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We propose a lattice framework for analyzing context-free grammars and context-
free languages. This framework is motivated by a technique for simplifying parsers with
information derived from the associated scanners. We define the lattice framework and
demonstrate it using additional applications, including data-flow analysis. Soundness and
other properties of the lattice framework are also discussed.
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1. INTRODUCTION

In this paper, we first propose a technique for simplifying parsers using information
derived from scanners (Sections 2 through 4). We then describe a lattice framework under-
lying the technique (Sections 5 and 6). The lattice framework can be used to analyze many
properties of context-free grammars and context-free languages. We demonstrate the lat-
tice framework using several additional examples, including a data-flow analysis problem.
Soundness and other properties of the lattice framework are also proved.

The front-end of a traditional compiler consists of a scanner and a parser. The scan-
ner and the parser form a producer/consumer relationship: the scanner produces a stream of
tokens from an input character stream while the parser consumes the tokens. Since the
parser has no control over what the scanner will produce, the parser usually assumes that its
input is an arbitrary sequence of tokens. However, in a previous paper [1], we proposed
that the scanner should be described by a Mealy machine [2] (rather than a Moore machine),
in which tokens produced by a scanner are associated with state transitions, rather than
states. A Mealy-machine description implies that what the scanner produncgsis
arbitrary sequence of tokens; rather, the sequence of tokens produced by the scanner is
defined by a regular expression. When the input to the parser is defined by a regular
expression, it is possible to simplify the parser (by means of removing states, transitions,
and production rules) using information derived from the regular expression.
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We first describe a new, algebraic technique to extend the transition function of the
characteristic output machinaf the scanner (to be defined in Section 2). The extension is
encoded in @ operator. The] operator is used to set up equations on sets of states. These
equations are solved by an iteration algorithm. Based on the solution of the equations, we
can identify useless transitions and unreachable states of the finite-state machine underly-
ing an LR parser. It is also possible to eliminate production rules from the grammar in
certain cases. In this paper, we demonstrate the technique on an LR(0) machine. However,
it is straightforward to apply the technique to otherk)Rfachines.

The simplification technique is actually a special case of a general lattice framework
underlying context-free languages. A context-free language is defined by a context-free
grammar, which contains terminals, nonterminals, and production rules. We may adopt a
different view of a context-free grammar: The terminals and nonterminals denote sets of
strings; the production rules are equations specifying relationships among these sets. The
equations can be solved for the sets denoted by the nonterminals. The context-free lan-
guage is the set denoted by the start symbol of the grammar. For instaAce, l&/W |
XYZbe the set of all tha-productions (where th&-productions are the productions whose
left-hand-sides are the nontermiiglin a grammar. Thes®&productions can be viewed
as the equatioA = (UVW) O (XY2. From this viewpoint, a context-free language is
defined, not in isolation, but by means of relationships among closely related sets (i.e.,
those sets denoted by terminals and nonterminals).

We might be interested in some properties of a context-free language. For instance,
we might want to know whether all the sentences of a context-free language have even
lengths. Since a context-free language is a set of sentences and a sentence is the concatena-
tion of symbols, a property of a context-free language is the aggregate of the properties of
individual sentences, and the properties of individual sentences are the aggregates of the
properties of individual symbols. Note that the aggregation corresponds closely to the
production rules. Hence, the production rules may be viewed as equations defining rela-
tionships among properties of terminals and nonterminals. For instance, the aboye set of
productions can be viewed as the equatjerif, O f, O fy)e (fx O fy O f,), wheref,
denotes a property of (the set represented by) the nontedniadi] ande are the aggre-
gation operations corresponding to the concatenation and the | operators in the production
rules, respectively. Thus, a property of a context-free language is defined, not in isolation,
but by means of relationships among properties of closely related languages. (Note that
each terminal or nonterminal denotes a context-free language.)

We can solve the equations if the domain-of-interest is a finite lattice in which the
aggregation operatelis thell (or M) operation. Note that (or I, respectively) acts
“accumulatively”; that is, ik < y,thenx Uy =y (orx I y = x, respectively). If] satisfies
certain desirable properties, we can solve the equations by gradually accumulating the re-
sults from the least (or greatest, respectively) elements of the lattice. Since the lattice is
finite, the accumulation process is guaranteed to terminate. It is found in Sections 2 through
4 that the simplification technique makes use of two such lattice frameworks. We also find
that many other interesting problems can be solved using a lattice framework. We charac-
terize the lattice framework and prove several fundamental properties of the framework.

The remainder of this paper is organized as follows. Section 2 reviews the Mealy-
machine description of a scanner and definesttheacteristic output machira the scanner.
Section 3 presents an algebraic technique to extend the characteristic output machine. We



LATTICE FRAMEWORK FORANALYZING CONTEXT-FREELANGUAGES 289

will use the results to simplify parsers, which are described in Section 4. In Section 5, we
propose a lattice framework for analyzing context-free grammars and context-free languages.
Several additional examples are used to demonstrate the framework. In Section 6, we show
that when a lattice framework is used to analyze contextlirgguagesthe results of
analysis are independent of the particular contextgrammarsused to describe the con-
text-freelanguages Properties of the language-analysis schemes are also discussed. In
Section 7, we briefly discuss the language-analysis schemes based on an infinite lattice.
The last section concludes this paper and discusses related work.

2. COMPUTING THE CHARACTERISTIC OUTPUT
MACHINE OF A SCANNER

A scanner is formally specified by a set of regular expressions defining various kinds
of tokens. Ambiguities encountered during scanning are resolved ynthest match
rule. For instance, the string “123456” is considered an integer of six digits rather than six
integers of one digit each. The longest match rule forces the scanner to look ahead a few
characters in deciding the end of a token. If the scanner looks ahead only a finite number of
characters, its look-ahead behavior can be integrated into the finite-state machine by asso-
ciating a scanner’s output with state transitions. That is, a Mealy machine can accommo-
date the finite look-ahead behavior quite well and, hence, is a better model of scanners [1].
The process of creating the Mealy machine of a scanner is described in detail in [1].

