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Signature files are widely used in information retrieval and database.  They act as
search filters for content-based retrieval.  In a large database server, a parallel device is
utilized to achieve concurrency access.  Efficient allocation of signature files on parallel
devices minimizes the query response time and is important in the design of access methods
for large scale index servers.  We have developed an algorithm to organize the storage of
signatures in parallel secondary storage to reduce the query response time.  First, signature
file is clustered into signature pages.  Then, the clustered signature pages are distributed
among the disks using the parity check matrix of error correcting code in coding theory.
Through the construction of error correcting code, the least frequently simultaneously ac-
cessed pages are allocated on the same disk.  Performance analysis shows that this algo-
rithm improves the efficiency of access.
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1.  INTRODUCTION

Signature files are widely used in information retrieval for text databases [1, 2], par-
tial match retrieval for traditional formatted databases, search filters for main memory data-
bases [3], and subpicture query for image databases [4, 5].  They act as search filters to
reduce the amount of data that needs to be searched.  Especially, signature files are consi-
dered to be the most promising approach to retrieval of large Chinese document databases
[6, 7].

 However, in large database servers, disk access becomes a bottleneck.  Parallel se-
condary storage devices in which data can be accessed concurrently are utilized.  The dis-
tribution of the signature files on a parallel device may improve performance significantly.
Effective distribution of signature files must allocate the signatures which are pertinent to
the query as uniformly as possible.  This will minimize the query response time by increas-
ing parallelism.  Improper allocation of signature files on parallel disks will put a load on
some of the disks and increase the query response time.  Therefore, the focus of this paper
is the design of signature file allocation on parallel disks.

Few researches have paid attention to the design of signature files on parallel ma-
chine architectures.  Stanfill proposed a parallel signature file developed by the Thinking
Machines Corporation for high-speed interactive querying of text databases on an SIMD
computer, called the Connection Machine [8].  However, it was based on the assumption
that main memory was sufficient to hold all the text signatures.  To deal with this problem,
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Panagopoulos et al.  proposed a parallel bit-sliced signature file method on an SIMD ma-
chine [9].  A partial fetch slice swapping algorithm is used when the size of the signature
file exceeds the available memory.  The partitioned signature file approach proposed by
Lee et al.  can also be implemented in a parallel environment by assigning each partition to
a separate processor [10].  Only some partitions are searched concurrently for a query.  The
non-activated processors are available for inter-query parallelism.  The Fragmented Signa-
ture File (FSF) is a frame-sliced partitioned parallel signature file approach on the Shared-
Nothing architecture of multiprocessor database computers [11].  FSF is based on two sig-
nature file structures, the frame-slice approach and the dynamic partitioning scheme, called
Quick Filter.

In this paper, we investigate the distribution of signature files on parallel devices.
Using the parity check matrix of the error correcting code, the least frequently and simulta-
neously accessed pages are allocated on the same disk while the most frequently simulta-
neously accessed pages are distributed among diverse disks.  We first review the signature
file approaches in Section 2.  Section 3 presents the proposed disk allocation technique.
Performance evaluation is described in Section 4.  Conclusions are given in Section 5.

2.  SIGNATURE FILE

  The signature file access method is widely used as a filter in text retrieval.  It is used
for content-based retrieval whenever each data object is characterized by a set of terms [2].
Content-based retrieval retrieves those objects which contain all the queried terms.  In the
signature file access method, each object is associated with an object signature.  An object
signature is produced through the transformation of terms contained in the object.  A col-
lection of object signatures is called a signature file.  A query described by a set of queried
terms is also transformed into a query signature using the same method of object signature
generation.  Queries are answered using a two-stage searching process.  First, after evaluat-
ing the query signature with the object signatures in the signature file, most of the impossi-
bly qualified objects are pruned out.  Then, in the second stage, objects corresponding to
the qualified signatures are further evaluated.  An object whose signature seems to be quali-
fied but is actually unqualified called a false drop [2].  The process of further evaluating of
objects with qualified signatures is called false drop resolution.

The performance of the signature file method depends on efficient design of both
stages.  Therefore, corresponding to the two stages, two main design issues of the signature
file access method are the signature storage structure and the signature extraction method.
The signature storage structure deals with the reduction of the number of accessed physical
pages to evaluate the query signature (the first stage) while the signature extraction method
deals with the reduction of false drop probability (the second stage).

