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Abstract 

The graph coloring problem is to color vertices of a graph so that no adjacent vertices 
are of the same color. The problem is difficult not only in finding the optimal solution, 
but also in approximation. Since it is hard to approximate the minimum number of 
colors, we consider to approximate the maximum number of unused colors. This ap- 
proximation is based on saving colors with respect to the most naive coloring method, 
which colors each vertex with a different color. In this paper we propose a polynomial- 
time graph coloring algorithm with approximation ratio 3/4 for the maximum number 
of unused colors, which improves the previous result 2/3. © 1999 Elsevier Science Inc. 
All rights reserved. 

Keywords: Graph coloring; Approximation 

1. Introduction 

Let  G be an  undi rec ted  s imple  graph.  The  graph coloring p r o b l e m  is to co lor  
vertices o f  G so tha t  no ad jacent  vertices are o f  the same color .  The  chromatic 
number z(G) o f  G is the m i n i m u m  n u m b e r  o f  colors  a m o n g  such color ings.  The 
g raph  co lor ing  p r o b l e m  has  been s tudied  extensively in the pas t  and  has many  
app l i ca t ions  in solving o ther  p rob l ems  [6]. However ,  the p r o b l e m  is difficult no t  
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only in finding the optimal solution, but also in approximation. The best 
polynomial-time approximation algorithm for z(G) is of ratio 
O(n(log log n)2/(1og n)3), where n is the number of vertices of G. If  z(G) is a 
constant, such as 3, the approximation ratio can be slightly improved [2,10]. 
Lund and Yanakakis [9] show that there is a constant c > 0 such that no 
polynomial-time graph coloring algorithm can have an approximation ratio 
better than n ~ unless P = N P .  Note that O(n(log log n)2/(log n) 3) is greater 
than n e for any e > 0. 

Since it is hard to approximate z(G), we consider to approximate n - z(G), 
called the maximum number of unused colors [3,7]. This approximation is based 
on saving colors with respect to the most naive coloring method, which colors 
each vertex with a different color. This approximation is to maximize the ap- 
proximation ratio ), = ( n -  f l (G) ) / (n -  z(G)), where fl(G) is the number of 
colors found by a polynomial-time graph coloring algorithm. If 7 is 1, fl(G) is 
equal to z(G). We note that a constant t' does not imply that z(G) can be ap- 
proximated within some constant ratio. Demange et al. [3] propose an algorithm 
of 7 = 1/2. Later, Hassin and Lahav [7] propose another algorithm of y = 2/3. 

To see the importance of approximation from this direction, we examine the 
value z(G). The current result on approximating z(G) works only for very small 
z(G). If z(G) is greater than O((log n)3/(log log n)2), the approximation 
works no better than a naive coloring algorithm in the worst case. However, 
for large z(G) an algorithm for approximating n - z(G) will work better. For 
example, if z(G) is n/lO and the approximation ratio ? is 3/4, the algorithm can 
color G with less than (13/40)n colors. 

In this paper we propose a polynomial-time graph coloring algorithm of 
t' = 3/4. To explain our algorithm better, we use clique cover to describe graph 
coloring. The clique cover problem is to partition the vertices of G into vertex 
sets V1, V2,..., Vk such that each V~, 1 ~< i ~< k, induces a clique. Let ~b(G) be the 
minimum number of cliques to which the vertices of G can be partitioned. To 
find the minimum coloring for G is equivalent to find the minimum clique cover 
for G, the complimentary graph of G, that is, 4~(G) = z(G). The clique cover 
problem is NP-complete even when k is fixed to 3. It remains NP-complete 
when graphs are restricted to have maximum cliques of size at most 3 (4-clique- 
free graphs) [5]. 

The key part of our approximation algorithm is to approximate n - ~b(G) 
for 4-clique-free graphs within ratio 3/4. The algorithm uses a concept similar 
to augmenting path in the matching problem, however, more complicated. We 
use a charge scheme to distribute weights of single-vertex cliques found by our 
algorithm to 3-cliques found by our algorithm as well as to 1-cliques and 2- 
cliques in the optimal partition. A consequence of this result is a clique cover 
algorithm of approximation ratio 1.5 for the minimum number of cliques for 4- 
clique-free graphs. We note that the set of tripartite graphs is a subset of 4- 
clique-free graphs. 
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2. The algorithm A U C  

107 

Our  graph coloring algori thm A U C  in Table 1, which denotes "approxi -  
mat ing unused cliques", approximates  n - ~b(G) with ratio ~> 3/4. 