The output of a scanner, which is a Mealy machine, can also be described by a finite-
state machine. Theharacteristic output maching€OM) of a Mealy machine is obtained
by ignoring the input components on transitions in the Mealy machine. If there is no output
token associated with a transition, that transition will be-gansition. The resulting
COM is usually non-deterministic. A deterministic COM can be obtained from the non-
deterministic COM by means of the subset construction technique[3].

Example: Consider the scanner specification in Fig. 1(a), which defines four kinds of tokens.
The$is the end-of-file character, which is also the end-of-file token. Fig. 1(b) is the finite-
state machine of the scanner. The double-circles denote accepting states. State 1 is the
initial state. Fig. 1(c) is the Mealy machine of the scanner, in which output is associated
with transitions rather than states. The bold-face edges are the augmented edges. The
notation cft on an edge means that for input characténe Mealy machine will produce

an output tokem. Note that Fig. 1(c) is actually a generalized Mealy machine in the sense
that a sequence of zero or more tokens may be associated with a transition. When the input
components on the edges of Fig. 1(c) are ignored, a nondeterministic COM is obtained.
This nondeterministic COM can be transformed into a deterministic one using standard
techniques. The resulting characteristic output machine is shown in Fig. 1(d). Note that the
characteristic output machine does not accept a trivial regular expression; in particular, it
cannot accept two consecutids. Hence, the scannersigular(defined below).

Definition: A scanner imon-singularif it can produce an arbitrary stream of tokens ending
with a uniqueend-of-filetoken. A scanner mingularif it is not non-singular.
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(a) A scanner specification (b) Finite-state machine (c) Mealy machine

TOKEN p = ag*
TOKEN & = b
TOKEN 0= ¢
TOKEN § = §

(d) Characteristic output machine

6, &
e’&

Fig. 1. A scanner specification.

The stream of tokens produced bgan-singularscanner is the trivial regular ex-
pressiong| £]0]...)*$, wherey, &, 6,.... are the tokens, arilis the end-of-file mark. On
the other hand, the stream of tokens produceddirygailar scanner is described by a non-
trivial regular expression. Intuitively, a singular scanner provides additional information
about its output. Most scanners are singular. (Consider that most scanners cannot produce
two consecutive integers without an intervening space.) Though practical programming
languages avoid singularity by allowing blanks and comments to be inserted between to-
kens in the source programs, some programming languages do not allow such arbitrary
white spaces. For instance, some VLSI description languages are translated into intermedi-
ate languages for further processing. Since the intermediate languages are not intended for
humans to read or write, they can forbid blanks and comments. The technique proposed in
the paper will be useful in these intermediate languages.

A parser usuallyassumeghat it takes input from a non-singular scanner. If it is
known that the parser takes input from a singular scanner, additional information can be
obtained from the characteristic output machine of the scanner. The information can be
used to simplify parsers. We will discuss this technique in the following two sections.

3. EXTENDING THE CHARACTERISTIC OUTPUT MACHINES

The interface between a scanner and a parser is the stream of tokens. The stream of
tokens must be accepted by the COM of the scanner and must orm to the context-free
grammar of the parser. Therefore, we seek a relationship between a finite-state machine
and a context-free grammar.

Let M be a finite-state machine a@lbe a context-free grammar. We define an
operator] that takes two arguments: a set of statedAjp&nd a string of terminals and
nonterminals (0f5). The result of0 is a set of states (d). The notatiorQ O o = Q'
means that, starting from a state@fM will reach a state d@’ on an input string that is
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derivable from the string (according to the production rules®f. [0 may be viewed as
an extension of the transition function of the COM of a scanner to the nonterminals of the
context-free grammar of a parser. The opef@ta defined by the following four axioms:

(1) {g} O a={qg’| M moves from statq to stateq’ on inputa, wherea is a terminal of
G}

(2) {q} O A={q’| M moves from statg to stateq’ on a string of terminalst, where
Ais a nonterminal o6& andA - *a}.

(3)QU aB=(Q 0 a) O B, wherea and (B are strings of terminals and nonterminals.

4) (Q0Q) U a=(Q.0a)0(Q, Ja), wherea is a string of terminals and
nonterminals.

By convention® 0 a = @.

To find {g} O afor a statey of M and a terminah of G, we can simply examine the
transition table oM. To find {q} O A, whereA is a nonterminal dB, we can establish a set
of equations and solve the equations iteratively. A.etr | B |....be the set of all th&-
productions inG. Then, f} O A=({q} Ja) O ({q} OP) O.....

There is one such equation for each sig@éM and each nonterminalof G. The
above set of equations can be solved using an iteration algorithm. Initially, asguithe {
A= for eachq and eacl\. Then, we can repeatedly evaluate the set of equations until a
stable solution is reached. The iteration algorithm is shown in Fig. 2, where an expression,
such as§} O A, is treated as a variable.

Algorithm: Iteration
Given a set of equations=f; (...), fori = 1, 2, ...k
fori:=1tokdox: =9

repeat
fori:=1tokdo
x: =% (...)
stable =true

fori: =1tokdo
if x=x then begin
%= %
stable =f alse
end
until stable

Fig. 2. The iteration algorithm.

Example: Fig. 3(b) is thé] operator applied to the characteristic output machine shown in
Fig. 1(d) and the context-free grammar in Fig. 3(a). For the sake of brevity, we have
omitted the set symbols {......}. From the definition of theoperator, we obtain the
following six equations:
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{B0T={30uT)0D{ZOLTHOAZLE)
=(@0p0TOMOARO0S0TOHO{RD)
={(20T0wmOARO0TOEHO{T

{20T=(230uTu)0{Z30{THOEZ006)
={(20p0T0mO(230¢0TOEHOEZTE)
=@0TOWO30TOHO

30T=((30uTw0({30THOEIT6)
=(30p0TOWMOA300TOHOEZDO)

=@0TOO@OTOEOD
{dO0s={30T$
={30TO$%
{20sS={30T$
={20TO$
{30s={30T$
={30T0S%.
(a) A context-free grammar G (b) theoperator
PI1S-T$ O|pu ¢ 0 $ T S
PgiTagTél 112 1| 1] 3|12 3
P3:T - &T
PAT _ 0 2 | @ 1 1 3 1 3
3|9 |2 |2 |2 | P | @

Fig. 3. A context-free grammar and theoperator.

