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Abstract. Let G be a complex connected semi-simple Lie group, with
parabolic subgroug”. Let (P, P) be its commutator subgroup. The gen-
eralized Borel-Weil theorem on flag manifolds has an analogous result on
the Dolbeault cohomology?’¢(G/(P, P)). Consequently, the dimension

of H%4(G/(P, P)) s eithel0 or co. Inthis paper, we show that the Dolbeault
operatoid has closed image, and apply the Peter-Weyl theorem to show how
q determines the valugor co. For the case wheR is maximal, we apply

our result to compute the Dolbeault cohomology of certain examples, such
as the punctured determinant bundle over the Grassmannian.

Mathematics Subject Classification (19922E46, 32M10.

1 Introduction

Let G be a complex connected semi-simple Lie group with compact real
form K, andG = KAN an lwasawa decomposition. L&t be the cen-
tralizer of A in K, so thatH = TA is a Cartan subgroup aff. The
Lie algebras offf, T, A are denoted by, t, a. Let P be a parabolic sub-
group of G containing the Borel subgroup = HN. For the compact
flag manifoldG/ P, the generalized Borel-Weil theorem [1] computes the
cohomologyH (G /P, L), whereL, is the homogeneous line bundle cor-
responding to the weight € h*. Let (P, P) be the commutator subgroup
of P. SinceH normalizeq P, P), it acts onG//( P, P) on the right, and we
let HQ"’(G/(P, P)) denote the Dolbeault cohomology @f, ¢)-forms that
transform by\ under the righ#f -action. Since the right/ -action commutes
with the left K-action, it is aK -representation space. In [3], tlk&-spaces
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HY(G/P, L)) anng’q(G/(P, P)) are shown to be isomorphic. This gives
yet another version of the generalized Borel-Weil theorem, among others
[6]. Consequently, the Dolbeault cohomologf-(G/(P, P)) is either0

or infinite dimensional.

Let 2%9(G/(P, P)) denote the complef0, ¢)-forms onG/(P, P). We
equip it with the following topology. Given a sequence (6f ¢)-forms
a; € 2%(G/(P,P)), we express them as; = >, fidz; on a com-
pact coordinate patch, whefg = ¢ is the multiple index notation. Then
we say thaky; — 0in 2%(G/(P, P)) if and only if on every such coor-
dinate neighborhood and every indéxall derivatives of{ f¢}; converge
uniformly to 0 asi — oo ([5], p.820). The following theorem says that the
Dolbeault operatop behaves nicely under this topology.

Theorem 1 The image ofd : 2%4(G/(P, P)) — 2%4tY(G/(P, P)) is
closed.

We shall prove Theorem 1 if2. The lwasawa decompositioci =
K AN determines a positive systedi™ for the roots inh*, where the Lie
algebra of N consists of positive root spaces. This way, the Killing form
(—, —) defines a closed Weyl chamhBr;, consisting of the vectors € h*
satisfying(\, AT) > 0. Let AJ be the simple roots fan\*. We shall call
o C D acell if there exists a subsstc Af such that

(1.1) (0,5) >0, (0,A7\S) = 0.

ThenD is a disjoint union of cells. Each cell spalis C h*, which can be
identified withb, under the Killing form. Taking its intersection witha
givet,, a, respectively. These Lie subalgebras correspond to the subgroups
T,, A,. There is a bijective correspondence between the {ellsc C D}

and the parabolic subgroug$® ; B C P}. This is given by Langlands
decomposition ([5], p.659)

(1.2) P = M,A,N,,

where A, is the subgroup determined by the celtlescribed above. Let
denote half the sum of all positive roots, andthe Weyl group.

Theorem 2 H%4(G/(P, P)) is infinite dimensional if there exists € W
of length g, and a weight € b, such thatw(A + p) — p is dominant. The
cohomology vanishes otherwise.

Actually, much of Theorem 2 has been proved in [3], except for its
last statement on the vanishing of cohomologygdnwe apply the Peter-
Weyl theorem to Theorem 1, and show that the rifjhrepresentation on
H%4(G/(P, P)) has no infinite dimensional irreducible subrepresentation,
which proves the last statement of Theorem 2.
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Suppose thaP is a maximal parabolic subgroup 6f. We shall show
that Theorem 2 becomes simpler, and can be stated in terms of the dimension
of the flag manifold=/ P:

Theorem 3 Let P be a maximal parabolic subgroup of G. Then

. 0.q _ Joog=0,dimG/P
dim H™4(G/(P, P)) = {0 otherwise.