A U C  first finds a maximal  4-clique set S f rom G. It then removes S f rom G 
to induce a 4-clique-free graph  G' and calls procedure  A 4 C F G ,  which denotes 
"approximat ing  4-clique-free graphs" ,  to find a clique part i t ion P '  for  G'. The 
max imum clique in U is at mos t  3 and G' has n~= n - 4 [ S  ] vertices. I f  
(n' - IP'l)/(n'  - @(G~)) 1> 3/4,  the 4-clique set S together with P '  form a clique 
part i t ion for G and approximate  n - ~b(G) with ratio 314. 

Theorem 2.1. Assume that procedure A 4 C F G  approximates n - O(G) for  4- 
clique-free graphs with ratio 3/4. The algorithm A UC finds a clique partition P 
for  G with (n - I P I ) / ( n  - ~ (G) ) />  3/4.  

Proof. n - @(G) is at mos t  4lSI + n' - @(G0 = n - @(G'). The size o f  clique 
part i t ion P = S U U is IS[ + ]P']. Therefore, 

3 n~ n - I P I  = n - I S I -  le'l = 31sl + ( n ' -  IP'I) > / ~ ( 4 1 s I  + - q~(G')) 

3 (n - ~ ( c ' ) ) / >  3 (n _ ~ ( c ) ) .  [ ]  

3. The procedure A4CFG 

Procedure  A 4 C F G  finds a clique part i t ion P for a 4-clique-free graph  G o f  n 
vertices such that  (n - IPl)/(n - ok(G)) >7 3/4. We assume that  G = (V ,E)  is 4- 
clique-free hereafter if not  stated otherwise. A set o f  3-cliques without  c o m m o n  
vertices is a tri-matching of  G, while a set o f  2-cliques without  c o m m o n  vertices 
is a bi-matching of  G. We shall use matching and clique-partition interchange- 

Table 1 
The algorithm AUC 

Input: A graph G= (V,E). 
Output: A clique partition P for G. 
1. S, P, P' ~-- O; 
2. Find a maximal 4-clique set S for G; 
3. G' ~ G~S; 
4. P' ~- A4CFG(G'); 
5. P ~-- SuP'  
6. end. 
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ably, by which readers should not be confused. Procedure A4CFG uses the 
concept of augmenting path, which we call C-augmenting path, in contrast to 
the M-augmenting path in solving the maximum (bi-) matching problem [8]. A 
C-augmenting path is used to reduce the number of cliques in a clique partition 
by one. 

Let P = T U M tO F be a clique partition for G and T, M, and F be the sets of 
3-, 2-, and l-cliques in P, respectively. The vertices of l-cliques are also called 
the Jkee vertices. For example, for the graph in Fig. 1, P =  {[a],[i], 
[/7],[q], [r], [b,d], [j,k], [c,e,f], [g, l,m], [h,n,o]} is a clique partition with 
T = { [c, e, f ] ,  [g, l, m], [h, n, o] }, M = { [b, d], ~, k] } and F = { [a], [i], [p], [q], Jr] }. 

M-alternating and M-augmenting paths in the bi-matching problem are 
denoted by our notations in the following. Note that we distinguish M-alter- 
nating path from M-augmenting path in this paper. 

Definition 3.1. An M-alternating path (with respect to P) is a path 

~¢~] - ml - m2 . . . . .  m2k i - m2k 

or 

m l -- m2 . . . . .  m2k-i -- m2k 

with (f,  ml) and (m2i, m2i+J) in E \ M  for k>>.O, l<~i<~k- 1, [f] in F, and 
[m2j-1, m2j] in M for 1 ~< j <~ k, where E \ M denotes the set of edges that are not 
in cliques of M. 

An M-augmenting path is a path 

- m ,  - m 2  . . . . .  m 2 , - 1  - m 2 k  - 

Fig. 1. A 4-clique-free graph and its clique partition. 
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with (fl,m~), (m2k,f2) and (m2~,m2i+l) i n E \  M for k >t O, 1 <<. i<~ k -  1, ill] and 
if2] in F, and [rn2j-~,m21] in M f o r  1 <~j<<.k. 