Let x3,%,X%s, X, %, andxs denote the six terms: {1} T, {2} O T, {3} O T, {1} O S {2}
0 S and{3}0 S respectively. After some simplification, we get the following six equations:

X =% 00 08)0{8
X, = (% 08 0{

X, =9

X, =x 0%

Xs =X 0%

Xg =%, 0.

Initially, assume that, = X, = X; = X, = Xs = Xs = @. We can repeatedly evaluate the six

equations. After three iterations, we reach a stable solutioft § {3}, {2} 0O S={3},
{(310S=9,{1} 0T={1,2},{2 OT={1},and {3} O T=9.
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The algorithm in Fig. 2 always halts due to its accumulative nature. That the solution
is correct can be proved by inductive reasoning as follows: the addition of@ stetethe
solution of {g} 00 A can be traced backward, eventually to a transition? q,, wherea is
a token, in the finite-state machine. Thus, we can construct a string of terminals that is
derivable fromA, and that moves the finite-state machine from sjdtestatey’.

An application of thé] operator is to decide whether a regular language and a con-
text-free language intersect. A classical method for this problem is to integrate the finite-
state machine of the regular language and the pushdown automaton of the context-free
language into a new pushdown automaton. A new context-free grammar can then be de-
rived from the integrated pushdown automaton. By contrast, wifh theerator, the regu-
lar language and the context-free language intersect if and only if theg}set § whereq,
is the initial state of the finite-state machine of the regular languages @nithe start
symbol of the context-free grammar, contains an accepting state of the finite-state machine.
Though thel operator does not compute the exact intersection, it provides additional in-
formation relating the states of a finite-state machine to the nonterminals of a context-free
grammar. This information is useful in simplifying the LR parser of the context-free gram-
mar as well as the grammar itself.

4. SIMPLIFYING THE GRAMMARS AND THE PARSERS

The information provided by thé operator may be useful in simplifying parsers as
well as grammars. Given a context-free gram@alet CFSMG) be the characteristic
finite-state machine d& [4]. Given a stats of CFSMG), letL(s) denote the language
accepted by statethat is, the set of terminal stringsuch that the parser Gfhalts at state
son inputa. Formally,L(s) is defined by the following context-free gramn@&r. S - a;
| a,|...., whereSis a new nonterminal not occurring®) andas, a,,...are the labels on all
the distinct paths from the initial state to state CFSMG). G; also contains all tha-
productions of5 if the nonterminalA occurs in any oft;, a,,.... Similarly, Gs contains all
theB-productions ofG if the nonterminaB occurs in any of th&-productions, etc. Note
thatL(s) is also a context-free language.

Given the regular expression defining a scanneMIbe the characteristic output
machine of the scanner. L@tbe a set of states bf ands be a state dEFSMG). Define
1(Q9=0{q 0a|qdQ,a0L(s)}. Intuitively, T (Q, 9 denotes the set of possible final
states oM whenM, starting from a state I, scans a string df(s). Set uniorid may be
distributed over the function: 1(Q, 0 Q,, 9 =1(Qy, 9 I 1(Q,, 9. Note thatr(B, 9 =P.
We can compute thefunction as follows: Let; — % s,t - 2s,...., t - *sbe all the
incoming edges of statein CFSMG), wherex1, X2, ..., xkare either terminals or
nonterminals. Note thaf(s) = L(t;)  {x} O L(ty) * {x} O ... 0 L(t) * {xJ,wheree is
defined as followsA« B={af3 |a OA, S0 B} andaf is the concatenation of the two
stringsa andp. Then,1(Q, 9 = (1(Q, t) O x1) O (1(Q, t) O x2).... O (1(Q, &) O %J).

In order to compute the valuest{ g}, s for each statg of M and each stateof
CFSMG), we can set up an equation f¢fqg}, 5. Then, an iteration algorithm similar to
the one in the previous section can be applied. Initially({e}, s) = {q}, whereg is the
initial state of CFSMG). (The reason is that the empty string L(s,) and {g} O {qg} O €.)
Lett({q}, 9 = @ for all other states. We can then evaluate the set of equations defining
T repeatedly until a stable solution is obtained. Note that in compu(figy,s), we can
make use of thél operator obtained in the previous section.
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Thet function can be used to remove redundant states and transitionSFisk
(G). Letq be the initial state d¥l. First, letsbe a state EFSMG). If 1({qq}, 9 = B, the
statesis not reachable during parsing and, hence, can be removed. Seconhdly’ e
an edge irCFSMG). If 1({qo}, t) O x =@, the transitiort - * s can never be followed
during parsing and hence can be removed as well. The removal of redundant states and
transitions may render certain productions of the context-free grammar useless. These
useless productions can be deleted. The removal of states, transitions, or productions may
also reduce the size of the parse table. The technique presented here can be applied not
only to CFSMG), but also to LR{) machines for ani and to LL parsers.

Note that the removal of states and transitions f\@#8MG) depends on the con-
straints placed on the input to the parser, which is the output from the scanner. The output
from the scanner is characterized by the characteristic output machine of the scanner. On
the other hand, if the input to the parser is an arbitrary stream of tokens, no states and
transitions can be removed.

