servers negotiate to apply the forward playback-recovery scheme in response to a server
failure. Therefore, when the servers detect a failure in some video server, they inspect
their recovery information to see which service units are ordered behind the faulty ones,
furthermore, the servers having the closest service units to the faulty ones are responsible
for the recovery of those faulty service units by applying the forward playback-recovery
scheme. Because all servers have the identical recovery information, every faulty service
unit is guaranteed to be recovered exactly once by its closest service unit. Note that if the
last service unit in the recovery information is a faulty one, the server having a service unit
preceding the faulty one would use the backward playback-recovery scheme instead in such
a case.

230 SHYU AND SHIEH

Backward policy. In this policy, all the video servers negotiate to use the backward
playback-recovery scheme instead of the forward playback-recovery scheme when a server
failure occurs, and note that if the first service unit in the recovery information is faulty, a
following service unit uses the forward playback-recovery scheme instead.

Hybrid policy. The hybrid policy combines the forward and backward playback-recovery
schemes by selecting the service unit with the smallest gap time as the recovery service
unit. Thus, a faulty service unit would be recovered by using the forward playback-recovery
scheme or the backward playback-recovery scheme. Because the recovery information are
identical for all the video servers, this policy won’t result in conflicts or starvation in
recovering for the faulty service units.

4.3. Fault-tolerant resiliency

The distributed order-decision algorithm can tolerate server failures because order and gap
time information is exchanged in a one-to-one manner across servers. Thus, a server failure
does not affect the correctness of the algorithm, nor do the survival servers have to restart
the algorithm. In addition, the order and gap vectors are still correct when the service units
of the faulty server are removed from the recovery information. As an example shown in
Appendix A.3, given a recovery information as follows:

b
30−→ b

13−→ b
0−→ b

32−→ b
18−→

U2
0 U3

2 U1
0 U2

1 U1
1 U3

1 · · ·←−
19

f ←−
0

f ←−
0

f ←−
18

f ←−
9

f

Assuming Server 2 fails, the service units in Server 2U2
0 andU2

1 are removed and the
recovery information is thus interpreted from the original order and gap vectors as:

b
13−→ b

23−→ b
18−→

U3
0 U1

0 U1
1 U3

1 · · ·←−
0

f ←−
23

f ←−
9

f

Moreover, the survival servers will still tolerate server failures until only one server is left
in operation. With the distributed order-decision algorithm, we can toleraten − 1 server
sequential failures in an-server VOD system.

5. Simulation

To compare the various recovery policies, two simulation studies were conducted on an Intel
Pentium-based machine with 64 MB of RAM. The simulation architecture is illustrated in
figure 1. Because the customer can request a playback on any one of the video servers, we
simulated such behavior by generating a Poisson arrival process characterized by the mean
interarrival intervals for each server. In the simulation process, the system used ten video
objects as materials for simulating a video-on-demand system. For each arrived request,
we used a predefined object’s access frequency to determine which video object the request

A DISTRIBUTED FAULT-TOLERANT DESIGN 231

asked. The access frequencies to various objects were characterized by aZipf distribution
with the parameter 0.1386. (In aZipf distribution, if objects are sorted according to access
frequency, then access frequency for thei th object is given byfi = c

i 1−θ , whereθ is the
parameter for the distribution andc is the normalization constant [4, 17, 26]. The assignment
of 0.1386 toθ recognizes that 80% of the requests will ask for 20% of the objects, and
the remaining 20% of the requests will ask for the other 80% of the objects, a phenomena
called the 80-20 rule. Using this rule makes a simulated video system seem more realistic
by allowing for the different degree of popularity between popular videos and cold videos.)
After determining a target video, a request waited in a queue until a free service unit was
available. The server then allocated a service unit to provide playback. Each video server
had the ability to provide 100 service units simultaneously. The maximal and minimal
transmission times for the control channel were assumed to 500 and 50 ms, respectively.
The video lengths were 1.5 h.

In the first simulation, a video system with only one video was simulated, that is, all the
requests asked for the same video. The average gap time versus the requests’ interarrival
time was considered. We usedGi to represent theaverage server gap timefor recovering
from serveri ’s faulty service units under serveri failure. This was calculated by dividing
the summation of all the used gap time by the number of faulty service units. Theaverage
system gap timēGsystemwas furthermore calculated by the equation:

Ḡsystem=
∑N

j=1 Gi

N
, whereN was the total number of servers.

By assigning each Poisson process a different interarrival interval, we simulated this
video- on-demand system for 100 h, and then calculated the respective average system gap
times for the forward policy, the backward policy and hybrid policy. Figure 7 shows the
average system gap time for various request interarrival intervals in video systems with
two, four, six and eight servers, respectively. The statistical diagrams show that the hybrid
policy kept the average system gap time shorter than the other policies. This means that
using the hybrid policy will result in lower recovery overhead or shorter video replays.
Moreover, we found that the more the servers involved, the shorter the average system gap
time was. We can thus conclude that a system can provide more playbacks simultaneously,
and quicker playback recoveries in the presence of failures if the overall number of video
servers is increased.