The C-augmenting path, which has two types C1 and (?2, is crucial in our  
algorithm and defined as follows. 

Definition 3.2. A Cl-augmenting path (with respect to P) is a path 

DC,] - ml - m2 . . . . .  m2k-i - m2k - [h, t2, t3] - If2], Dq] 

with (fl, ml), (m2e, tl ), (t2,f2), (t3,f3) and (m2~, m2i+l) in E \ M for 1 ~< i ~< k - 1, 
[f~], If2] and If3] in F, [t~,t2,t3] in T and [m2j-~,m2j] in M for l<<.j<~k. 

A Cz-augmenting path (with respect to P) is a path  

[11] -- ml - m2 . . . . .  mzk-i - -  m 2 k  - -  [tl, tz, t3] = if2] 

with (fl, m 1), (m2k, tl), (t~,f2), (t3,fz) and (mzi, mE,+1) in E \ M for 1 ~<i~< k -  1, 
[f~] and be2] in F, [h,tz,t3] in T and [m2j-~,m2j] in M for l<.j<~k.  

For  example, in Fig. 1 [ a ] -  b -  d -  [h ,n ,o] -  [q], [r] is a Cl-augmenting 
path and [ a ] -  b -  d -  [g, l, m] = [p] is a C2-augmenting path  with respect to 
the clique parti t ion P. 

The vertices in a C-augmenting path can be re-parti t ioned to reduce the 
number  of  cliques of  P by one. For  a Cl-augmenting path [ f l ] -  
m l  - -  m 2  . . . . .  m 2 k - i  - -  m 2 k  - -  [ t l ,  t2 ,  t3] - -  i f 2 ] ,  I f3 ] ,  removing cliques I l l ] ,  

Im2i_l,m2i], l<<.i<~k, [tt,t2,t3], If2] and [[i] f rom P and then adding cliques 
[fl~ ml], [m2i, m2i+l], 1 ~< i ~< k - 1, [m2k, tl], [re,f2] and [t3,f3] into P will reduce 
the number  of  cliques in P by one. Similarly, for a C2-augmenting path 
Ill] - ml - m2 . . . . .  m2k-l -- m2k -- [h,t2,t3] = If2], removing cliques ~fl], 
[m2i-l, mEi], 1 <<. i <<. k, [q, t2, t3] and De2] f rom P and then adding cliques Ill, ml], 
[m2i, m2i+~], 1 ~< i ~< k -  l, [reEk, t l ]  and [re, t3,f2] into P also decreases the size of  
P by one. 

For  example, the clique part i t ion in Fig. 1 can be adjusted to 

{ [i], [p], [a, b], [d, hi, In, q], [o, r], [/', k], [c, e, f ] ,  [g, l, m] } 

using the Cl-augmenting path [a] - b - d -  [h, n, o] - [q], jr]. 

R e m a r k  3.1. There are other  types of  augmenting paths that can reduce the size 
of  P. However ,  they are either hard to find in polynomial  time [4] or not  
important  for the correctness of  our  algorithm. 

Procedure  A 4 C F G  is shown in Table 2. The input to the procedure is a 4- 
clique-free graph G. A 4 C F G  first finds a maximal 3-clique set T (tri-matching) 
for G. It then finds a maximum 2-clique set M (bi-matching) for G \ T. Finally, 
one by one it finds a C-augmenting path and adjusts the current  clique parti- 
tion till no C-augmenting path can be found. 
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Table 2 
The procedure A4CFG 

Input: A 4-clique-free graph G = (V, E). 
Outlmt: A clique partition P for G. 
1. T , M , F ~ ( ~ ;  
2. Find a maximal 3-clique set T for G; 
3. Find a maximum 2-clique set M for G~T; 
4. Let F be the set of vertices in (G~T)\M; 
5. P*-- TUMUF; 
6. while 3 C-augmenting path D with respect to P do 
7. Adjust P according to D; 
8. return partition P; 
9. end. 

