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Abstract. Let G be a complex connected semi-simple Lie group, with
parabolic subgroupP . Let (P, P ) be its commutator subgroup. The gen-
eralized Borel-Weil theorem on flag manifolds has an analogous result on
the Dolbeault cohomologyH0,q(G/(P, P )). Consequently, the dimension
of H0,q(G/(P, P )) is either0 or∞. In this paper, we show that the Dolbeault
operator̄∂ has closed image, and apply the Peter-Weyl theorem to show how
q determines the value0 or ∞. For the case whenP is maximal, we apply
our result to compute the Dolbeault cohomology of certain examples, such
as the punctured determinant bundle over the Grassmannian.

Mathematics Subject Classification (1991):22E46, 32M10.

1 Introduction

Let G be a complex connected semi-simple Lie group with compact real
form K, andG = KAN an Iwasawa decomposition. LetT be the cen-
tralizer of A in K, so thatH = TA is a Cartan subgroup ofG. The
Lie algebras ofH, T, A are denoted byh, t, a. Let P be a parabolic sub-
group of G containing the Borel subgroupB = HN . For the compact
flag manifoldG/P , the generalized Borel-Weil theorem [1] computes the
cohomologyHq(G/P, Lλ), whereLλ is the homogeneous line bundle cor-
responding to the weightλ ∈ h∗. Let (P, P ) be the commutator subgroup
of P . SinceH normalizes(P, P ), it acts onG/(P, P ) on the right, and we
let H0,q

λ (G/(P, P )) denote the Dolbeault cohomology of(0, q)-forms that
transform byλ under the rightH-action. Since the rightH-action commutes
with the leftK-action, it is aK-representation space. In [3], theK-spaces
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Hq(G/P, Lλ) andH0,q
λ (G/(P, P )) are shown to be isomorphic. This gives

yet another version of the generalized Borel-Weil theorem, among others
[6]. Consequently, the Dolbeault cohomologyH0,q(G/(P, P )) is either0
or infinite dimensional.

Let Ω0,q(G/(P, P )) denote the complex(0, q)-forms onG/(P, P ). We
equip it with the following topology. Given a sequence of(0, q)-forms
αi ∈ Ω0,q(G/(P, P )), we express them asαi =

∑
I f i

IdxI on a com-
pact coordinate patch, where|I| = q is the multiple index notation. Then
we say thatαi → 0 in Ω0,q(G/(P, P )) if and only if on every such coor-
dinate neighborhood and every indexI, all derivatives of{f i

I}i converge
uniformly to 0 asi → ∞ ([5], p.820). The following theorem says that the
Dolbeault operator̄∂ behaves nicely under this topology.

Theorem 1 The image of∂̄ : Ω0,q(G/(P, P )) −→ Ω0,q+1(G/(P, P )) is
closed.

We shall prove Theorem 1 in§2. The Iwasawa decompositionG =
KAN determines a positive system∆+ for the roots inh∗, where the Lie
algebra ofN consists of positive root spaces. This way, the Killing form
(−,−) defines a closed Weyl chamberD, consisting of the vectorsλ ∈ h∗
satisfying(λ, ∆+) ≥ 0. Let ∆+

0 be the simple roots for∆+. We shall call
σ ⊂ D a cell if there exists a subsetS ⊂ ∆+

0 such that

(σ, S) > 0 , (σ, ∆+
0 \S) = 0.(1.1)

ThenD is a disjoint union of cells. Each cell spansh∗
σ ⊂ h∗, which can be

identified withhσ under the Killing form. Taking its intersection witht, a
givetσ, aσ respectively. These Lie subalgebras correspond to the subgroups
Tσ, Aσ. There is a bijective correspondence between the cells{σ ; σ ⊂ D}
and the parabolic subgroups{P ; B ⊂ P}. This is given by Langlands
decomposition ([5], p.659)

P = MσAσNσ,(1.2)

whereAσ is the subgroup determined by the cellσ described above. Letρ
denote half the sum of all positive roots, andW the Weyl group.

Theorem 2 H0,q(G/(P, P )) is infinite dimensional if there existsw ∈ W
of length q, and a weightλ ∈ h∗

σ, such thatw(λ + ρ) − ρ is dominant. The
cohomology vanishes otherwise.

Actually, much of Theorem 2 has been proved in [3], except for its
last statement on the vanishing of cohomology. In§3, we apply the Peter-
Weyl theorem to Theorem 1, and show that the rightTσ-representation on
H0,q(G/(P, P )) has no infinite dimensional irreducible subrepresentation,
which proves the last statement of Theorem 2.
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Suppose thatP is a maximal parabolic subgroup ofG. We shall show
that Theorem 2 becomes simpler, and can be stated in terms of the dimension
of the flag manifoldG/P :

Theorem 3 Let P be a maximal parabolic subgroup of G. Then

dimH0,q(G/(P, P )) =
{∞ q = 0,dimG/P

0 otherwise.