Example: Fig. 4(a) is the characteristic finite-state machine of the grammar in Fig. 3(a).
Figs. 4(b) and (c) are the action and goto tables. Fig. 4(d) isftimetion on the COM in

Fig. 1(d) and the characteristic finite-state machine in Fig. 4(a). We have omitted the set
symbol {...} in Fig. 4 for the sake of brevity. The equations defining thumction on state

1 are as follows:

(L. H={3

(%, 2=7({3, HOT

({3, 3=1({1, 0%

(%, 9=d{3, O WO AL, HOW O, DO W)
(%, 9=1({%, HOT

(%, 6)=1({%, 50 u

(@, 7=r({3, HDOHO AL, HTHT((EL, NTS)
(%, 8=1({1, HOT

(%, 9 =1({T, 90 ¢

({1, 10 =(r(3, HOO)O(r({Y, HUE) T (T({F, D).

The equations are solved using an iteration algorithm similar to that in Fig. 2. The
function for other states ®fl is computed similarly. Consider the edgieom state 4 to
itself labeledu in Fig. 4(a). Intuitively, the edgeis traversed only when the scanner
produces two consecutiyés. Since the scanner in Fig. 1 can never produce two consecu-
tive u's, that edge can be eliminated from the parser. Formally, thecedgg be removed
becausa({1},4) D u=9.

Example: Suppose the definition of the tokéis changed tbb*. In this case, the scanner
would not be able to produce two consecufige Hence, the edge from state 7 to itself in
CFSMG) will not be traversed during parsing.
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(a) CFSM(G)
State 1. state 2: $ state 3:
T "UTu
T-7ETg State 4:
T8 TouT
T L:ﬂ-ﬁ = state 5: p_| state6:
T T8 T TouTH ToHT
0 & .
T-0
: Au
Y
"10 o| s@er
state 10: T_ETE | T state 8: £ state 9
) <= — > .
T-6 T uTu T-ETE T-ET¢
T ETE
T-0
(b) the Action table o6
state 1 2 3 4 5 6 7 8 9 10
action| S S R1 S S R2 S $ R3 R4
(c) the Goto table ob
1 2 3 4 5 6 7 8 9 10
Il 4 4 6 4
& 7 7 7 9
0 10 10 10
$ 3
T 2 5 8
(d) Thet function
T 1 2 3 4 5 6 7 8 9 10
1 1 1,2 3 2 1 2 1 1,2 1 1
2 2 1 3 2 1 2 1 1,2 1 1
3 3| 2 g | 2 2 [ [ 2| 2 [

Fig. 4. Thet function.

5. A LATTICE FRAMEWORK FOR ANALYZING
CONTEXT-FREE LANGUAGES

LetG =(N, T, P, $be a context-free grammar. letbe the language defined By
We may wish to compute certain collective propertiekpbased on a mapping :
T - F’, whereF’is the domain-of-interest{ maps individual strings of terminals into the
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domain-of-interest). For instandd, may be taken as thengthfunction (i.e., by comput-

ing the length of a string), and we want to know whether all sententesaoé of even
length. Sincé is, in general, infinite, it is not possible to compute the collective proper-
ties by enumerating the sentencek©bne by one. The lattice framework proposed in this
section provides us with a feasible way to compute the collective properties.

Assume that the domain-of-interéstcan be embedded into (or is closely related to)
a finite (see problem 6 below) lattide, €). LetU andrl be the join and meet operations,
respectively. The least element and the greatest elemErdrefdenoted b, andf,a,
respectively.M is modified and extended accordingly so tamnaps strings of terminals
and nonterminals to s &f andM satisfies the following property(af) =M(a) O M(B),
wherel] is an associative and monotone operatiofr @ith an identity elemerd (that is,
if a<b,thenalc<bOc,cO0a<cOb,andcOe=elc=c, forallcOF). (Underthe
above conditiondVi(€) = e, hereg isthe empty string.) As a notational convenieféé)
will be written adf,. f, represents the collective properties i3 0 T", a - "B}.

For eacha 0 T, we may compute its imadgin F directly. In order to computg,
wherea O (N O T)*, we need to find, for eachAQ N. SinceA may be viewed as the set of
terminal stringd., that are derivable from the nontermiathrough the production rules
of G, the production rules @ define the relationships among these context-free languages
L. These relationships (or production rules) are translated into equati®rs iiollows:

For eachA N, the set of all thé-productionsA— o |B]... is translated into the equation
fa=h, ¢ hze ..., whereh, = H(a, f,) for a functionH that is monotone in its second
argument.H is monotone in the sense that fik f, thenH(a, f) < H(a, ') for all strings

a O (NOT). Thee operator is called the luence operator, which may be eittoer.

We also require that be distributive over], that is,f 0 (h, ¢ h) = (fO h) ¢ (fO hy) and

(hye hy)Of=(hyOf) e (h,Of). Letf, be the identity element of, namely, f, = f, if

U is the confluence operatdh, =f..if M is the confluence operator. Itis also required that
fe f,=f,¢ f=f forallf O F. Then we can solve this set of equations using the iteration
algorithm in Fig. 5, where, for eaghld N, the initial value of, isf, .

Algorithm: Iteration
for each nonterminah do fa: =f,
repeat
for each nontermina do
fy:=ha ¢ hge ..., wheref, =h, ¢ hy ¢ ... is the equation definirfy
stable =true
for each nonterminah do
if fa# f, then begin
fa= 1,
stable =false
end
until stable

Fig. 5. The iteration algorithm.
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LetB={f.|al T}. B, the collection of the images of terminals in the lattice, repre-
sents the basic building blocks of the framework. The five compoRentsB, H, ande
consist of an analysis scheme of a context-free grammar. The detailed definition is delayed
until the next section. In this section, we will examine several examples to show the many
applications of the lattice frameworks.

That the iteration algorithm always halts with a stable solution can be demonstrated
as follows. For eachl N, letf,; be the value foA at the end of thp" iteration. Lef .,
be the value foA at the end of thg 1%t iteration. Sincéd, O, andU (or M) are monotone,
and the iteration algorithm starts frdgy, (Or fna respectively)fa; < fajr (Or fajir < faj,
respectively) for evenpd N. SinceF is a finite lattice, the iteration algorithm always halts
with a stable solution. (We will show that the stable solution is correct in the next section.)