To find a C-augmenting path can be done in polynomial time by a 
straightforward (brute-force) method. Adjusting a C-augmenting path reduces 
the number of  free vertices of  P by at least two. Therefore, the total time for 
finding C-augmenting paths and adjusting partitions is polynomial. The time 
complexity of  procedure A 4 C F G  is thus polynomial since to find a maximal 3- 
clique partition set and a maximum 2-clique partition set is also solvable in 
polynomial time. Note that to find a maximum 2-clique-partition set is well 
known as the maximum matching problem. 

For  each C-augmenting path the bi-matching in the adjusted clique partition 
P is maximum for G \ T. That  is, adjusting the clique partition by C-aug- 
menting paths does not generate M-augmenting paths. This property is im- 
portant  for our analysis in the next section. 

Lemma 3.1. Let  P = T U M U F be a clique partition for  a 4-clique-free graph G 
and D be a C-augmenting path for  G with respect to P. I f  M is a max imum bi- 
matching for  G \ T, M'  o f  the adjusted partition P' = T ~ U M ~ U F r by D is a 
max imum hi-matching for  G \ T'. 

Proof. We consider the case for D being a Cn-augmenting path only. The case 
for D being a C2-augmenting path can be discussed similarly. Let D be 
[ , f l ]  - -  m l  - -  m 2  . . . . .  m 2 k - i  - -  m 2 k  - -  [ t l ,  t2, t3]  - -  I f 2 ] ,  []"3]. We assume otherwise 
that H of [gl] - nl - n2 . . . . .  n2t-q - n21 - [g2] is an M-augmenting path with 
respect to M'  after adjusting P by D with f l  # gl and f l  # g2. Let mp = nF¢ be 
the first vertex that beginning from f~, D encounters H. That  is, vertices m j, 
l <~j<~p - 1, are not in H. Let nq, = mq be the first vertex that beginning from 
gl, H encounters D. That  is, vertices n j, 1 <~ j ~< q' - 1, are not in D. Let mr = n,~ 
be the first vertex that beginning from m2k, D encounters H. That  is, vertices m j, 
r + 1 ~< j ~< 2k are not in H. Let ns, = ms be the first vertex that beginning from 
g2, H encounters D. That  is vertices nj, st + 1 ~<j ~< 2l, are not in D. There are 
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771 +.1 . ~ n f '  -~- 17111 ...... TlSl - -  Iris "1 ..... - 1  :' 1 

Fig. 2. Intersect ion of  D and  H: case 1. 

four cases for the position relation of vertices mp and nq and that of vertices mr 
and n,, which is shown in Figs. 2-5. 

It can be seen that no matter which case there is an M-augmenting path 
among free vertices f l ,  gl, and g2, with respect to M, which is a contradiction. 
For example, in the fourth case (see Fig. 5) with q < p and r < s path 
[gl]  - -  n l  . . . . .  nq, - -  mq+l  - -  mq+2 . . . . .  ms - -  n # + l  . . . . .  n21 - -  [g2] is a n  
augmenting path with respect to M. Therefore, the lemma holds. [] 

4. The charge scheme 

In this section we prove that procedure A4CFG approximates n - ~b(G) for 
4-clique-free graphs with ratio i> 3/4. 

Let  P = T U M U F  be the clique partition found by A4CFG, where 
T = { t l , t 2 , . . .  ,tp}, M = {ml,m2,. . .  ,mq} and F = { f l , f2 , . . .  ,fs}. Let /5 = 

U M U F be the minimum clique partition for G, where T = {tl, t2,---, t~}, 
h~/= {m],m2,.. .  ,rh~} a n d F  = { f l , f2 , . . .  ,/~.} be the sets of 3-, 2- and 1-cliques 
of/5, respectively. 

We use a charge scheme which assigns weights w to cliques of P and/5. The 
initial weights of cliques are assigned as follows: 

w(t) = -1  for t E T, 

w(m) = O f o r m E M ,  
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n,s:m, ~ l ~  1 - - - n . ~ .  ~ - 1 ~ ' ~  

L ~  ~-n~. ~ A  mr-,.. 

Fig. 3. Intersection of D and H: case 2. 

i 1 1 
B y  "" I'i'lq ~ m r  1 1'18~ 1"?1 -'+.t,~>-o ...... ~b<gT  ~ + ,  

Fig. 4. Intersection of  D and H: case 3. 

w(f) = +1 for f e F, 

w(t )=0 for t e l  ?, 

w(rh)=-0.5 for th6M, 
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. . . .  . . . . . .  

rap = rip, mr  = nr, ~ t ~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m s ~ ~  1 

Fig. 5. Intersection of D and H: case 4. 

w ( / ) = - I  f o r f 6 F .  