For G = SL(n,C) the homogeneous spacesG/(P, P ) with P as in
Theorem 3 admit a direct geometric description. They include the space of
non-zero vectors inCn where Theorem 3 yields an alternative approach to
known results.

Acknowledgements.The authors would like to thank David Vogan for some very helpful sug-
gestions. Editor Jantzen and the referee generously provide improvements in the arguments
leading to Theorem 1, as well as a nice formulation and proof of Theorem 3. Consequently,
the present article is more concise and readable than its earlier version.

2 Image of∂̄

Let X be a complex manifold. LetΩq(X) andΩ0,q(X) respectively denote
the spaces of complexq-forms and(0, q)-forms onX. EquipΩq(X) with
the topology as described in§1 before ([5], p.820). ThenΩ0,q(X) is a closed
subspace ofΩq(X).

Recall thatG is a complex connected semi-simple Lie group,P a para-
bolic subgroup ofG, and(P, P ) its commutator subgroup. The purpose of
this section is to show that the image of the Dolbeault operator

∂̄ : Ω0,q(G/(P, P )) −→ Ω0,q+1(G/(P, P ))(2.1)

is closed, and prove Theorem 1. However, Proposition 2.1, Corollary 2.2
and Proposition 2.3 below hold for general connected complex manifoldX.

Proposition 2.1 If X is a connected manifold, then the image ofd :
C∞(X) −→ Ω1(X) is closed.

Proof. Let ωj be a sequence of exact 1-forms onX. Suppose that they
converge to a 1-formω. We need to show thatω is exact too.

The 1-formω is certainly closed. To prove that it is exact, it suffices that
for each smooth loopγ ⊂ X, the integral

∫
γ ω vanishes [7]. But sinceωj

converges uniformly toω,∫
γ
ω =

∫
γ

lim
j→∞

ωj = lim
j→∞

∫
γ
ωj .
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Since eachωj is exact, Stoke’s theorem says that the last integral vanishes
for each smooth loopγ. We conclude thatω is exact. 2

Since the natural projectionπ : Ω1(X) −→ Ω0,1(X) is a closed map,
and sincē∂ = π · d, it follows that

Corollary 2.2 Let X be a connected complex manifold. Then the image of
∂̄ : C∞(X) −→ Ω0,1(X) is closed.

The following general result provides a sufficient condition for the map

∂̄ : Ω0,q(X) −→ Ω0,q+1(X)(2.2)

to have closed image.

Proposition 2.3 Let X be a connected complex manifold. Suppose that
Ω0,q(X) is a free module overC∞(X) with basisξi, 1 ≤ i ≤ a, and that
Ω0,q+1(X) is a free module overC∞(X) with basisξ′

j , 1 ≤ j ≤ b. If
∂̄(ξi) ∈ ∑

j Cξ′
j for all i, then the image of (2.2) is closed.

Proof.Suppose that the above conditions are satisfied. We want to show that
(2.2) has closed image. Write the Dolbeault operator as∂̄ = (

∑a
i=1 ∂̄i)+∂̄′,

where

∂̄i(
∑

k

fkξk) = (∂̄fi) ∧ ξi , ∂̄′(
∑

k

fkξk) =
∑

k

fk∂̄(ξk);

for fk ∈ C∞(X). It suffices to show that the images of∂̄′ and all ∂̄i are
closed.

For ∂̄i, consider

Vi = {β ∧ ξi ; β ∈ Ω0,1(X)} ⊂ Ω0,q+1(X).

By Corollary 2.2, the image of̄∂i is closed inVi. SinceVi ⊂ Ω0,q+1(X) is
closed, it follows that the image of̄∂i is closed inΩ0,q+1(X).

Next letI be the image of̄∂′, and we want to show thatI ⊂ Ω0,q+1(X) is
closed. LetΘ be aC-basis of

∑
i C∂̄(ξi). The assumption of this proposition

says thatΘ can be imbedded into aC-basis of
∑

j Cξ′
j , and hence into a

basisΘ′ of Ω0,q+1(X) overC∞(X). FromΘ ⊂ Θ′, order the elements of
Θ′ so thatΘ consists of the beginning ones. Then identifyΩ0,q+1(X) with
C∞(X)b via the basisΘ′. SinceΘ is also a basis forI overC∞(X), I has
the form