Let Sbe the start symbol of the gramngr In general,f; is the intended result.
Sometimes, we might be interestedfirffor some stringr. It is straightforward to compute
f, once f,, for eachAl N, is known. We can gain insight into properties of the stming
through its imagef,, in F.

The essence of the framework is to compute some values, sfight &g that cannot
be computed directly. Note that there are subtle relationships (induced by the production
rules of the grammar) between the values that interest us and certain closely related values.
If the domain-of-interest can be embedded in a finite lattice with approprjateandH
functions, the values that interest us can be compotpather withthe closely related
values using the iteration algorithm. This technique is similar to some inductive proofs in
that, sometimes, we need to strengthen the induction hypothesis (that is, in order to prove a
stronger result than is actually needed). In what follows, we will list several problems that
can be solved in a lattice framework.

Problem 1:In Section 3 of this paper, we try to decide whether a regular language and a
context-free language have common elements. Our strategy is to feed each sentence of the
context-free grammar into the finite-state machf the regular language and examine

the final states oR, that is, the setd | R moves from its initial state to stageon inputf,
wheref is a sentence of the context-free language}. The regular language is transformed
into a finite-state machin@. LetQ be the set of states Bf LetF={f:22 . 22| f(B)=9, f

(Q.0 Q)=f(Q)O f(Qy), & 0 Q, @ 1O Q}. Elements of are ordered as follows: Litand

f,be two elements df. f, < f, if and only if, for allQ' O Q, f(Q") O f, (Q'). The least
element of is Ae.@, and the greatest elemeniiis. if e= @, thend, else QHence, F, <

) is a lattice. Note that function compositioanF is associative and monotone and has an
identity elemenfle. e For eacho O (N O T)", letf, be the “extended” state transition
function of R as defined below: For any terminal symhbolf, is the element of that is
uniquely determined from the row (corresponding)tof the state transition table Bf For

,a, BONDOTY), fus=fgo f,. For each nonterminal of the context-free grammar, the set

of all theA-productionsA— o | B |....is translated into the equatity f, Ll fs U .... Now,

the problem is cast in a lattice framework. We can use the iteration algorithm to find
solutions forf,. Finally, we are interested in({ qo}), whereq, is the initial state oR, and

Sis the start symbol of the context-free grammar. Note that, in this framdyerke. (e

O a) in Section 3.
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Problem 2: In Section 4 of this paper, we attempted to simplify a context-free gra@mar
and its parser with information provided by the COM of the scanner. The lattice frame-
work is applicable to this problem as well. K&t (N, T, P, §). The characteristic finite-
state machin€EFSMG) of grammaiG is transformed into a regular gramngras follows.

Each stats of CFSMG) corresponds to a nonterminglin . Each transition - *sin
CFSMG) corresponds to a production rige, T x in G. An additional production rule

U - u is added tqz , wherey corresponds to the initial state@FSMG), andu is a new
terminal symbol inGg. The start symbok of G corresponds to the accepting state of
CFSMG). The latticeF is the same one as in Problem 1. Note that the set of terminal
symbols ofg isNO T O {u}. Forx O(NDO T), letf, be the one computed in Problem 1.
Letf, = Ae.e Definef,; = f; ° f,, whereo is defined in Problem 1. For each nontermigal

in G, the set of all thes-productions,s - a |B |...., is translated into the equatioh =f,

U fs U ..... Now, the problem is cast in a lattice framework. We can use the iteration
algorithm to find solutions foif; for each nonterminag of g . Finally, we are interested

in f_, wherex is the start symbol o5 . Note that, in this frameworkf,g(Q) =7(Q,9):
wheresis a state 0CFSMG).

Problem 3: Suppose we want to decide whether the lengths of all the sentences of a con-
text-free language are multiples of 3. We can use the lattice framework to solve this problem.
Let F be the powerset of the set {0,1,2F, (0) is a lattice. Definé,; =f,* f5 wherese t
={(a+b) mod Ja 0 s,l]t}. Note thate is an associative and monotone operatdf with

an identity element {0}. Note th&t= {0}.For each termina&, whose length is T, = {1}.

For each nontermind, the set of all thé-productionsA - o | |... is translated into the
equatiorf, = f, O f; O ..... We can use the iteration algorithm to solve the set of equations.
The initial value off,, for each nontermina, is@. Finally, we are interested in whether

fs = {0}, whereSis the start symbol of the context-free grammar.

Problem 4: (erasable nonterminals) Suppose we want to know whether a nonteminal
can derive the empty string. Uet{, T}, with 0<T. Now defineM as follows. For each
terminal symboh, f,=00. Letf,z="1, I f;. Note thaf,=T. The set of all thé&-productions

A - a|B].... is transformed into the equatity= f, U fz U .... Then, we can solve the
equations using the iteration algorithm. The initial valugdor each nontermind, is .
Finally, f,= T if and only ifA-"e.

Problem 5: (non-empty languages) A context-free languag@isemptyf it can derive at

least one sentence. This problem can also be solved in the lattice framewdfk{ [Let

T}, with O< T. DefineM as follows. For all terminal symbadds f,= T. Letf,z =1, N fz

Note thatf, =[0. The set of all thé-productionsA — a | |.... is transformed intf, = f, U

fs U.... Then, we an solve the equations using the iteration algorithm. The initial value for
fa, for each nontermind, is 0. Finally,fs= T if and only if the language is non-empty,
whereSis the start symbol of the grammar.

Problem 6: (context-free languages) L&t= (N, T, P, $be a context-free grammar. &t
be the set of all the strings of symbols from a vocabdlarletF be the powerset af.
The elements of are ordered by means of subset containment. NoteRh&l (s an
(infinite) lattice. Letf,={a} for eacha O T. Letfqs=f,[1fz, wheres,0s, = {tit,|t; O 51, 1,
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O s}. Note that[d is associative and monotone and has an identify elerantHgnce,f,

={€}. For eachA] N, the set of all thé-productionsA - a | B|... is translated into the
equationf, = f, O fz O.... For eactA O N, the initial value fof,is @. In this examplefa

is the set of terminal strings derivable from the nontern#irial the production rules @.