Let w(S) = }--~,es w(s) for any subset S of  cliques in P U/5. By this weight as- 
signment we show a necessary and sufficient condition for A4CFG to have 
ratio 3/4. 

Lemma 4.1. The approximation ratio of  A4CFG is ~> 3/4 / f  and only i f  
w(F) + w(T) + w(M) + w(P) <. O. 

Proof. To have the approximation ratio, it needs 

n - ( p + q + s )  3 

n - (ct + fl q- y ) >~ -4" 

Since 3~ + 2fl + 7 = 3p + 2q + s = n, the above equation can be simplified to 
s - p - fl/2 - y ~< 0. Therefore, w(F) + w(T) + w(M) + w(F) <, O. [] 

The remaining work is to show that the total weight of  cliques in P U/5 is 
~< 0. To achieve this, we propagate the positive weights of  the 1-cliques f in F 

~ - 

to the cliques in F, M, and T. The propagation scheme is shown in Table 3. 
We shall show that the weight of  every clique in P U t5 is ~< 0 after this prop- 
agation. 
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Table 3 
The charge scheme 

1. Vt E T, w(t) +-- - I . 0 ;  Vm E M,  w(m) ,--- 0; 
2. V f  E F,  w ( f )  ~-- + 1.0; Vi E T, w(t-) +-- 0; 
3. v,h e M, w(,h) , -  -0 .5;  VfeP, w(f)---1.O; 
4. Vv E V, visited(v) +-- false;  
5. Vf = [a] ~ F, w(a) = +1.0 and w(f) = 0; 
6. while (there is a vertex a' with visited(a') = f a l se  and w(a') > O) 
7. { case [a'] = f E/7: 
8. wl / )  ~- w @  + w(a'); 
9. case [a',b 1 = th E M and visited(b)---false: 
10. w(th) *-- w(rh) + min{+0.5,  w(a')}; 
11. w(b) +-- max{0, w(a') - 0.5}; 
12. visited(b) = true; 
13. case [a', b] E M and visited(b)=false: 
14. w(b) ,-- w(a'); 
15. visited(b) = true; 
16. case [a', b, c] E ]" and visited(b)=.false and visited(c)=false: 
17. w(b) =~-  w(a') /2;  
18. w(c) =*-- w(a') /2;  
19. visited(b) ~ true; 
20. visited(c) 4-- true; 
21. case [a', b, c] = t, E T: 
22. w(t,) +-- w(t,) + w(a'); 
23. visited(a') ~ true; 
24. w(a') ~- 0; 
25. ) 

The positive weights of 1-cliques f E F are propagated as follows. In 
propagation the related induced graphs are also established for later analysis. 
For each 1-clique f = [a] in F, we first transfer its weight to vertex a such that 
w(f)  = 0 and w(a) = +1.  There are five cases for further propagation for a 
vertex a' with a positive weight. That is, the propagation stops when no vertices 
of positive weights exist. We first claim that all visited vertices of  G will not be 
visited again to resolve the case conflicts in the following. For the first case, if 
[a'] is a clique f E F, the weight of  vertex a' is charged to f such that 
w(f )  = w( f )  + w(a') and w(a') = 0. For the second case, if vertex a' is in a 2- 
clique [a', b] = rh E ~/,  the weight of vertex a I is charged to ~ up to +0.5 and 
the remaining weight of a r is charged to vertex b such that 
w(rh) = w(rh) + min{+0.5,  w(d)} ,  w(b) = max{0, w(a') - 0.5} and w(a') = O. 
For the third case, if vertex a' is in a 2-clique [a', b I E M, the weight is trans- 
ferred to b such that w(b) = w(a') and w(a') = 0. For the fourth case, if vertex 
a' is in a 3-clique [a', b, c] E T, the weight of vertex a' is equally charged to 
vertices b and c such that w(b) = w(c) = w(a') /2  and w ( d )  = 0. For the last 
case, if vertex a' is in a 3-clique t = [a', b, c] E T, the weight of  vertex a' is 
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Fig. 6. A 4-clique-free graph and its minimum clique partition. 

charged to t such that w(t)= w(t)+ w(a') and w(a')= 0. Note that in the 
above weight propagation vertices b and c should both be first visited. We shall 
show that no vertices can be visited twice or more. The process of propagating 
the weight of an f E F to other cliques is called a weight propagation process. 