The most popular type of signature file is Superimposed Coding [12].  In Superim-
posed Coding, each term is hashed into a binary codeword of size F, in which m bits have
a value of “1” while others have a value of “0”.  The binary codeword is called the term
signature.  These term signatures are OR-ed together to form the object signature.  The
number of bits set to “1” in the binary codeword is called the signature weight.  If an object
signature contains 1s in the same bit positions as does the query signature, then the object
signature qualifies for a query signature.  Fig. 1 shows an example of Superimposed Cod-
ing applied to the searching of books in a library.  In the library, each book is associated
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with a set of keywords.  Users wish to search the books which contain the keywords speci-
fied by the users.  In this example, the signature size F is six bits, and the term signature
weight m is two bits.  If the user wishes to retrieve a book which contains the keywords
“Indexing” and “Query”, then the query signature is generated by <100001> OR <010001>
which is <110001>.  After evaluating the query signature against the three object signatures,
we get the qualified signatures, the object signatures of Book0 and Book1.  After false drop
resolution, only Book1 is actually qualified while Book0 is a false drop.

To reduce the search space for evaluation of query signatures, several approaches to
the storage structure of signature files have been proposed.  Above all, Quick Filter is
economical in storage space and is very efficient in dealing with large files of dynamic data
and high weight query signatures [13].  Quick Filter uses linear hashing to partition signa-
tures into pages.  Signatures with the same suffix are grouped together.  The evaluation
time can be reduced by first comparing the common suffix of pages with the suffix of query
signatures.  Only the pages of signatures with a qualified common suffix are retrieved.  The
size of the suffix is determined by the current level of hashing.  Based on the property of
linear hashing, Quick Filter can dynamically organize the signatures in a dynamic environ-
ment.  Fig. 2 shows the result after partitioning six signatures using Quick Filter.  In this
example, the capacity of a page is assumed to be two signatures.  All the signatures in a
page have the same suffix, and in this case it has the size of two bits.  Given the query
signature <010001>, only pages with the common suffix <01> and <11> are retrieved.
This is done by comparing the 2-bit suffix of query signature with that of the signature
pages.  Also the pages with suffix <00>, <10> cannot contain qualified signatures.

Fig. 1. Superimposed coding.

Fig. 2. Clustering of 6 signatures into 4 signature pages using Quick Filter.

The common suffix of each signature page may be regarded as the key of the signa-
tures in that page.  It can uniquely identify the signature page.  In the following, the term
“signature key” denotes the common suffix of the signature page.  Furthermore, the terms
“signature key” and “signature page” are used interchangeably.
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Fig. 3. Two allocations of 4 signature pages.

3.  PROPOSED DISK ALLOCATION METHOD

Intuitively, similar signatures are likely to be accessed simultaneously.  The similar-
ity between two signatures can be measured by the number of bit positions in which they
differ.  Therefore, similar signatures must be clustered together to reduce the number of
disk pages accessed.  On the other hand, similar signatures must be distributed (declustered)
among the disks to achieve concurrent access.

Our design for allocation of signatures consists of two steps:

Step 1:  Intrapage clustering: signatures are clustered into partitioned signature pages to
reduce the number of disk pages accessed.

Step 2:  Disk allocation: the partitioned signature pages are distributed among disks for
maximum concurrent access.

As mentioned in the previous section, signature files can be partitioned into pages by
Quick Filter.  Signatures with the same common suffix are clustered together in a signature
page.  This accomplishes the first step.  We assume that there are 2n signature pages.  If the
number of signature pages is not equal to a power of 2, then additional split operations of
Quick Filter are needed.  The signature pages which have not been split in the current run of
expansion are split whether there is overflow or not.  This guarantees that the number of
signature pages will be a power of 2 and is helpful in the design of disk allocation.

Given the partitioned signature pages, the goal of the next step is to allocate these
signature pages among the disks in order to minimize the query response time.

Definition 1:  The query response time R(KQ), given query signature key KQ, is defined as
Max{N0(KQ), N2(KQ), ..., NM-1(KQ)}, where Ni(KQ) is the number of qualified signature
pages of disk i, and M is the total number of disks.