For G = SL(n,C) the homogeneous spacég (P, P) with P as in
Theorem 3 admit a direct geometric description. They include the space of
non-zero vectors ™ where Theorem 3 yields an alternative approach to
known results.

AcknowledgementsThe authors would like to thank David Vogan for some very helpful sug-
gestions. Editor Jantzen and the referee generously provide improvements in the arguments
leading to Theorem 1, as well as a nice formulation and proof of Theorem 3. Consequently,
the present article is more concise and readable than its earlier version.

2 Image of 9

Let X be a complex manifold. Le®?(X ) and2%4(X) respectively denote
the spaces of complexforms and(0, ¢)-forms onX. Equip £2¢(X) with
the topology as described§n before ([5], p.820). Thek*4(X) is a closed
subspace of29(X).

Recall thatG? is a complex connected semi-simple Lie groia para-
bolic subgroup of7, and(P, P) its commutator subgroup. The purpose of
this section is to show that the image of the Dolbeault operator

(2.1) d: 2%(G/(P, P)) — 2%(G/(P,P))

is closed, and prove Theorem 1. However, Proposition 2.1, Corollary 2.2
and Proposition 2.3 below hold for general connected complex manifold

Proposition 2.1 If X is a connected manifold, then the image dof:
C®(X) — 2Y(X) is closed.

Proof. Let w; be a sequence of exact 1-forms ah Suppose that they
converge to a 1-forrv. We need to show that is exact too.

The 1-formw is certainly closed. To prove that it is exact, it suffices that
for each smooth loop C X, the integralf,yw vanishes [7]. But sincey;
converges uniformly ta,

w = lim w; = lim wi.
Jj—ro0 J j—o0 J
v v v
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Since eacly; is exact, Stoke’s theorem says that the last integral vanishes
for each smooth loop. We conclude that is exact. 0

Since the natural projection : 2'(X) — 2%!(X) is a closed map,
and since) = 7 - d, it follows that

Corollary 2.2 Let X be a connected complex manifold. Then the image of
0:C®(X) — 2%(X)is closed.

The following general result provides a sufficient condition for the map
(2.2) 9 : 2%(X) — QVIH(X)
to have closed image.

Proposition 2.3 Let X be a connected complex manifold. Suppose that
2%4(X) is a free module ove®>(X) with basis¢;, 1 < i < a, and that
%11(X) is a free module ove€*>°(X) with basis¢}, 1 < j < b. If
d(&) € Y, C¢} for alli, then the image of (2.2) is closed.

Proof. Suppose that the above conditions are satisfied. We want to show that
(2.2) has closed image. Write the Dolbeault operatéras(}_;_; 9")+ ',
where

éi(z fu&r) = (Of) N& 5’(2 feé) = kaé(fk);
" s k

for fr € C*°(X). It suffices to show that the images @fand all9* are
closed.
For d’, consider

Vi={BNE&; Be (X))} c 2%(X).

By Corollary 2.2, the image a¥' is closed inV;. SinceV; c 2%4*1(X)is
closed, it follows that the image @F is closed inf2%41(X).

Next let] be the image of’, and we want to show th&tc 2%4+1(X)is
closed. Le® be aC-basis ofy ", CI(&;). The assumption of this proposition
says that® can be imbedded into @-basis ofzj C¢’, and hence into a
basis®’ of 2%4T1(X) overC*(X). From® C @', order the elements of
©' so that® consists of the beginning ones. Then idenfif{!(X) with
C>(X)® via the basi®’. SinceO is also a basis fof overC>(X), I has
the form

23)  I={(f1,... f:,0,...,0); f; € C®(X)} C C>®(X)?,

wheret = |©)|. It follows from (2.3) that the image o¥ is closed. This
proves the proposition. a
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Now let X be the specific spad&/(P, P). Recall from (1.1) and (1.2)
that P determines a subsét of the simple rootsA], as well as a cell
o. They satisfy(o, S) > 0 under the Killing form. LetS” be the positive
roots generated by, so thatS c S’ C A*. Letr = |S| ands = |5'|.
Clearly » < s. Note that whenP is the minimal parabolic subgroup,
thenr = rankG ands = |A™|. From Langlands decomposition ([3] and
[5], p.659), it follows that the dimension @f/(P, P) isr + s. The cello
determined by is of dimension. We order the positive roots so that

S={ay,...,ar}, S ={a1,...,as},(0,5) > 0.