An example of this charge propagation is shown in Figs. 6-9. The graph in 
Fig. 6 is a 4-clique-free graph and its minimum clique partition such that the 2- 
clique [e,i] is with a negative weight -0.5. The clique partition found by 
A4CFG is shown in Fig. 7 with negative weights on 3-clique [g, l, m] and 
[c, e,f] and positive weights on 1-cliques [a] and [i]. We consider the charge 
graph G[~] induced by the 1-clique [a] first. The weight of [a] is transfered to 
vertex a first. The weight is distributed to vertices b and c with 0.5 each. Since 
vertex c is a vertex in the 3-clique [c, e,f] E T, its weight is charged to [c, e,f] 
and stops. For vertex b, its weight is transfered to vertex d since [b, d] is a 2- 
clique in M. The weight of vertex d is equally distributed to vertices g and h 
with 0.25 each. The weight of vertex g is then charged to the 3-clique [g, l, m] 
and stops. The weight of vertex h is transfered to vertex n and then further 
distributed to vertices l and rn with 0.125 each. The weights of vertices l and m 
are then both charged to the 3-clique [g, l, m] and stops. For the 1-clique [i], 
since [e, i] is a 2-clique in ~/, 0.5 of its weight is charged to [e, i] and the other 
0.5 is charged to vertex e. The weight of vertex e is then charged to the 3-clique 
[c,e,f] and stops. The charge graphs G[al and G[i] are shown in Fig. 8. The 
weight distribution before charged to cliques in P is shown in Fig. 9. The final 
weight of 3-clique [g, l,m] is -1.0 + w(g) + w(l) + w(m) = -0.5. The final 
weight of 3-clique [c, e,f] = -1.0  + w(c) -+- w(e) ÷ w(f) = 0. The final weight 
of 2-clique [e, i] is -0.5 + 0.5 = 0. 

By the charge scheme it can be seen that the total weight w(P U/3) is un- 
changed after any weight propagation process. 
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+1.0 

Fig. 7. The clique partition found by A4CFG. 

Fig. 8. Two charge graphs Gi, ] and Gi:. 

Lemma 4.2. After each weight propagation process the total weight w(P U P) is 
unchanged. 

Proof. This is straightforward from the defined charge scheme in the weight 
propagation process. [] 

For each f = [a] c F, all the passed vertices and edges form a charge graph 
GU. Note that for the clique [a', b, c] in the above, only edges (a', b) and (a', c) 
are passed. 
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5 

Fig. 9. Weight distribution before charged to cliques in P. 
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Definition 4.1. For each f = [a] E F, the charge graph Gf = (Vf ,Ef)  is defined 
such that Vf is the set all vertices that have been charged a positive weight and 
Ef  is the set of all passed edges in the weight propagation process of  f .  

By the charge scheme the edges of  a path in Gf is alternating between ~t and 
M except that the path can end at a vertex in m E M or t E T. 

Lemma 4.3. For any Gf o f  f = [a], any path starting f rom vertex a is an M- 
alternating path except that the end vertex could be in a 2-clique m E M or a 3- 
clique t E T. 

Proof. This is proved by induction on the length of  the path. Let 
p = a - xl - x2 . . . . .  x~ for k/> 0 be a path of  Gf. It holds for the induction 
basis of p = a since a is a free vertex. Assume that the above holds for k = i. 
For  the induction step of  k = i + 1, xi cannot be a vertex in some 3-clique in T 
since such a vertex cannot transfer its weight to other vertices in the charge 
scheme and thus no further vertices are connected to it in the charge graph. If  
vertices xi-1 and xi form a 2-clique in M, vertices xi and xi+l are in the same 
clique in ~ /U T, that is, xi+l is a vertex in a clique in M U T. Otherwise, vertex 
x;+l is free and path p is M-augmenting, which contradicts Lemma 3.1. I f  
vertices x~-L and x~ do not form a 2-clique in M, vertex x~ is a vertex in M. 
Therefore, [xi,xi+l] is a 2-clique in M and p is an M-alternating path. [] 

It is easy to see that the cliques that are both in M and ~7/or both in T and 
are not in any charge tree. 
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1.emma 4.4. The vertices o f  the cliques in M n ~t and T N ]" are not in any charge 
graph GU. 