In the second simulation, the recovery time bound on the recoverable service unit was
considered. Under a given recovery time bound, we evaluated how many faulty service
units could be recovered using the forward or backward playback-recovery schemes. If the
gap time for recovering a faulty service unit was larger than the given recovery time bound,
an allocation-based recovery scheme was applied instead, which required extra service units
until the playback was completed. In this simulation, we increased the number of videos to
10 and fixed the interarrival intervals for each Poisson process at 10 min. This simulation
was continued for 10,000 h, and figure 8 shows the evaluation results. We found that the
hybrid policy allowed more faulty service units to be recovered by mixing the forward and
backward recovery schemes, and the number of recoverable service units increased as the
recovery time bound was increased. From those results we found that a lot of service units

232 SHYU AND SHIEH

Figure 7. The average system gap time vs. the requests interarrival interval.

Figure 8. The recoverable service unit vs. the recovery time bound.

A DISTRIBUTED FAULT-TOLERANT DESIGN 233

were saved by preventing invocation of the allocation-based recovery scheme. And, the
greater the number of servers, the greater the number of recoverable service units was, even
with shorter recovery time bounds.

6. Future work

This paper proposed a fault-recovery methodology for a distributed video-on-demand sys-
tem under the assumption that a common-clock synchronization mechanism among the
video servers was lacking. Thus, an algorithm was needed to determine the order relation-
ship across the faulty and recovery service units. Another research issue is to provide a
fault-tolerant design that does use a global synchronization mechanism. This mechanism
can be realized in two ways: (1) each video server is equipped with a permanent highly
accurate clock synchronized with some single official and legal time; e.g., UTC, as received
from standardization organizations via terrestrial radio stations, or theGlobal Positioning
System, or (2) all requests are first delivered to a central server which then dispatches these
requests to various video servers. Through the centralized control, service-unit order can
be determined in advance. The design methodology for such a system will vary from the
methods discussed in this paper. Furthermore, how to balance the recovery loads among the
survival servers after a server failure is also an important topic. Thus, in the near future we
will focus on balancing recovery loads and providing a fault-tolerant design that includes a
global synchronization mechanism.

7. Conclusion

In this paper, we proposed forward and backward playback-recovery schemes, to cope with
server failures in a distributed video-on-demand system. These schemes use existing re-
sources to perform recovery process and thus significantly reduce recovery overhead on
survival servers. In addition, we developed a distributed algorithm, called the distributed
order-decision algorithm that on-line constructs the order and gap information for the dis-
tributed service units. This recovery information is useful in helping our proposed schemes
find the nearest recovery service units. We also proposed three recovery policies to guide
recovery servers in applying suitable recovery schemes using this recovery information.
Finally, two simulations were conducted, and the results showed that the recovery schemes
are feasible and effective for use in a realistic video-on-demand system.

Appendix

A.1. The distributed order-decision algorithm (DODA)

There are four primary data structures maintained by each video server: thesequence
variables, thestate transition list(STL), theorder decision list(ODL) and thetotal order
list (TOL). In addition, a server, sayk, maintainsn sequence variablesSk

i , where 1≤ i ≤ n;
Sk

k records the sequence number of the latest allocated service unit in serverk. The other

234 SHYU AND SHIEH

variables record the largest sequence numbers of the service units already received from
the other servers.

Absolute order generation. The first part of DODA consists of three procedures:Init
procedure,Sendprocedure andReceiveprocedure. TheInit procedure is executed once to
initiate data structures. TheSendprocedure is invoked to broadcast a setup message when
a server allocates a new service unit. The purpose of theSendprocedure is to construct
the order vector which contains the information about which service units are running
behind the newly allocated service unit. The forward and backward gap time vectors are
also computed here according to the method in Section 3.3. TheReceiveprocedure reacts
to the received messages according to its type and arrival time.

Procedure Init (serverk)
begin

1. STL, ODL andTOL are empty initially.
2. Sk

i is set to−1, wherei from 1 ton for serverk.
end

In theSendprocedure, the order vector is constructed by filling each entry with the largest
sequence number of the received service units from other servers individually, all of them
lead the current newly allocated one. The largest sequence number of the received service
units from serveri is recorded asSi . This procedure also constructs forward and backward
gap time vectors. The parameter serverk represents the caller of this procedure. Serverk
and the broadcasting instantt of the setup message (TB is equal toTA for the broadcasting
server).

Procedure Send(k)
begin

1. Generate an order vectorV = [e1, e2, . . . , en]k, satisfies
a. ek= Sk

k + 1 and,
b. ei = Sk

i , wherei 6= k and 1≤ i ≤ n.
2. Generate a forward gap time vectorF = [f1, f2, . . . , fn], satisfies:

a. if (Sk
k == −1)
fk= −1;

else
fk= t −TA(smk

Sk
k
);

b. if (ei == −1)
fi = −1;

else
fi = t − (TA(smi

ei
)− TminDelay), wherei 6= k and 1≤ i ≤ n;

3. Generate a backward gap time vectorB= [b1, b2, . . . ,bn], satisfies:
a. if (Sk

k == −1)
bk= −1;

A DISTRIBUTED FAULT-TOLERANT DESIGN 235

else
bk= t −TA(smk

Sk
k
)

b. bi =−1, wherei 6= k and 1≤ i ≤ n.
4. Broadcast a setup message(k, Setup,V, F, B).
5. Insert(TA(t), V , F B) to STL, wheret is the time instant of step 4.
6. Sk

k = Sk
k + 1.

end

ThisReceiveprocedure checks whether the message is received within the distinguishable
time interval or the indistinguishable time interval, and whether its type issetup,modification
or termination. Different responses must be made depending on the type and the arrival
time. TheReceiveprocedure shown below describes the actions for serverh which receives
a messagem at timeta.