For example, given 4 partitioned signature pages with signature keys <00>, <01>,
<10>, <11>, two different allocation strategies for these pages on two disks are shown in
Fig. 3.  Given a query signature key, comparison of query response time between these two
allocation strategies is listed in Table 1.  It is observed that Strategy 2 performs better than
Strategy 1 when the query signature key is <10>.  Signature pages with signature keys
<10>, <11> are qualified.  These two pages in Strategy 1 are allocated to the same disk
while those in Strategy 2 are evenly distributed between the two disks.

                        Strategy 1                                       Strategy 2



ALLOCATION OF SIGNATURE FILE ON PARALLEL DEVICE 203

The reason why Strategy 2 performs well lies in the Hamming distance.  The Ham-
ming distance in each disk of Strategy 1 is one while that of Strategy 2 is two.  The defini-
tions of the Hamming distance are given as follows.

Definition 2:  The Hamming distance d(x, y) between two signature keys x and y is defined
as the number of positions in which they differ.

Definition 3:  The Hamming distance d of a given set C of signature keys is defined as
d=Min{ d(x, y): x, y ∈C, x≠y} .

It is observed that allocation with a larger Hamming distance performs better.  The
reason is as follows.  Allocation with a larger Hamming distance results in more dissimilar
signature pages in the same disk.  Owing to the characteristics of query signature evaluation,
dissimilar signature pages are more unlikely to be accessed simultaneously.  Thus, the least
frequently and simultaneously accessed pages are allocated to the same disk.  This implies
that the most frequently and simultaneously accessed pages are distributed among diverse
disks.

Therefore, given M=2l disks numbered as l-bit address <a1a2...al> and 2n signature
pages each represented as n-bit signature key <s1s2...sn>, we seek a linear transformation
matrix H from <s1s2...sn> to  <a1a2...al>.  In other words,
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This l*n  transformation matrix H must map any pair of signature keys with Hamming dis-
tance ≥ d to the same disk, where d is a pre-specified distance.

Theorem 1:  Let H be the transformation matrix from <s1s2...sn> to <a1a2...al>.  Then every
(d-1) column of the matrix is linearly independent if and only if every pair of signature keys
mapped to the same disk has a distance of at least d.

Table 1. Comparison of the query response time between two allocation strategies.

                       Query               Qualified                     Query Response Time

              Signature Key             Pages                      Strategy 1             Strategy 2

00 4 2 2
01 2 1 1
10 2 2 1
11 1 1 1
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Proof : Consider any two signature keys <x1x2...xn> and <y1y2...yn>, which are mapped to
the same disk.  Then,
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In terms of column vectors,
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First assume that every set of (d-1) columns of H is linearly independent.  If the
distance between these two signature keys is less than d, say t, then for n binary digits (xj-
yj), ∀j=1, 2,...,n, t of them are nonzero.  Without loss of generality, let these t digits be the
1-th, 2-th, ..., t-th digit.  That is,

h x yj j j
j

t

( ) .− =∑
=

0
1

(4)

Therefore, we have a nontrivial linear combination of less than d columns of H, which
sums to zero.  This is not possible since by hypothesis, every set of (d-1) columns is linearly
independent.  Therefore, these two signature keys have a distance of at least d.

Next assume that these two signature keys have a distance of at least d.  If t ≤ (d-1)
columns of H are linearly dependent (without loss of generality, let these t columns be
column 1, 2, ..., t), then there exist t binary scales λ1, λ2, ...,  λt, not all zero, such that

hj j
j

t

λ =∑
=

0
1

. (5)

Let  λj be equal to (xj-yj).  Therefore, there exist two signature keys with distance less
than d.  This is a contradiction since by hypothesis, these two signature keys have a distance
of at least d.  Therefore, (d-1) columns of H are linearly independent.�

Example 1: Consider the following transformation matrix H from the signature page
<s1s2s3s4s5> to the disk numbered as <a1a2a3>; every pair of signature keys mapped into the
same disk has a distance of at least three, and it can be verified that every two columns of
matrix H are linearly independent:

H =












1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

 .