I = {(f1, ..., ft, 0, ..., 0) ; fi ∈ C∞(X)} ⊂ C∞(X)b,(2.3)

wheret = |Θ|. It follows from (2.3) that the image of̄∂′ is closed. This
proves the proposition. 2
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Now let X be the specific spaceG/(P, P ). Recall from (1.1) and (1.2)
that P determines a subsetS of the simple roots∆+

0 , as well as a cell
σ. They satisfy(σ, S) > 0 under the Killing form. LetS′ be the positive
roots generated byS, so thatS ⊂ S′ ⊂ ∆+. Let r = |S| ands = |S′|.
Clearly r ≤ s. Note that whenP is the minimal parabolic subgroupB,
thenr = rankG ands = |∆+|. From Langlands decomposition ([3] and
[5], p.659), it follows that the dimension ofG/(P, P ) is r + s. The cellσ
determined byP is of dimensionr. We order the positive roots so that

S = {α1, ..., αr} , S′ = {α1, ..., αs} , (σ, S′) > 0.

The spaceΩ0,q(G/(P, P )) is a module over the ringC∞(G/(P, P )),
with dimensionCr+s

q . The next proposition constructs a basis for each mod-
uleΩ0,q(G/(P, P )), and shows that̄∂ sends one basis into another. In other
words, such basis satisfy the assumptions of Proposition 2.3. We use mul-
tiple index notation in the usual way. For instance ifI = (1, ..., q), thenξI

denotesξ1 ∧ ... ∧ ξq.

Proposition 2.4 There existξ1, ..., ξs, η1, ..., ηr ∈ Ω0,1(G/(P, P )), indexed
according to the positive rootsα1, ..., αs, such that:

(a) For each q,{ξI ∧ ηJ} is a basis of the moduleΩ0,q(G/(P, P )),
where|I| + |J | = q, I ⊂ {1, ..., s} andJ ⊂ {1, ..., r}.

(b) ∂̄ξI =
∑

ξQ ∧ ξu ∧ ξv, summed overαu +αv = αt, andt satisfies
(Q, t) = I.

(c) ∂̄ηJ = 0 for all J .

Proof.Although Lemmas 3.2 and 3.3 of [3] work on the special caseP = B
andG/(P, P ) = G/N , the idea is essentially the same. Simply letξi be as
given there, and note equations (3.11), (3.12) there. Letηi be as given byui

of Lemma 3.2 there. The(0, 1)-forms{ξi, ηj} then satisfy

∂̄ξi =
∑

αk+αl=αi

ξk ∧ ξl and ∂̄ηj = 0(2.4)

for all i = 1, ..., s andj = 1, ..., r. Parts (b), (c) of proposition follow from
(2.4).

The values of{ξi, ηj} at e ∈ G/(P, P ) form a basis of the cotangent
space∧0,1T ∗

e G/(P, P ). Since they are allK-invariant and transform nicely
under the rightAσ-action, their values at everyp ∈ G/(P, P ) also form
a basis. Hence{ξi, ηj} is a basis of the moduleΩ0,1(G/(P, P )). Conse-
quently, their exterior products become the basis of the various modules
Ω0,q(G/(P, P )). Hence part (a) of the proposition. 2

We now use Propositions 2.3 and 2.4 to show that the image of the
Dolbeault operator (2.1) is closed, and prove Theorem 1.
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Proof of Theorem 1.By Proposition 2.4(a),Ω0,q(G/(P, P )) and
Ω0,q+1(G/(P, P )) are free modules overC∞(G/(P, P )), with basis{ξI ∧
ηJ} given in that proposition. Further, Proposition 2.4(b-c) says that such
basis satisfy the assumptions of Proposition 2.3. Therefore, Proposition 2.3
implies that the image of the Dolbeault operator (2.1) is closed. Theorem 1
follows. 2

3 Dolbeault cohomology

Let us consider the Dolbeault cohomologyH0,q(G/(P, P )). Recall from
(1.2) thatP determines a subalgebrahσ, via Langlands decomposition. It
has been proved in [3] that the dimension ofH0,q(G/(P, P )) is either0
or infinite. In particular, it is infinite dimensional if there exists a Weyl
group elementw ∈ W of lengthq and an integral weightλ ∈ h∗

σ such that
w(λ+ ρ)− ρ is dominant. Hereρ denotes half the sum of all positive roots.
We now prove Theorem 2 by showing that conversely, if suchw andλ are
absent, thenH0,q(G/(P, P )) = 0.