Since the lattice is infinite, the iteration algorithm can not terminate. However, any element
of f,, for any nonterminah, can be generated in a finite number of iterations.Slbet the

start symbol of the grammafs=Ls. (This example is essentially the same as the one in

[51.)

Problem 7: Theessential nonterminalsf a context-free gramm@ are those that are used
in the derivation of every sentencelgf Assume tha contains no useless symbols. Let
F be the powerset & (whereN is the set of nonterminals @). Elements oF are ordered
by means of subset containment. Now, deffinas follows. Letf, =@ for all terminalsa.

Let f,z=f, 0 f;. Note thaf.=@. For each nonterminal the set of all thé-productions

A - a|B]....] is transformed into the equatitie (NONTERMa) O f,) n (NONTERM
(B) O 1p n...., whereNONTERMa) is the set of all nonterminalsén For each nonterminal
A, the initial value foff, isN. We can solve fdp, using the iteration algorithm. Finallys{

O fs, whereSis the start symbol d5, is the set of essential nonterminals.

Problem 8: (shortest-path problem) This problem is adapted from [6]. Given a directed
graph in which each edge carries a non-negative distance, we wish to compute the shortest
distance from a starting nodé¢o all other nodes. The graph is transformed into a context-
free grammar as follows. Each nagleorresponds to a nontermirfalEach edge - ¢b

(wheree s the identity of the edge in the graph) corresponds to a productidd rulae

wheree is a new terminal symbol in the grammar. The starting sgu®ices an additional

ruleS - €. LetF beR" = RO{w}(wherecw is a positive infinite large number). Lfgbe the
distance carried by the edgd_etf,;=f, + f5. Let the confluence operator be the minimum
function. Thenf,, for each nontermind, is the shortest distance from nade nodea in

the given graph.

Problem 9: (data-flow analysis) Many data-flow analysis problems can be cast in lattice
frameworks. We will demonstrate this application using an interprocedural data-flow analysis
problem, taken from [4]. Assume that there are several procedures that call one another in
a program. We wish to computise(A), the set of variables that may be used directly or
indirectly during a call to procedure LetF be the powerset of the set of variables in the
program, with(l andn as the join and meet operators.For each procefiuttieere is a
nonterminalA and a terminad in the associated grammar. For each nontermindile set

of all theA-productions i\ - a|a..., wherea = B,B..... andB, B..... are all the procedures

that can be called directly by procedéeThe set of all thé-productions is translated into

the equationf, = f, O f, (that is,d serves as the operator). Leff,;=f, 0 f; (thatis, also
serves as thel operator). Finally, for each terminalletf,= LocalUse(A), the set of
variables that can be used locally in procedurd’hen we can solve the equations with the
iteration algorithm. Note that the equation definihge(A) in [4] is Use(A)= LocalUse

(A) O (O sis cateaby » Use(B)). A similar lattice can be used to solve Def(A), the set of
variables that can be assigned values during a call to proo&dure
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6. ANALYSIS SCHEMES

We will now formalize the notion of a lattice framework and discuss the fundamental
properties of a framework.

Defintion: An analysis schem@ is a 5-tuplef, O, B, H,¢ ), whereF is a lattice with a join

Ll and a me€fl operation[J is an associative and monotone operatioR wfith an identity
elementB = {f, | ais a (terminal) symbol of the context-free language to which the scheme
is applied},H is a monotone (in its second argument) function that maps a string (of termi-
nals and nonterminals) and an elemerft & an element df (H is monotone in its second
argument in the sense thaf # f, thenH(a, f) < H(a, ), for all stringsnt), ande is either

U or . Letf, be the identity element ef. ¢ and satisfy the following three axioms: (1)

fO( e h)=F(0Oh)e FOh), Qe hy)Of=(h,0Ofe (h,Of),and IfOf, =1,
of=Ao,.

To apply an analysis schenfe = (F, O, B, H¢ ) to a context-free gramma& = (N,

T, P, 9, we first translate, for eadki] N, the set of all thé-production ruleg\ - a | ]....
into the equatiof, = H (a, ;) ¢ H(B, fp) ¢ ..., wheref,; is an abbreviation df, [ f, for 1,

& O (N OT)". The iteration algorithm in Fig. 5 is used to compute the valug ofhe
initial value forf, , for eachA N, isf, , the identity element &f . The result of the analysis
is fs, whereSis the start symbol of gramm@

An analysis scheme is applied to context-free grammars. We can check that all of the
above problems make use of analysis schemes. There might be other constraints as to the
kinds of context-free grammars and languages to which an analysis scheme is applicable.
For instance, the analysis scheme in Problem 7 is applicable only to grammars having no
useless symbols. These constraints are considered to be outside the schemes.

An analysis scheme can be used to compute the properties of both contéad-free
guagesand context-fregrammars For instance, Problems 1 through 6 are concerned with
languages whereas Problem 7 is concerned with grammars. A common characteristic of
Problems 1 through 6 lies in thkfunction, wheréH(a, f) = f. By contrast, in Problem 7,

H(a, f) depends not only dinbut also orr, (Note thatx is the right-hand-side of a produc-

tion rule.) This distinction is reasonable in that the properties of a context-free language
should not depend on any particular choice of grammar. Hence, we can derive the follow-
ing definition.

Definition: An analysis scheme is calledamguage-analysis schenfeH(a, f) =f. Itis
called agrammar-analysis schenmherwise.

This definition raises an interesting question: Since a context-free language may be
defined by more than one context-free grammar, does a language-analysis scheme always
compute the same answer no matter which context-free grammar is used in the computation?
We will use a lemma to make this a claim. (In what follows, the notat®denotes the
value ofs;¢ s,¢ ..., wheres,, s,.... are all the elements & Sinces¢ is commutative and
associative, the order of elements is not significant.)