Of course, the value of d is set as large as possible.  To seek the transformation matrix
H in which (d-1) columns are linearly independent, error correcting code in coding theory
is helpful.  The parity check matrix of error correcting code shares a common property with
the linear transformation matrix of Theorem 1.

The theory of error correcting code mainly deals with the reliable transmission and
storage of data.  Errors can be detected and corrected by incorporating redundancy into the
original data.  Fig. 4 shows an example.  In this example, 2 bits of information are transmitted.
Before transmission, each 2 bits of information is encoded by appending 3 redundant bits.
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After transmission, the transmitted message is decoded by a maximum likelihood decoder.
Assume that a single error occurs.  Now, if the receiver receives <01000>, then it seems
reasonable to decode the transmitted message as <00000>.  This set of four codewords is an
error correcting code, which can detect and correct a single error.

The larger the code distance of an error correcting code the more errors it can detect.
Therefore, one major problem in research in error correcting code is to determine how to
add this redundancy to messages in order to produce code with a maximum code distance.

Definition 4: An [n, k, d] code is a set of codewords with length n and code distance d,
where the size of information bits is k.

The example shown in Fig. 4 is a [5,2,3] code.
Linear code is the most general class of error correcting code.  Many error correcting

codes in use and under investigation are subclasses of linear code defined by imposing
additional structural constraints.

Fig. 4. An example of error correcting code for reliable transmission [14].

 Because a signature is a binary string, we emphasize binary linear code only.  Let Z2

denote the finite field formed by integers modulo 2, under the operations of standard modulo
2 addition and multiplication .  Also, let Vn(Z2) denote the vector space of an n-bit binary
codeword over finite field Z2.

Definition 5:  A binary linear code, an [n, k, d] code, is a k-dimensional subspace of Vn(Z2).

Theorem 2:  If C is an [n, k, d] code over Z2, then there exists a (n-k)*n matrix H such that
for each codeword, x∈C, HxT=0 [15].

Example 2:  The parity check matrix for the [5,2,3] code in Fig. 4 is

H =












1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

 .

Theorem 3:  Let H be a parity check matrix for an [n, k, d] code over Z2.  Then, every set of
(d-1) columns of H is linearly independent [14].

From Theorem 3, the parity check matrix H, in which every set of (d-1) columns is
linearly independent, seems to satisfy the requirement of the linear transformation matrix
we seek in Theorem 1.  However, the linear transformation matrix must transform 2n n-bit
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signature keys (i.e., the vector space Vn(Z2)) into 2l disks while in Theorem 3, the parity
check matrix only transforms 2k n-bit codewords (i.e., the k-dimensional subspace Vn(Z2))
into one disk numbered as zero.  We must show that the parity matrix indeed works in the
same way as does the linear transformation matrix.

Note that C may be regarded as a subgroup of order 2k in the group Vn(Z2).  C has 2n/
2k=2(n-k) cosets.

Definition 6:  The coset of an [n, k, d] code C over Z2 which contains the element y∈Vn(Z2)
is defined as the equivalent class [y]={ x+y| x∈ C}.

Example 3:  The coset of the [5,2,3] code in Fig. 4 which contains the element <00001> is
the set of codewords {<00001>, <10100>, <01111>, <11010>}.

Lemma 1:  According to the definition of a coset, two vectors in the same coset of an [n, k,
d] code have a distance of at least d.

Definition 7:  Let H be a parity check matrix for an [n, k, d] code over Z2.  For the vector
x∈Vn(Z2), the syndrome S of x is defined as S = HxT.

Theorem 4:  Let H be a parity check matrix for an [n, k, d] code C over Z2.  Then, two
vectors x and y are in the same coset of C if and only if they have the same syndrome, that
is, HxT=HyT [14].

Example 4: <00001> and <10100> are in the same coset because
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According to Theorem 4 and Lemma 1, two vectors with the same syndrome have a dis-
tance of at least d.  Since the group (also a vector space) Vn(Z2) is partitioned into 2n/2k=2(n-k)

=2l subgroups, each subgroup of vectors corresponds to the signature keys of the signature
pages stored in a disk.  The value of a syndrome may be treated as the disk number.  This
indicates that the parity check matrix is the same as the linear transformation matrix which
transforms 2n signature keys into 2l disks.  Therefore, to allocate 2n signature keys into 2l

disks, the parity check matrix of an [n, n-l, d] error correcting code is used.  Fig. 5 shows  an
example of allocating 25 signature pages to 23 disks along with the syndrome value using a
[5, 2, 3] code.  For example, signature pages with signature keys <00000>, <01110>, <10101>
and <11011> are allocated to the disk numbered as <000>.