Procedure Receive(h, m, ta)
m := received message, (k, type,Vk, F, B);
k := sender;
type:= message type;
V := order vector, whereV = [e1, e2, . . . ,ek, . . . ,en]k.
F := forward gap time vector, whereF = [f1, f2, . . . , fk, . . . , fn].
B := backward gap time vector, whereB= [b1, b2, . . . ,bk, . . . ,bn].
Vt , Ft , andBt refer to the order, forward gap time and backward gap time vectors in a

node ofSTLh.
begin

switch (type)
case: (Setup)

1. Sh
k = ek.

2. if (Sh
h == −1) /* server h has not allocated any service unit yet */

a. Insert (TA(ta),V, F, B) to STLh.
b. exit.

3. if (ta<TA(smh
Sh

h
)+ TmaxDelay) /* the case of RLS, the message arrives within */

a. if (eh 6= Sh
h) /* the order relationship is not correct, so broadcast a RLS

modification message to revise it */
a.1eh= Sh

h .
a.2bh= (ta− TminDelay)−TA(smh

Sh
h
).

a.3 Broadcast (h,Modif .RLS,V, F, B).
else if (eh 6=−1) /* the order reported is correct, now calculate the back-

ward gap time vector */
a.4bh= (ta− TminDelay)−TA(smh

Sh
h
).

a.5 Broadcast (h,Modification,V, F, B).
b. Append (TA(ta),V, F, B) to STLh.
c. exit.

236 SHYU AND SHIEH

4. if (ta<TA(smh
Sh

h
)+ TminDelay)

/* the case of SLR, the message arrives within TDh
Sh

h−1
*/.

the server h should reflect that the service unit ek runs ahead of service unit
Sh

h due to the SLR relation */
a. Find the vectorsVt , Ft , Bt from the node which is forsmh

sh
h

in STLh

a.1 Thehth entry ofVt is modified toSh
h .

a.2 Thehth entry ofFt is modified toTA(smh
Sh

h
)− (ta− TminDelay).

a.3 Thehth entry ofBt is modified to−1.
a.4 Broadcast (h,Modi.SLR,Vt , Ft , Bt).

/* calculate the backward time gap between the server k’s service unit ek
and the server h’s service unit eh */

b. if (eh 6= − 1)
b.1bh= (ta− TminDelay)−TA(smh

eh
).

b.2 Broadcast (h,Modification,V, F, B).
c. Append (TA(ta),V, F, B) to STLh.
d. exit.

5. if (TA(smh
Sh

h
)+ TminDelay≤ Ta≤TA(smh

Sh
h
)+ TmaxDelay)

/* the case of concurrent */
a. if (eh 6=−1) /* only calculate the backward time gap */

a.1bh= (ta− TminDelay)−TA(smh
eh
).

a.2 Broadcast (h,Modification,V, F, B).
b. Append (TA(ta),V, F, B) to STLh.
c. exit.

case: (Modification)
1. Find the vectorsVt , Ft andBt from the node which is forsmk

ek
in STLh.

2. if (V ==Vt)
/* if neither SLR or RLS case, only gap time is modified */

a. Update the newest entries inF andB to Ft andBt respectively.
b. exit.

3. if (Modi.SLR)
a. if (eh 6= thehth entry ofVt)

/* the case of SLR order and gap modification */
a.1bh is modified to(TA(smk

ek
)− TminDelay)−TA(smh

eh
).

a.2 Broadcast a modification message, (h, Modi., V, F, B) servers.
b. Update the newest entries inV , F andB to Vt , Ft andBt , respectively.
c. exit.

4. if (Modi.RLS)
a. if (k== h andei 6= the i th entry ofVt , wherei 6= h)

/* for RLS order and gap modification */
a.1 fi =MAX(0,TA(smk

ek
)− (TA(smi

ei
)− TminDelay)).

a.2 Broadcast (h,Modification,V, F, B).
b. Update the newest entries inV , F andB to Vt , Ft andBt , respectively.
c. exit.

A DISTRIBUTED FAULT-TOLERANT DESIGN 237

case: (Termination.)
1. Remove the corresponding vectors inTOLh to reflect the close of a playback.
2. exit.

end

The content of a vector may be transient in STL, because further modification messages
would revise the vector entries. The modification corrects the confusion which arises when
one server recognizes a concurrent relationship but another recognizes an SLR or RLS
relationship. The modification process continues for at most three timesTmaxDelay in the
algorithm. Formally, the content of vectors becomes stable after 3× TmaxDelay from its
allocation time because the conditions of RLS and SLR require at most three timesTmaxDelay

to revise the origin vectors. Namely, the node, containing (TA,V, F, B), is kept in STL
for at most three timesTmaxDelay. Note that for the vector, which represents the service unit
from other servers, is only kept in STL for 3× TmaxDelay− TminDelay. And then this node is
moved to ODL.