Lemma 1: Suppose that a language-analysis scheme is applied to a context-free grammar
G. For any nontermindhinG,f,=¢ {f,|A->"a,a0T}
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Proof: Let fy, be the value for the nonterminalafter thek!" iteration of the loop in the
iteration algorithm in Fig. 5. Note thit= fs . = fa\, for some finitek, since the iteration
algorithm reaches a stable solution after a finite number of iterations. We can prove by
induction ork thatf, = ¢ {f,| a OT", the height of the derivation treeAft " a is at most

k}. For the sake of clarity, we assume that the confluence operasat in the proof. A
parallel argument appliesfif is the confluence operator.

Base casel.etk = 1. Consider any nontermin&] which is defined by the equati= f,;

U fy2 U. In the computation df,, if a i contains any nonterminalf; = f.;,, (due to the
properties of 0 andf,in the analysis scheme). This term is dropped from the above
equation sinc&,, Ll x=xU f,,=xforanyx. Thereforefy,= U {f,|A - a is a production
anda O T7}.

Induction hypothesisAssume that, fok < mand for any nontermind, f,,= U {f, |[a O
T, the height of the derivation tree At * a is at mosk }.

Induction step.We need to prove that, for any nontermifalf, ,= U {f, | a O T, the
height of the derivation tree éf—" a is at mosim}.

Consider any nontermin&l which is defined by the equatif=f,;, U f,,U... Note
that, in the computatiofy ,, = fa1ma U fazma U-... (The notatiorfy; o means that, for any
nonterminaB in ai, fz 4 will be used foifg.) If a i contains a nonterminal, s8y thenai
may be written agBd. Becausé] is associativelyimi = fyma O foma O fsma. By the
induction hypothesidg s = U {fz| B0 T, the height of the derivation tree®f- 3 is at
mostm-1}. Thanks to the distributive law af overd, foim1 = U{fyms O f 0 fama| BO T,
the height of the derivation treeBf- 3 is at mosim-1}. By applying the same argument
to all nonterminals iny andd, we know thafym, = U {f,| p O T, the height of the
derivation tree oA ai - " is at mostm}. Since the equatiofy =f,, U feo LU...iS
translated from the set afl theA-productions, any string O T* such that the height of the
derivation treeA -~ p is at mostnis considered in one dfim.. Thereforefs,= L{f,|u
0T, the height of the derivation treeAf “uis at most}. This completes the induction
proof.]

The following theorem asserts that, if a language-analysis scheme is used to compute
the properties of a context-free language, the result computed by the scheme does not de-
pend on the particular choice of context-free grammar. The theorem is a corollary to the
above lemma.

Theorem 1: (Soundness of language-analysis schemes) Assume that the context-free gram-
marsG andG define the same context-free language. 9amd S be the start symbols of

G andG, respectively. Then, the results obtained by applying a language-analysis scheme
toGandG are the same. That is, = f..

Definition: Let Q be a language-analysis scheme. LLbe a context-free language. The
notationQ(L) meands, whereSis the start symbol of a context-free grammar defihing

Below, we list several fundamental properties of language-analysis schemes. The
proofs of these theorems are based on Lemma 1 and are easy enough to be omitted.
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Theorem 2:Let Q be a language-analysis scheme. LLahdM be context-free languages.
QLOM) =Q(L) ¢ Q (M).

Theorem 3:Let Q be a language-analysis scheme. LLehdM be context-free languages.
Assume that O M. If U is the confluence operato®(L) < Q(M). If M is the confluence
operator,Q(L) =2 Q (M).

Theorem 4:Let Q be a language-analysis scheme. LLehdM be context-free languages.
If U isthe confluence operata®(L n M) < Q(L) 1M Q(M). If N is the confluence operator,
QL n M) =Q(L) U Q(M).

Theorem 5:Let Q be a language-analysis scheme. LLehdM be context-free languages.
Q(LM) =Q(L) O Q(M). (LM is a language consisting of the concatenation of a sentence of
L and a sentence df.)

Theorem 6:Let Q be a language-analysis scheme. LLieé a context-free languag@(L")
=¢{ Q(L)* |k=01}, whereQ(L)° is the identity element ofl and Q(L)*** = Q(L) O Q(L)~.
(L" is a language consisting of the concatenation of zero or more sentehges of

Theorem 7:Let Q be a language-analysis schem@({€}) = the identity element ofl.
Theorem 8:Let Q be a language-analysis schem@(®) =f,, the identity element of .

We will now turn to another important characterization of language-analysis schemes:
any difference between two context-free languages is witnessed by a language-analysis
scheme. The essence of this characterization lies in the condition that theFHattiae
language-analysis scheme is finite. If we can use infinite lattices, the following theorem is
trivial. The scheme in Problem 6 in the previous section is the witness. It is not so obvious
if F must be finite.

Theorem 9:LetL andM be context-free languages. Assume thatM. Then, there is a
language-analysis scher@esuch thaQ(L) # Q(M).

Proof: Sincel # M, without loss of generality, we may assume that there is a sentéhce
L buta OO M. Letj be the length ofi. If j = 0, the scheme in Problem 4 is the witness.
Assumeg > 0. Letk = j+1.

We will now construct a language-analysis schémas follows: Lefl <k = {a | a
0T, the length ofx is at mosk}. Let F be the powerset df<* Elements oF are ordered
by means of subset containment. fugt foAfs, wheref, Af, = {firstk(tst,) | t; Of;, t 015}
and firsk(t) computes the firdt symbols of the string It can be shown thétis associa-
tive and monotone and has an identity elemeht Fora O T, letf, = {a}. Let O be the
confluence operator. Hendg,=®. It can be verified thafl and A satisfy the following
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three axioms: (I)A (h, 0 hy) = (FA hy) O (FA hy), (2) (hy O hy) Af= (e A) O (h, A ), and
AP =B Af=0. InessenceQ(L) = {firstk(t) |t O L}. We can see thatt 0 Q (L)
buta 0 Q(M).

Corollary 1: LetL andM be context-free languages. (L) = Q(M) for all language-
analysis schemeg, thenL = M.