Given the l*n  parity check matrix, the computation of a syndrome takes O(l*n ) mul-
tiplication and addition operations.  It is possible to use O(l* (n-l)) computation time if the
code of this parity check matrix is a cyclic code.  Cyclic code is a subclass of linear code.
An [n, k, d] cyclic code is generated by a generating polynomial g(x) of degree (n-k), which
is a monic divisor of (xn-1) over Z2 [15].  For example, the generating polynomial g(x) = 1
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Fig. 5. Allocation of 25 signature pages to 23 disks.

+ x generates a [5,4,2] code since g(x) is a monic divisor of (x5-1) of degree (5-4).  Given
the information bits <1010> expressed as polynomial a(x) = 1 + x2, it is encoded to the
codeword <11110> expressed as polynomial 1 + x + x2 + x3 = ( 1 + x )( 1 + x2 ).

Let c(x) and s(x) be the polynomial representations of a codeword and its syndrome,
respectively.  Then, s(x) is the remainder polynomial when c(x) is divided by generating
polynomial g(x).  Therefore, we divide the signature key c(x) by generating polynomial g
(x) over Z2 and examine the remainder s(x).  The binary representation of remainder s(x),
which is also a polynomial of degree less than l, represents the allocated disk number.

Consider an example in which we allocate 27 signature pages to 23 disks.  We may use
a [7,4,3] cyclic code generated by polynomial g(x) = 1 + x + x3.  The signature page
<1011011> will be allocated to the disk numbered as <001>.  This is because c(x) = 1 + 0x1

+ 1x2+ 1x3 + 0x4 + 1x5 + 1x6 =  g(x) * (1 + x + x2 + x3) + x2, s(x) = 0 + 0x1 + 1x2.
One issue not addressed yet is addition or deletion of signatures.  Addition/deletion

of signatures may cause signature pages to grow/shrink owing to page overflow/underflow.
For example, assume the signature page <00000> is split into two pages <000000> and
<100000>.  We can allocate these two pages to the original disk.  Fig. 6 shows an example.
When growth continues and reaches the full run of expansion, the length of all the signature
keys increases from n to n+1.  Then, either a reorganization is performed using a new
transformation matrix or no reorganization is performed by sacrificing efficiency.  In the
case of the former, the new transformation matrix consists of n+1 columns.  In the case of
the latter, efficiency declines.  The reasons is that the determination of the old transforma-
tion matrix is based on only an n-bit signature key.

Fig. 6. Allocation of split signature pages.
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Table 2. List of symbols and parameters of the sample signature file.

Symbol Definition Value

F Signature length 2048 bits
sn Number of signatures 40960
bs Page size 16384 bits (2048 bytes)
α Loading factor 80%
M Number of disks (M=2l) 64
n Length of signature key 12
m Weight of term signature 10~30

TQ Number of query terms 47~140
w(Q) Expected weight of query signature Q
kw Weight of query signature key

4.  PERFORMANCE ANALYSIS

We have measured the performance of disk allocation based on the average query
response time.  We have derived expressions for calculating the average response time.
Several variables may affect the query response time.  The total number of signatures, the
signature size, the disk page size and the loading factor determine the total number of
pages.  The signature size and the page size are fixed before the signature file is designed.
The number of disks, of course, also affects the response time.  The number of pages, in
turn, affects the number of bits (the length of the signature key) considered in disk allocation.
Besides, it is apparent that the weight of a query signature affects the query response time.
Due to the nature of Quick Filter, which is the intrapage clustering mechanism of proposed
allocation scheme, the weight of a query signature determines the search space and, thus,
affects the response time.  The search space is invariant under different parallel storage
structures.  However, the query signature weight also affects the disk allocation effect.  The
query signature weight depends on the term signature weight and the number of query
terms and the signature size.  Therefore, the term signature weight, the number of query
terms affect the query response time.