The space?’4(G/(P, P)) is a module over the ring>°(G/(P, P)),
with dimensiong“. The next proposition constructs a basis for each mod-
ule 2%¢(G/(P, P)), and shows tha sends one basis into another. In other
words, such basis satisfy the assumptions of Proposition 2.3. We use mul-
tiple index notation in the usual way. For instancé i (1, ..., q), thené;
denotes; A ... A&,

Proposition 2.4 There existy, ..., &, 01, .., - € 291G/ (P, P)), indexed
according to the positive roots,, ..., a,, such that:

(@) For each q,{¢; A ny}is a basis of the modul@®4(G/ (P, P)),
where|I| + |J| =q,I C {1,...,s}andJ C {1,...,r}.

(b) 01 =" &g AEy A&y, sSummed ovet, + a,, = oy, andt satisfies
Q1) =1I.

(c) 9ny=o0forall J.

Proof. Although Lemmas 3.2 and 3.3 of [3] work on the special dase B
andG/(P, P) = G/N, the idea is essentially the same. Simply¢ebe as
given there, and note equations (3.11), (3.12) thereplla¢ as given by:;
of Lemma 3.2 there. Th@, 1)-forms {¢;, 7, } then satisfy

(2.4) & = Z & A& and dn; =0

apto=o;

foralli =1,...,sandj =1, ..., r. Parts (b), (c) of proposition follow from
(2.4).

The values of{¢;,n;} ate € G/(P, P) form a basis of the cotangent
space\"!T*G/(P, P). Since they are alk -invariant and transform nicely
under the rightA,-action, their values at evegy € G/(P, P) also form
a basis. Hencg¢;,n;} is a basis of the modul&®!(G/(P, P)). Conse-
guently, their exterior products become the basis of the various modules
2%4(G/(P, P)). Hence part (a) of the proposition. O

We now use Propositions 2.3 and 2.4 to show that the image of the
Dolbeault operator (2.1) is closed, and prove Theorem 1.
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Proof of Theorem 1.By Proposition 2.4(a),2°¢(G/(P,P)) and
%a+1(G/(P, P)) are free modules ove&r™ (G/(P, P)), with basis{&; A

ns} given in that proposition. Further, Proposition 2.4(b-c) says that such
basis satisfy the assumptions of Proposition 2.3. Therefore, Proposition 2.3
implies that the image of the Dolbeault operator (2.1) is closed. Theorem 1
follows. O

3 Dolbeault cohomology

Let us consider the Dolbeault cohomologf*¢(G/(P, P)). Recall from
(1.2) thatP determines a subalgebhg, via Langlands decomposition. It
has been proved in [3] that the dimensionf¢(G/(P, P)) is either0

or infinite. In particular, it is infinite dimensional if there exists a Weyl
group elementv € W of lengthg and an integral weight € b such that
w(A+ p) — pis dominant. Here denotes half the sum of all positive roots.
We now prove Theorem 2 by showing that conversely, if sucdmd\ are
absent, thed?%4(G/(P, P)) = 0.

Proof of Theorem 2Let T, be the toral subgroup determined By via
(1.1) and (1.2). Sincé, normalizes(P, P), it acts onG/(P, P) on the
right. The naturalK’ x T,-action onG/(P, P) gives rise to ak x T,-
representation o/ *:¢(G/(P, P)). Theorem 1 says that the representation
spacel%4(G/(P, P)) is a complete locally convex Hausdorff space. Since
T, is compact, the Peter-Weyl theorem says that the right representation
of T,, contains no infinite dimensional irreducible subrepresentations ([2],
p.141). Therefore, sincE, is abelian, its irreducible subrepresentations are
1-dimensional. Each of themis containetﬂrﬁ’q(G/(P, P)), consisting of
cohomology classes that transform bye h% under the rightl,,-action.
Suppose now that for giveq, there exists nav € W of length ¢ and
integral weight\ € §? such thatw(A + p) — p is dominant. By Theorem
2(ii) of [3], Hg’q(G/(P, P)) = 0 for all A € bi. Consequently, since
H%(G/(P, P)) is aT,-representation with no infinite or 1-dimensional
irreducible subrepresentation, it has to vanish. This proves Theorem 2.