Proof of Theorem 2.Let Tσ be the toral subgroup determined byP via
(1.1) and (1.2). SinceTσ normalizes(P, P ), it acts onG/(P, P ) on the
right. The naturalK × Tσ-action onG/(P, P ) gives rise to aK × Tσ-
representation onH0,q(G/(P, P )). Theorem 1 says that the representation
spaceH0,q(G/(P, P )) is a complete locally convex Hausdorff space. Since
Tσ is compact, the Peter-Weyl theorem says that the right representation
of Tσ contains no infinite dimensional irreducible subrepresentations ([2],
p.141). Therefore, sinceTσ is abelian, its irreducible subrepresentations are
1-dimensional. Each of them is contained inH0,q

λ (G/(P, P )), consisting of
cohomology classes that transform byλ ∈ h∗

σ under the rightTσ-action.
Suppose now that for givenq, there exists now ∈ W of length q and
integral weightλ ∈ h∗

σ such thatw(λ + ρ) − ρ is dominant. By Theorem
2(ii) of [3], H0,q

λ (G/(P, P )) = 0 for all λ ∈ h∗
σ. Consequently, since

H0,q(G/(P, P )) is a Tσ-representation with no infinite or 1-dimensional
irreducible subrepresentation, it has to vanish. This proves Theorem 2.2

Suppose now thatP is a maximal parabolic subgroup ofG. We shall
show that Theorem 2 simplifies considerably. From the simple roots{αi},
we get the corresponding dominant fundamental weights{λi} satisfying
(αi, λj) = δij . Let ∆+ and ∆− denote the positive and negative roots
respectively, and letW be the Weyl group. LetD be the dominant Weyl
chamber, andD◦ its interior.

Proof of Theorem 3.It is clear from the Borel-Weil theorem that
H0,q(G/(P, P )) is infinite dimensional forq = 0. We now consider the



Dolbeault cohomology 601

case whereq = dimG/P . By (1.1) and (1.2), the maximal parabolic sub-
groupP corresponds to a unique fundamental weightλk. Let S1 ⊂ ∆+

be the positive roots spanned by the simple roots different fromαk, and let
S2 = ∆+\S1. Since(λk, S1) = 0 and(ρ, S1) > 0, for all n ∈ Z,

(nλk + ρ, S1) > 0.(3.1)

We shall writen � 0 to denote negative numbersn of sufficiently large
magnitude. Since(λk, S2) > 0, for all integersn � 0,

(nλk + ρ, S2) < 0.(3.2)

Let w ∈ W be the element in whichw(nλk + ρ) ∈ D for all integers
n � 0. In fact, sincenλk + ρ is regular, we get

w(nλk + ρ) ∈ D◦ and w(nλk + ρ) − ρ ∈ D.(3.3)

By (3.1) and (3.3),

(w(nλk + ρ), w(S1)) > 0 =⇒ w(S1) ⊂ ∆+.(3.4)

Similarly, for integersn � 0, (3.2) and (3.3) imply that

(w(nλk + ρ), w(S2)) < 0 =⇒ w(S2) ⊂ ∆−.(3.5)

By (3.4) and (3.5),

lengthw = |S2| = dimG/P.(3.6)

Since (3.3) says thatw(nλk + ρ) − ρ is dominant, we can apply Theorem
2 to (3.6) and conclude thatH0,q(G/(P, P )) is infinite dimensional for
q = dimG/P .

Consider the lattice points in

{nλk ; n ∈ Z} = Z(λk) ⊂ h∗
σ.

For n ≥ 0 andn � 0 respectively, there existw = 1 andw in (3.6) such
thatw(nλk + ρ) − ρ is dominant. For the remaining finitely many lattice
pointsλ ∈ Z(λk), we cannot findw which makew(λ + ρ) − ρ dominant:
This is because there has to be either none or infinitely manyλ ∈ Z(λk)
such thatw(λ + ρ) − ρ is dominant [3]. Therefore,H0,q(G/(P, P )) = 0 if
q differs from0 or dimG/P . Theorem 3 follows. 2

If G = SL(n,C) and ifP is a maximal parabolic subgroup inG such that
G/P = CPn−1, thenG/(P, P ) identifies withCn

0 , the non-zero vectors
in Cn. In this case Theorem 3 yields the known results on Dolbeault coho-
mology ofCn

0 ([4], p.49). If P is an arbitrary maximal parabolic subgroup
in G = SL(n,C), thenG/P is the GrassmannianX of all k-dimensional
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subspaces inCn for somek with 1 ≤ k < n. LetE −→ X be the universal
bundle. It is a rank-k bundle, where the fiber overp ∈ X is just the sub-
spacep ⊂ Cn itself. Define the corresponding determinant line bundle by
L = ∧kE, and letL× denoteL with the 0-section omitted. NowG/(P, P )
identifies withL× and therefore Theorem 3 shows that

dimH0,q(L×) =
{∞ q = 0, k(n − k)

0 otherwise.
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