Relative order generation. As described above, each node in STL is then moved to ODL
by executing thePushprocedure after staying inSTL for 3× TmaxDelay or 3× TmaxDelay−
TminDelay.

Procedure Push(k, node (TA,V, F, B))
begin

1. Append (TA,V, F, B) to ODLk.
2. Set a timer on this node with oneTmaxDelaytime quantum.

end

During the decision process all the vectors confused with each others must be considered
together, or the order will be incorrect. The purpose of setting aTmaxDelaytimer is to ensure
that the condition will be met. In the later, we will prove that the vectors with a concurrent
relationship will arrive withinTmaxDelayafter the first arrival in these setup messages with
a concurrent relation. When each node’s timer is expired, theOrder-Decisionprocedure
is executed and a domination group is formed. Thedomination groupof a service unitez

with an order vector, say [ex, ey, ez]3, is defined as the set of service units includingU1
0 to

U1
ex

, U2
0 to U2

ey
andU3

0 to U3
ez−1. If the members of a domination group for a given service

unit are all in TOL, this service unit is calledpop-ablefrom ODL and is capable of being
moved to TOL. TheOrder-Decisionprocedure is invoked by the node in which the timer
is expired.

Procedure Order-Decision(k, node (TA,V, F, B))
begin

repeat
1. Find all the pop-able service units inODLk.
2. Sort these pop-able service units bythe small server’s identification first scheme.

238 SHYU AND SHIEH

3. Extract the first pop-able service unit’s node fromODLk and append it to the tail
of TOLk.

until ((TA,V, F, B) is the just appended node) or (there is no pop-able service unit).
end

A.2. Translation from TOL to recovery information

In the first phase of DODA, each node stays in STL for at most 3× TmaxDelay. In the second
phase, the node stays for onlyTmaxDelay. Thus we can conclude that for any newly allo-
cated service unit, our algorithm takes no more than 4× TmaxDelay to resolve each service
unit’s order and gap time against to all others from its allocation. This recovery informa-
tion to other service units can be interpreted from TOL. Each node in TOL represents a
service unit. Thus, the order in TOL stands for the order of a service unit. For any suc-
cessive nodes in TOL, assume that they have the formats ofNodex = (TAx,Vi , Fi , Bi) and
Nodey= (TAy,Vj , Fj , Bj), wherei and j denote which servers the vectors belong to. Thus
if Nodex is ordered ahead ofNodey in TOL, it means that the service unit that the service
unit Vi [i] leads the service unitVj [j], where “[]” means the indexed entry of the vector,
and the backward gap time isBi [j] and the forward gap time isFj [i]. We can interpret the
recovery information as follows:

Ui
Vi [i]

Bj [j]
b −→
←− f

Fj [j]
U j

Vj [j]

A.3. Example

The example shown in figure 9 is used to illustrate DODA. Assume there are three video
servers in our VOD system. Each server executes DODA and interacts with others by
exchanging messages. The time line is divided into smaller time units. The maximal and
minimal transmission time are 17 and 6 time units, respectively. We show the message
flows according their time event sequences. Playback requests arrived at different servers
and the servers allocate service units to serve these requests individually. A setup message
is broadcasted to all servers for each newly allocated service unit. For example, server 2

Figure 9. A 3-server video-on-demand system.

A DISTRIBUTED FAULT-TOLERANT DESIGN 239

broadcastssm2
0 to server 1 and server 3 forU2

0 . Its arrival time at these servers are 16, 3 and
18, respectively.

Table 1 shows the broadcasted and received messages to each server, sorted by their
occurring time. Rc. and Br. are the abbreviations of the terms “receive” and “broadcast”.
Table 2 shows server 1’s transitions about the sequence variables, the state transition list,
the order decision list and the total order list according to the message flows. As described
in the first phase, each node stays in STL for 3× TmaxDelay or 3× TmaxDelay− TminDelay.
We calculate each node’s leaving time from STL to ODL. For example, at the 16th time
unit, the node ofTA(16),V [Nil , 0,Nil] 2F [−1,−1,−1] B[−1,−1,−1] is appended to
STL in Server 1, its leaving time from STL to ODL is calculated as the 61th time unit
(16+ 17× 3− 6= 61).

Through DODA, each server will progressively obtain the same order and gap time image
of all the distributed service units. Our algorithm assures all the servers will obtain the new
order and gap time of a service unit after four timesTmaxDealy from its allocation. This
example generates the following recovery information for those distributed service units at
the 100th time unit.

b
30−→ b

13−→ b
0−→ b

32−→ b
18−→

U2
0 U3

0 U1
0 U2

1 U1
1 U3

1 · · ·←−
19

f ←−
0

f ←−
0

f ←−
18

f ←−
9

f (1)

BecauseU1
0 andU2

1 are in the concurrent relation, the forward gap and backward gap time
are set to 0.

A.4. Correctness of the second phase

In this section, we would like to prove that the DODA algorithm achieves the goal of
constructing a unique order view for all video servers. We use three lemmas to complete
our proof.