For performance evaluation, we considered a sample signature file with parameters
listed in Table 2.  We assumed that there were 64 disks and 40960 2048-bits signatures in
the sample signature file.  We also assumed that the capacity of the disk page was 2048
bytes, and that the loading factor was 80%.  We will first give some definitions related to
the average query response time.

Definition 8: The query response time R(Q) , given a query signature Q, is defined as Max
{N i(Q) | i=0,1,2,..., M-1}, where Ni(Q) is the number of  accessed  pages of disk i, and M is
the total number of disks.

Therefore, the average response time is measured by

Prob R( )* ( ),Q Q
Q∀

∑ (6)
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where Prob(Q) is the probability of occurrence of a query signature Q and R(Q) is the
response time of query signature Q.  In general, the probability of occurrence of each query
signature is assumed to be the same as that of any other query signature.

Note that Definition 8 is different from Definition 1.  Definition 1 measures the re-
sponse time of  query signature key KQ while Definition 8 measures that of query signature
Q.  The probabilities of occurrence of query signatures are assumed to be the same while
those of query signature keys are not the same.

A lower bound for the disk allocation problem is described as follows.

Definition 9:  An allocation method is strictly optimal for a query signature Q if the re-
sponse time R(Q) is equal to [N(Q) / M], where N(Q) is the total number of pages accessed
and M is the number of disks.

Definition 10: An allocation method is strictly optimal if for every query signature Q, it is
strictly optimal.

This definition states that an allocation method is strictly optimal if for each query
signature, the accessed pages are distributed evenly among the disks.  However, the re-
quirement of being strictly optimal is too strict to be attainable in general.

The derivation of the average response time of equation (6) can be simplified as

Prob Rav( )* ( ),Q Qkw kw

kw∀
∑ (7)

where Qkw is the query signature with key weight kw and Prob(Qkw) is the probability of
occurrence of Qkw.  Rav(Qkw) is the average response time of Qkw.

We will first derive the probability Prob(Qkw).  Given a signature size of F bits, a term
signature weight of m bits and TQ query terms specified in a query, then the expected
weight of query signature w(Q) can be estimated as [13]:

w( ) *[ ( / ) ].Q F m F TQ= − −1 1 (8)

Given a signature size F, n bits of common suffix (signature key) and the expected
query signature weight of w(Q), the probability Prob(Qkw) can be estimated as

Prob w

w

( )
* ( )

( )

Q
C C

C
kw kw

n
Q kw

F

Q
F= −

, (9)

where Cj
i  is the combinatorial function.  Equation (9) can be explained as follows.  Totally,

there are C Q
F
w( )  combinations of signatures with weight w(Q).  Also, there are  C Ckw

n
Q kw

F* ( )w −
combinations of signatures in which the n-bit suffix has w bits set to 1.

Finally, Rav(Qkw), the average response time of query signature key Qkw, is estimated
by physically collecting the result from the query evaluation of the sample signature file.  In
the sample signature file, there are 212 signature pages since 40960*2048/(2*210*80%) is
equal to 212.  Each signature page is represented by a 12-bit common suffix.  These 212

signature pages are distributed among 26 disks using a 6*12 linear transformation matrix.
This linear transformation matrix is the parity check matrix of an [12, 6, 6] cyclic code with
generating polynomial g(x) = 1 + x + x2 + x4 + x5+ x6.  The page access time of the over-
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flowing pages is ignored.  We have measured the performance for all the combinations of
query signature keys (i.e., all the 212 query signature keys) according to Definition 1.  The
average response time was calculated over all query signature keys with the specified key
weight.  That is,

R
R
nav

w
( )

( )
( ) ,

, ( )
Q

KQ
KQ

kw

KQ KQ kw
= ∑

∀ =
(10)

where n(KQ) is total number of query signature keys with key weight kw.  Table 3 lists the
average response time Rav(Qkw) of the query signature keys for each query key weight kw.