Suppose now thaP is a maximal parabolic subgroup 6f. We shall
show that Theorem 2 simplifies considerably. From the simple raots
we get the corresponding dominant fundamental weight$ satisfying
(ai, Aj) = 0. Let AT and A~ denote the positive and negative roots
respectively, and letV be the Weyl group. LeD be the dominant Weyl
chamber, and® its interior.

Proof of Theorem 3.t is clear from the Borel-Weil theorem that
H%4(G/(P, P)) is infinite dimensional fo; = 0. We now consider the
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case wherg = dim G/P. By (1.1) and (1.2), the maximal parabolic sub-
group P corresponds to a unique fundamental weight Let S; C AT

be the positive roots spanned by the simple roots different fignand let
Sy = AT\ S;. Since(\g, S1) = 0 and(p, S1) > 0, foralln € Z,

(3.1) (nAg + p, S1) > 0.

We shall writen < 0 to denote negative numbetf sufficiently large
magnitude. Sincé\x, S2) > 0, for all integersn < 0,

(3.2) (n\g + p, Sa) < 0.

Letw € W be the element in whichv(n\ + p) € D for all integers
n < 0. In fact, sincen\; + p is regular, we get

(3.3) w(n\g +p) € D° and w(n\g +p) —p € D.
By (3.1) and (3.3),

(3.4) (w(nA, +p),w(S1)) >0 = w(S;) C A*.
Similarly, for integers: < 0, (3.2) and (3.3) imply that
(3.5) (w(nAe +p),w(S2)) <0 = w(S2) C A”.
By (3.4) and (3.5),

(3.6) lengthw = |S3| = dim G/ P.

Since (3.3) says that(n\; + p) — p is dominant, we can apply Theorem
2 to (3.6) and conclude tha?®4(G/(P, P)) is infinite dimensional for
qg=dimG/P.

Consider the lattice points in

{nAr; n€Z} =7Z(\) C b

Forn > 0 andn < 0 respectively, there exist = 1 andw in (3.6) such
thatw(n\; + p) — p is dominant. For the remaining finitely many lattice
pointsA € Z(\), we cannot findv which makew(\ + p) — p dominant:
This is because there has to be either none or infinitely maayZ(\;)
such thatw(\ + p) — p is dominant [3]. Thereforelf>4(G/(P, P)) = 0 if

q differs from0 or dim G/ P. Theorem 3 follows. O

If G = SL(n,C)andif Pisamaximal parabolic subgroupdhsuch that
G/P = CP""!, thenG/(P, P) identifies withCZ, the non-zero vectors
in C™. In this case Theorem 3 yields the known results on Dolbeault coho-
mology of Cj ([4], p.49). If P is an arbitrary maximal parabolic subgroup
in G = SL(n,C), thenG/P is the Grassmanniai of all k-dimensional
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subspaces i@©" for somek with 1 < k£ < n. Let E — X be the universal
bundle. It is a rank: bundle, where the fiber over € X is just the sub-
spacep C C" itself. Define the corresponding determinant line bundle by
L = AFE, and letL* denoteL with the O-section omitted. Now/( P, P)
identifies withL* and therefore Theorem 3 shows that

00 q=0,k(n—k)

dim H%9(L*) = {0 otherwise.

References

e

R. Bott, Homogeneous vector bundles, Annals of M&&(1957), 203—-248

T. Brocker, T. Tom Dieck, Representations of compact Lie groups, Springer-Verlag 1985

3. M.K. Chuah, The generalized Borel-Weil theorem and cohomology/¢f, P), Indi-

ana Univ. Math. J46 (1997), 117-131

P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley & Sons, 1978

5. A. Knapp, D. Vogan, Cohomological induction and unitary representations, Princeton
U. Press 1995

6. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Annals of
Math.74(1961), 329-387

7. G.de Rham, Vagies differentiables, Hermann, Paris 1955

n

»