Lemma 1. For any server k, given any two service units Ui and Uj with Ui leading Uj , if
the setup message smx

j for U j arrives at server k at time TA(smx
j), then the setup message

smy
i for Ui will arrive before TA(smx

j) or within [TA(smx
j), TA(smx

j)+ TmaxDelay].

Proof: The result is very straightforward. Let us consider two extreme cases. In the first,
smy

i arrives at serverk using minimal transmission timeTminDelay andsmx
j using maximal

transmission timeTmaxDelay. Obviously,smy
i arrives at serverk before the arrival ofsmx

j .
In contrast,smy

i arrives at serverk using maximal transmission timeTmaxDelayandsmx
j using

minimal transmission timeTminDelay. If smx
j arrives at serverk first and thesmy

i arrives after
TA(smx

j) plus TmaxDelay. The time instant for servery to broadcastsmy
i should be after

TA(smx
j) due to the use of the maximal transmission delay. The result is in conflict with the

assumption ofUi leadingU j . 2

Ta
bl

e
1.

M
es

sa
ge

flo
w

.

S
er

ve
r

1
S

er
ve

r
2

S
er

ve
r

3

16
:

R
c.

(2
,S

,V
[N

il,
0,

N
il]

2
,F

[−
1,

−1
,−

1]
,B

[−
1,

−1
,−

1]
)

3:
B

r.
(2

,S
,V

[N
il,

0,
N

il]
2
,F

[−
1,

−1
,−

1]
,B

[−
1,

−1
,−

1]
)

18
:

R
c.

(2
,S

,V
[N

il,
0,

N
il]

2
,F

[−
1,

−1
,−

1]
,B

[−
1,

−1
,−

1]
)

36
:

B
r.

(1
,S

,V
[0

,0
,N

il]
1
,F

[−
1,

26
,−

1]
,B

[−
1,

−1
,−

1]
)

34
:

B
r.

(2
,S

,V
[N

il,
1,

N
il]

2
,F

[−
1,

31
,−

1]
,B

[−
1,

31
,−

1]
)

31
:

B
r.

(3
,S

,V
[N

il,
0,

0]
3
,F

[−
1,

19
,−

1]
,B

[−
1,

−1
,−

1]
)

43
:

R
c.

(3
,S

,V
[N

il,
0,

0,
] 3

,F
[−

1,
19

,−
1]

,B
[−

1,
−1

,−
1]

)
39

:
R

c.
(3

,S
,V

[N
il,

0,
0]

3
,F

[−
1,

19
,−

1]
,B

[−
1,

−1
,−

1]
)

43
:

R
c.

(2
,S

,V
[N

il,
1,

N
il]

2
,F

[−
1,

31
,−

1]
,B

[−
1,

31
,−

1]
)

th
en

B
r.

(2
,M

S
LR

,V
[N

il,
1,

0]
2
,F

[−
1,

31
,1

],
B

[−
1,

31
,−

1]
)

an
d

B
r.

(2
,M

,V
[N

il,
0,

0]
3
,F

[−
1,

19
,−

1]
,B

[−
1,

30
,−

1]
)

47
:

R
c.

(2
,S

,V
[N

il,
1,

N
il]

2
,F

[−
1,

31
,−

1)
,B

[−
1,

31
,−

1]
)

47
:

R
c.

(1
,S

,V
[0

,0
,N

il]
1
,F

[−
1,

26
,−

1]
,B

[−
1,

38
,−

1]
)

50
:

R
c.

(1
,S

,V
[0

,0
,N

il]
1
,F

[−
1,

26
,−

1]
,B

[−
1,

−1
,−

1]
)

th
en

B
r.

(2
,M

,V
[0

,0
,N

il]
1
,F

[−
1,

26
,−

1]
,B

[−
1,

38
,−

1]
)

th
en

B
r.

(3
,M

R
LS

,V
[0

,0
,0

] 1
,F

[−
1,

26
,−

1]
,B

[−
1,

−1
,1

3]
)

52
:

R
c.

(2
,M

S
LR

,V
[N

il,
1,

0]
2
,F

[−
1,

31
,1

),
B

[−
1,

31
,−

1]
)

58
:

R
c.

(3
,M

R
LS

,V
[0

,0
,0

] 1
,F

[−
1,

26
,−

1]
,B

[−
1,

−1
,1

3]
)

55
:

R
c.

(2
,M

,V
[N

il,
2,

0]
2
,F

[−
1,

31
,1

],
B

[−
1,

31
,−

1]
)

an
d

R
c.

(2
,M

,V
[N

il,
0,

0]
3
,F

[−
1,

19
,−

1]
,B

[−
1,

30
,−

1]
)

an
d

R
c.

(2
,M

,V
[N

il,
0,

0]
3
,F

[−
1,

19
,−

1]
,B

[−
1,

30
,−

1]
)

56
:

R
c.

(2
,M

,V
[0

,0
,N

il]
1
,F

[−
1,

26
,−

1]
,B

[−
1,

38
,−

1]
)

63
:

R
c.

(3
,M

,V
[N

il,
1,

0]
2
,F

[−
1,

31
,1

],
B

[−
1,

31
,6

])
58

:
R

c.
[2

,M
,V

[0
,0

,N
il]

1
,F

[−
1,

26
,−

1]
,B

[−
1,

38
,−

1]
)

58
:

R
c.