7. LANGUAGE-ANALYSIS SCHEMES BASED ON
INFINITE LATTICES

The requirement th&t be &finite lattice in an analysis scheme can be relaxed. Finite-
ness is used to guarantee termination of the iteration algorithm. The iteration algorithm
also terminates for the classfufite-heightlattices, in which the longest path frdg, to
finis of finite length.

It is interesting to briefly investigate the case whene a language-analysis scheme
is infinite. The main problem with infinite lattices is that the iteration algorithm can not
terminate. However, we can show that termination is an inherent property of context-free
languages. That is, termination is independent of the particular grammar used to describe
the language.

Theorem 10:Let Q be a language-analysis scheme based on an infinite lattice. Suppose
that grammar&,; andG, define the same language. The applicatiof &f G, terminates

if and only if the application of2 to G, terminates. Furthermore, when the applications
terminate, the applications yield the same values.

Proof: Let L be the language defined By (or, equivalentlyG,). Suppose that the appli-
cation ofQ to G, terminates afterk; steps. Let; = {a |a O L and the height of the
derivation tree ofa based o163, is at mosk;}. Since the application @ to G, terminates
after k; steps, ¢ {f,|a O L} = ¢ {f,|a OL}. Furthermorel, is finite. Letk, = max {h
| his the height of the derivation treebased oi16,, wherea 0 L;}. LetlL,={p|B0OL
and the height of the derivation tree @based o1, is at mosk,}. Note thatl, O L, L.
Because is monotone, we have {f, | a0 L} =¢ {f;|a0OL}= e {f,| aOL}. This
implies that the application @ to G, will terminate by at mos, stepd.]

Once we know that the application of terminates, the properties listed in the previous
section all hold.

8. CONCLUSIONS AND RELATED WORK

We have characterized a lattice framework for analyzing context-free grammars and
context-free languages. This lattice framework is motivated by a technique for simplifying
parsers using information derived from the associated scanners and can be used in many
other applications, including data-flow analysis. The crux of the lattice framework is to
view the . symbols in the production rules of grammars as defining equations of closely
related entities. When the domain-of-interest is a finite lattice, the equations can be solved
using an iteration algorithm. An introduction to lattice theory can be found in [7].
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The lattice framework can be viewed as a form of induction [8]. (This is no surprise
at all since context-free grammars are an inductive definition of context-free languages.)
Imagine that we want to prove a property of a context-free landi(aye We may not be
able to prove it directly ifi(L) aloneis the induction hypothesis. Sometimes, the proof
proceeds smoothly when we strengthen the induction hypoth&#iqltq) and }1® (L)
and...., whereA, B, ... are all the nonterminals of a grammar defirirapdji* J15,... are
properties closely related fb Remember thdt, are the strings of terminals that are
derivable from the nonterminAl This induction hypothesis means that, in order to prove
thatL has the propertji, we actually need to prove tHathas the propertyl*, thatLs has
the propertyl B, etc For instance, consider the language defined by the grammar consist-
ing of two production rulesS—aXandX -aS | a Now, we want to prove that all sentences
of Lg have even length. In an inductive proof, the induction hypothesis could lad that
sentences ofshave even length and that all sentences bf have odd length This is
exactly what a scheme similar to that in Problem 3 (in Section 5) will compute. The chal-
lenge for an inductive proof is to find an appropriate induction hypothesis and to prove it.
By contrast, in a language-analysis scheme, the difficulty lies in constructing an appropri-
ate lattice. When such a lattice is constructed, the iteration algorithm automatically com-
putes the “induction hypothesis” (whichfisfz etc.).

Knuth’s work [6] was the first on computing properties of grammars. Our lattice
framework differs from Knuth’s work in four aspects: (1) Knuth uses real numReis (

{0}), which is a total order, whereas we allow general lattices; (2) Knuth’s algorithm trans-
forms production rules into independsnperior functionsvhereas we use a single opera-

tor O to transform all the productions; (3) Knuth’s superior functions need to satisfy an
additional constraintiz, the value of a function application must be at least as large as any

of its arguments; and (4) Knuth uses only the minimum function, which corresponds to the
M operator, as the confluence operator. By contrast, our lattice framewotk asesell

asll as the confluence operator. On the other hand, because Knuth assumed certain prop-
erties that allow him to adopt a generalization of Dijkstra’s shortest-path algorithm, Knuth's
work was patrticularly efficient. Moencke and Wilhelm [9]developed a theory similar to the
work reported for flow analysis in attribute grammars. Their work extends Knuth’s in that
they employ partial orders, rather than total orders. Ramalingam in his thesis [10] pointed
out that interprocedural dataflow analysis frameworks, such as [11], can be viewed as in-
stances of grammar-analysis problems. In these problems, the grammar describes valid
execution paths. Ramalingam’s work can be viewed as a generalization of Knuth’s and
Moencke and Wilhelm’s results. All these researchers did not distinguish between lan-
guage-analysis and grammar-analysis schemes. We also address various properties of lan-
guage-analysis schemes, in particular, the independence of the computation results with
respect to the particular grammars used in the computation.

The lattice framework bears some similarity with denotational semantics [7]. In
denotational semantics, each terminal symbol corresponds to a functiGhcanmgsponds
to a function application. One important difference lies in the fact that function application
is not associative. By contradi] is an associative operator in our framework. Another
difference is that denotational semantics compute a property (that imgtireng of a
sentence in the language whereas our framework computes a property of the (context-free)
language.
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This lattice framework is similar to some circular attribute grammars [12]: We may
viewf,, f5,.... as attributes of the nonterminals &wh, ¢ hg¢ ... as attribution equations.
Clearly, this “attribute grammar” was circular in general. However, a finite-lattice frame-
work guarantees that the iteration algorithm reaches a stable solution in a finite number of
iterations.

The Mealy-machine description of a scanner is motivated by a study of the look-
ahead problem in lexical analysis [13]. The technique for handling the look-ahead problem
is similar, in spirit, to the pattern-matching algorithm of [14] and the string matching algo-
rithm of [15].
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