Fig. 7 and Fig. 8 show a performance comparison between the average response time
of the proposed allocation method and optimal response time.  From the analysis, it can be
seen that the performance of the proposed method is nearly optimal.  Fig. 7 shows a com-
parison of the response time as a function of the number of query terms, TQ.  From Fig. 7,
it is obvious that the proposed method performs well with increasing number of query
terms.  Fig. 8 compares the response time as a function of term signature weight m.  It is
well know that given signature length value of F and D terms per object, the optimal value
of term signature weight m that minimizes the false drop probability can be derived using
the following formula [11]:

F* ln2=m*D. (11)

The values of weight in Fig. 8 range from 10 to 30, which implies that the number of
terms ranges from 47 to 141.  A typical value of the number of terms is about 40 in a
traditional text document [14].  From Fig. 8, we can observe that the response time de-
creases with increasing weight and an increasing number of terms per object for a given
signature length.

In addition, we have run an experimental simulation to verify the mathematical analysis
of the average response time.  In the experiment, sn signatures of bits with size F  were
generated by sampling T terms from a vocabulary of 10000 terms (key words).  There were

Table 3.  Comparison of the average and optimal response time for a query key ( 64
disks, 212 pages).

Query key Average Optimal Query key Average Optimal
weight  response time  response  weight response time response

 kw Rav(Qkw)  time kw Rav(Qkw)  time

12 1 1 5 2.23  2

11 1 1 4 4.17  4

10 1 1 3 8  8

9 1 1 2 16  16

8 1.02 1 1 32  32

7 1.24 1 0 64  64

6 1.51 1
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M disks and the disk page size was bs bytes.  The average response time is measured over
a sample of 10000 queries.  Each query signature is generated by uniformly choosing TQ
terms from the vocabulary.  In order to compare the performance measured by means of
simulation and mathematical analysis, we measured the average response time as three
types of precision.  Let Avgsim, Avgmath be the average response time measured by means of
simulation and mathematical analysis and let Optsim, Optmath be the optimal response time
measured by means of simulation and mathematical analysis, respectively.  Math-Opt pre-
cision is defined (Avgmath-Optmath)/Optmath.  Sim-Opt precision is defined as (Avgsim-Optsim)/
Optsim while Math-Sim precision is defined as  (Avgmath-Avgsim)/Avgsim.

Fig. 7. Average response time versus number of query terms.

Fig. 8. Average response time versus term signature weight.
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Fig. 9. Precision versus number of query terms.

Fig. 9 and Fig. 10 compare these types of precision as a function of the number of
query terms and the term signature weight.  Note that in these figures, the value of y-axis
denotes the base 10 logarithm of precision.  In Fig. 9, both types of precision for simulation
and mathematical analysis decline with an increasing number of query terms.  In Fig. 10,
both types of precision for simulation and mathematical analysis also degenerate with in-
creasing term signature weight.  The reason lies in the fact that increasing the number of
query terms and term signature weight increases the query signature weight.  Increasing the
query signature weight results in more query signatures with higher-weight query keys.  If
the query key weight of most of the query signatures falls between 4 and 8, the precision
will decline.  However, the precision shows that the average response time comes close to
the optimal response time.  Furthermore, in both figures, the Math-Sim precision shows
that the performance result obtained by mathematical analysis is very close to that obtained
by experimental simulation.

5.  CONCLUSIONS

In this paper, we have proposed a method for allocating signatures file to parallel
disks.  First, the signature file is clustered into signature pages.  Then, the clustered signa-
ture pages are distributed among the disks using the parity check matrix of error correcting
code.  The parity check matrix of an error correcting code [n, n-l, d] transforms 2n signature
pages into 2l disks such that the hamming distance of the signature pages of the same disk
is d.  Thus, the least frequently simultaneously accessed pages are allocated to the same
disk.  This implies that the most frequently simultaneously accessed pages will be
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distributed among diverse disks.  We have measured the performance based on the average
query response time.  The results of performance analysis show that performance of the
proposed allocation strategy is not far from optimal.

In this paper, we have assumed that the number of disks M is a power of two.  If the
number of disks is not a power of two, some strategies may be employed.  If the number of
disks is a multiple of a power of two, say, f*2l, then the signature file can be stripped to f
frame signature files first [16].  Each of the frame signature files can then be clustered and
distributed among the 2l disks.  Otherwise, if the number of disks is not a multiple of a
power of two, we may consider an allocation strategy where the number of disks is 2log2 M.

Future research directions include dynamic allocation of signature pages and the al-
location policy based on consideration of the characteristics of Chinese text retrieval.
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