(3
,M

R
LS

,V
[0

,0
,0

] 1
,F

[−
1,

26
,−

1]
,B

[−
1,

−1
,1

3]
)

67
:

R
c.

(1
,M

,V
[0

,0
,0

] 1
,F

[−
1,

26
,0

],
B

[−
1,

−1
,1

3]
)

65
:

R
c.

(1
,M

,V
[0

,0
,0

] 1
,F

[−
1,

26
,0

],
B

[−
1,

−1
,1

3]
)

th
en

B
r.

(1
,M

,V
[0

,0
,0

] 1
,F

[−
1,

26
,0

],
B

[−
1,

−1
,1

3]
)

59
:

B
r.

(1
,S

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

−1
,−

1]
)

72
:

R
c.

(1
,S

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

−1
,−

1]
)

69
:

R
c.

(1
,S

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

−1
,3

2]
)

th
en

B
r.

(2
,M

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

32
,−

1]
)

th
en

B
r.

(3
,S

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

−1
,−

1]
)

64
:

R
c.

(3
,M

,V
[N

il,
1,

0]
2
,F

[−
1,

31
,1

],
B

[−
1,

31
,6

])
81

:
R

c.
(3

,M
,V

[1
,1

,0
] 1

,F
[2

3,
18

,2
2]

,B
[2

3,
−1

,3
2]

)
72

:
B

r.
(2

,S
,V

[1
,1

,1
] 3

,F
[9

,3
5,

41
],

B
[−

1,
−1

,4
1]

)

80
:

R
c.

(2
,M

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

32
,−

1]
)

84
:

R
c.

(3
,S

,V
[1

,1
,1

] 3
,F

[9
,3

5,
41

],
B

[−
1,

−1
,4

1]
)

82
:

R
c.

(2
,M

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

32
,−

1]
)

th
en

B
r.

(2
,M

,V
[1

,1
,1

] 3
,F

[9
,3

5,
41

],
B

[−
1,

44
,4

1]
)

83
:

R
c.

(3
,S

,V
[1

,1
,1

] 3
,F

[9
,3

5,
41

],
B

[−
1,

−1
,4

1]
)

94
:

R
c.

(2
,M

,V
[1

,1
,1

,] 3
,F

[9
,3

5,
41

],
B

[−
1,

44
,4

1]
)

th
en

B
r.

(1
,M

,V
[1

,1
,1

] 3
,F

[9
,3

5,
41

],
B

[1
8,

−1
,4

1]

86
:

R
c.

(3
,M

,V
[1

,1
,0

] 1
,F

[2
3,

18
,2

2]
,B

[2
3,

−1
,3

2]
)

96
:

R
c.

(1
,M

,V
[1

,1
,1

] 3
,F

[9
,3

5,
41

],
B

[1
8,

−1
,4

1]
)

92
:

R
c.

(2
,M

,V
[1

,1
,1

] 3
,F

[9
,3

5,
41

],
B

[−
1,

44
,4

1]
)

A DISTRIBUTED FAULT-TOLERANT DESIGN 241

Table 2. TOL, ODL, and STL transitions.

(0)

TOL: Nil

ODL: Nil

STL: Nil

S1
1= −1, S 1

2= −1, S 1
3= −1

(16)

TOL: Nil

ODL: Nil

STL: TA(16), V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

S1
1= −1, S 1

2= 0, S 1
3= −1

(36)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, Nil] 1 F[-1, 26, -1] B[-1, -1, -1] (87)

S1
1= 0, S 1

2= 0, S 1
3= −1

(43)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, Nil] 1 F[-1, 26, -1] B[-1, -1, -1] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, -1, -1] (88)

S1
1= 0, S 1

2= 0, S 1
3= 0

(47)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, Nil] 1 F[-1, 26, -1] B[-1, -1, -1] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, -1, -1] (88)

TA(47) V[Nil, 1, Nil] 2 F[-1, 31, -1] B[-1, 31, -1] (92)

S1
1= 0, S 1

2= 1, S 1
3= 0

(52)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, Nil] 1 F[-1, 26, -1] B[-1, -1, -1] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, -1] (92)

S1
1= 0, S 1

2= 1, S 1
3= 0

(56)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, Nil] 1 F[-1, 26, -1] B[-1, 38, -1] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, -1] (92)

S1
1= 0, S 1

2= 1, S 1
3= 0

(Continued on next page.)

242 SHYU AND SHIEH

Table 2. (Continued).

(58)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, -1] (92)

S1
1= 0, S 1

2= 1, S 1
3= 0

(59)

TOL: Nil

ODL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (61)

TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, -1] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, -1, -1] (104)

S1
1= 1, S 1

2= 1, S 1
3= 0

(61)

TOL: Nil

ODL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (78)

STL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, -1] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, -1, -1] (104)

S1
1= 1, S 1

2= 1, S 1
3= 0

(64)

TOL: Nil

STL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1] (78)

ODL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, -1, -1] (104)

S1
1= 1, S 1

2= 1, S 1
3= 0

(78)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

ODL: Nil

STL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, -1, -1] (104)

S1
1= 1, S 1

2= 1, S 1
3= 0

(80)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

ODL: Nil

STL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, -1] (110)

S1
1= 1, S 1

2= 1, S 1
3= 0

(Continued on next page.)

A DISTRIBUTED FAULT-TOLERANT DESIGN 243

Table 2. (Continued).

(83)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

ODL: Nil

STL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, -1] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, -1, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(86)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

ODL: Nil

STL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (87)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, -1, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(87)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1) B(-1, -1, -1)

ODL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (104)

STL: TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (88)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, -1, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(88)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

ODL: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (104)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (105)

STL: TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (92)

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, -1, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(92)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

ODT: TA(36) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13] (104)

TA(43) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1] (105)

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (109)

STL: TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(104)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

TA(36) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1]

TA(43) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13]

ODT: TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6] (109)

STT: TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(Continued on next page.)

244 SHYU AND SHIEH

Table 2. (Continued).

(109)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

TA(36) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1]

TA(43) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13]

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6]

ODL: Nil

STL: TA(59) V[1, 1, 0] 1 F[23, 18, 22 B[23, 32, 32] (110)

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(110)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

TA(36) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1]

TA(43) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13]

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6]

ODL: TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32] (127)

STL: TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(127)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

TA(36) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1]

TA(43) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13]

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6]

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32]

ODL: Nil

STL: TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41] (128)

S1
1= 1, S 1

2= 1, S 1
3= 1

(128)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

TA(36) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1]

TA(43) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13]

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6]

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32]

ODL: TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41] (135)

STL: Nil

S1
1= 1, S 1

2= 1, S 1
3= 1

(135)

TOL: TA(16) V[Nil, 0, Nil] 2 F[-1, -1, -1] B[-1, -1, -1]

TA(36) V[Nil, 0, 0] 3 F[-1, 19, -1] B[-1, 30, -1]

TA(43) V[0, 0, 0] 1 F[-1, 26, 0] B[-1, 38, 13]

TA(47) V[Nil, 1, 0] 2 F[-1, 31, 1] B[-1, 31, 6]

TA(59) V[1, 1, 0] 1 F[23, 18, 22] B[23, 32, 32]

TA(83) V[1, 1, 1] 3 F[9, 35, 41] B[18, 44, 41]

ODL: Nil

STL: Nil

S1
1= 1, S 1

2= 1, S 1
3= 1

A DISTRIBUTED FAULT-TOLERANT DESIGN 245

Lemma 2. For any server k, given any two service units Ui and Uj with an concurrent
relationship, the distance between the arrival time smy

i and smx
j at server k is not longer

than TmaxDelay, namely, |TA(smy
i)−TA(smx

j)|< TmaxDelay.

Proof: This proof is similar to that for Lemma 1. 2

Lemma 3. If two strings are identical, given any element, say a, in these two strings.
The preceding elements to a in both strings will be the same regardless of the order of
elements. In contrast, given two strings, if the elements preceding an element, say a, on
both strings are the same, then these two strings are identical regardless of the order of
elements.

Using Lemma 3, we consider the order interpreted from the total order lists as strings. If
we can prove that the preceding service units to any given service unit are the same in all
TOLs, then the TOLs in all the servers areidentical.

Theorem 1. The TOLs constructed by the distributed order decision algorithm are iden-
tical for all servers.

Proof: Given two servers, say Server 1 and server 2, their TOLs arel1 andl2, respectively.
For any two members inl1, saybx andby, assuming thatby’s order goes ahead ofbx in l1,
then we should prove that the same order relationship exists inl2. We now discuss the
three possible relationships forbx andby. In the first case, both order vectors forbx and
by indicateby leadingbx. With Lemma 1, if the arrival pattern isbx beforeby, bx and
by will be handled together in the order-decision procedure invoked bybx ’s expired timer.
Whenbx becomes pop-able inl2, by must already be inl2 or bx will have no chance to
become pop-able. In the second case,bx andby are in a concurrent relationship but the
server’s identification ofbx is greater than that ofby. These two elements will be handled
by either of their timer-expired procedures according to Lemma 2. Becausebx andby are
confused with each other, they become pop-able simultaneously. However, they will be
sorted by their servers’ identification and thenby will be popped first due to the smaller
server identification. In the final case,bx and by are also in confusion but the server’s
identification ofbx is smaller than that ofby. There must be an elementbz such thatby is
leadingbz, bz is leadingbx butbx is confused withby. Thoughby is confused withbx and
by’s server identification is greater thanbx, by becomes pop-able first but thebx is still not
pop-able due to thebz is not inl2. 2

Acknowledgments

We thank the referees for their comments and suggestions. This work was partially spon-
sored by the National Science Council, Taiwan, R.O.C. under contract number: NSC85-
2221-E-009-039.

246 SHYU AND SHIEH

References

1. J.W. Byun and T.T. Lee, “The design and analysis of an ATM multicast switch with adaptive traffic controller,”
IEEE/ACM Trans. on Networking, Vol. 2, No. 3, pp. 288–298, 1994.

2. M.S. Chen, D.D. Kandlur, and P.S. Yu, “Storage and retrieval methods to support fully interactive playout in
a disk-array-based video server,” Multimedia Systems, Vol. 3, pp. 126–135, 1995.

3. F. Cristian, “Understanding fault-tolerant distributed systems,” Comm. of the ACM, Vol. 34, pp. 56–78,
1991.

4. A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies for an on-demand video server,”
Multimedia Systems, Vol. 4, No. 3, pp. 112–121, 1996.

5. W. Effelsberg and T. Haerder, “Principles of database buffer management,” ACM Trans. on Database Systems,
Vol. 9, No. 4, pp. 560–595, 1984.

6. C. Federighi and L.A. Rowe, “A distributed hierarchical storage manager for a video-on-demand system,” in
Proc. of IS&T/SPIE, San Jose, CA, 1994.

7. E.A. Fox, “The coming revolution of interactive digital video,” Comm. of the ACM, Vol. 32, pp. 794–801,
1989.

8. E.A. Fox, “Standards and emergence of digital multimedia systems,” Comm. of the ACM, Vol. 34, pp. 26–30,
1991.

9. B. Furht, “Multimedia systems: An overview,” IEEE Multimedia, pp. 47–59, 1994.
10. D. Le Gall, “MPEG: A video compression standard for multimedia applications,” Comm. of the ACM, Vol. 34,

No. 4, pp. 46–58, 1991.
11. E. Gelenbe, D. Finkel, and S. Tripathi, “Availability of a distributed computer system with failures,” Acta

Informatica, Vol. 23, pp. 643–655, 1986.
12. D.J. Gemmell, “Multimedia storage servers: A tutorial,” IEEE Multimedia, pp. 40–49, 1995.
13. L. Golubchik, C.S. Lui, and R. Muntz, “Adaptive piggybacking: A novel technique for data sharing in

video-on-demand storage servers,” Multimedia Systems, Vol. 4, No. 3, pp. 140–155, 1996.
14. J. Huang and L.A. Stankovic, “Buffer management in real-time database,” Department of Computer Science,

University of Massachusetts, Technique Report, pp. 90–65, July 1990.
15. Y. Huang and S.K. Tripathi, “Resource allocation for primary-site fault-tolerant systems,” IEEE Trans. on

Software Engineering, Vol. 19, No. 2, 1993.
16. J.C. Laprie, J. Arlat, and C. Beounes, “Definition and analysis of hardware- and software-fault-tolerant

architectures,” IEEE Computer, Vol. 23, pp. 39–51, 1990.
17. T.D.C. Little and D. Venkatesh, “Popularity-based assignment of movies to storage devices in a video-on-

demand system,” Multimedia Systems, Vol. 2, No. 6, pp. 280–2987, 1995.
18. K. Nahrstedt, “Resource management in networked multimedia systems,” IEEE Multimedia, pp. 52–63,

1995.
19. V.P. Nelson, “Fault-tolerant computing: Fundamental Concepts,” IEEE Computer, Vol. 23, pp. 19–25,

1990.
20. K.K. Ramakrishnan, “Operating system support for a video-on-demand file service,” Multimedia Systems,

Vol. 3, pp. 53–63, 1995.
21. P.V. Rangan, H.M. Vin, and S. Ramanathan, “Designing an on-demand multimedia service,” IEEE Commu-

nications, Vol. 30, pp. 56–64, 1992.
22. D. Rotem and J.L. Zhao, “Buffer management for video database systems,” IEEE Intl. Conf. on Data Engi-

neering, 1995, pp. 439–448.
23. R.D. Schlichting and F.B. Schneider, “Fail-stop processors: An approach to designing fault-tolerant computing

systems,” ACM Transactions on Computing Systems, Vol. 1, pp. 222–238, 1993.
24. F.B. Schneider, “Byzantine generals in action: Implementing fail-stop processors,” ACM Trans. on Computing

Systems, Vol. 2, pp. 145–154, 1984.
25. D.P. Siewiorek, “Fault tolerance in commercial computers,” IEEE Computer, Vol. 23, pp. 19–25, 1990.
26. G.K. Zipf, Human Behavior and the Principles of Least Effort, Addison-Wesley: Reading, MA, 1949.

A DISTRIBUTED FAULT-TOLERANT DESIGN 247

Ing-Jye Shyureceived his B.S. degree in Computer Science and Information Engineering from the National Chiao-
Tung University, Taiwan, in 1992. He is currently a Ph.D. candidate at the same university. His research interests
include video-on-demand systems, distributed communication protocols, and real-time operating systems.

Shiuh-Pyng Shiehreceived the M.S. and Ph.D. degrees in Electrical Engineering from the University of Maryland,
College Park, in 1986 and 1991, respectively. He is currently a Professor with the Department of Computer Science
and Information Engineering, National Chiao-Tung University. From 1988 to 1991 he participated in the design
and implementation of the B2 Secure XENIX for IBM, Federal Sector Division, Gaithersburg, Maryland, USA.
He is also the designer of SNP (Secure Network Protocol). Since 1994 he has been a consultant for Computer and
Communications Laboratory, Industrial Technology Research Institute, Taiwan in the area of network security and
distribute operating systems. He is also a consultant for the National Security Bureau, Taiwan. Dr. Shieh was on the
organizing committees of a number of conferences, such as International Computer Symposium, and International
Conference on Parallel and Distributed Systems. Recently, he is the program chair of 1997 Information Security
Conference (INFOSEC ’97). His research interests include distributed operating systems, and computer security.