Proof. Vertices in M N A?/and T n T cannot be charged positive weights since 
no weight can be transferred in by vertices in 2-cliques of M. [] 

If two charge graphs share a common vertex, there will exist an augmenting 
path. By Lemma 3.1 this cannot happen. 

Lemma 4.5. All charge graphs are vertex disjoint. 

Proof. Otherwise, assume that vertex x is in two charge graphs GT and Gf, with 
f = [a] and f ' =  [a'] such that M-alternating paths [a] . . . . .  y -  x and 
[a'] . . . . .  y ' - x  are vertex-disjoint. If  [y ,x]EM and [y',x]•M, path 
[a] . . . . .  y - x - y '  . . . . .  [a'] is M-augmenting. If Iv, x] ~ m  and 
[y', x] ~ M, clique Ix, y, )/l must be in T. Thus, path 
[a] . . . . .  y -  y' . . . . .  [a'] is M-augmenting. Both cases contradict Lemma 
3.1. Therefore, no charge graphs share common vertices. [] 

We can actually show that a charge graph is a tree. Otherwise, there is a 
cycle in the charge graph such that the charge scheme will not end in charging 
positive weights of vertices to cliques. 

Fig. 10. A charge cycle cl - c~ . . . . .  c,~. 
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Lemma 4.6. F o r  a n y  f E F ,  t h e  c h a r g e  g r a p h  G f  i s  a t r e e .  

Proof. We assume otherwise that G f  with f = [a] is not a tree such that 
c l  - c 2  . . . . .  C m -  Cl in G f  is a cycle. By the charge scheme [ c l , c 2 , C m ]  is a 
clique in ]" and m is an odd number. Without loss of  generality, we assume that 
cl is the closest vertex to the free vertex a among vertices Cl, c 2 , . . . ,  c m ,  shown 
in Fig. 10. Therefore, by Lemma 4.3 the path from a to cl is M-alternating and 
2-cliques [ c 2 i , c ~ . + l ]  for 1 < < . i < ~ ( m - 1 ) / 2  are in final M. The execution of 
procedure A4CFG can be divided into two phases. The first phase finds a 
maximal 3-clique set T and then a maximum 2-clique set M. The second phase 
adjusts P by C-augmenting paths. 

Since [Cl, c2, c,,] is in 1", at least one of cl, c2 and Cm is a vertex in t ~ T found 
in the first phase. For  the case that Cm is such vertex in t = [ C , n , y , z ] ,  since 
[Cm-l, Cm] is a 2-clique in final M there is a C-augmenting path D passing C m - 1  

and c,, such that [c,,-i, Cm] is not a 2-clique in M found in the first phase. I f D  is 
of  C2-type (the Cl-type case is similar), it is of  form 
~ ]  - q l  - - q 2  . . . . .  q 2 k  - -C2 j -1  - -C2 j  . . . . . .  C m - 1  - - [ c m , y , z ]  = [X] for some 
free vertices p and x. For  the case that c2 is a vertex in some t E T, it can be 
discussed similarly. For  the case that cl is; a vertex in some t = [ c l , y , z ]  E T 

found in the first phase. Let the M-alternating path from a to cl be 
[ a ] -  d ~ -  d2 . . . . .  d h -  cl, where h is odd. Analogously, there is a C-aug- 
menting path D passing dh and Cl such that D is of  form 
[P] - q l  - q 2  . . . . .  q2k  - -  d 2 j  - d 2 j + l  . . . . . .  dh - [c l  , y , z ]  = [x], where p and x 
are free vertices. Therefore, if G U  contains a cycle, there exists at least one C- 
augmenting path after the first phase. 

We now classify the C2-augrnenting paths found in the second phase into the 
following 4-types. 
1. Type-l:  [hl] - m l  - m 2  . . . . .  m k  - -  C i  - -  C i + l  . . . . .  Ci+j - -  r l  - - r 2  . . . . .  

r t  - -  [tl, t2, t3] = [h2], which is shown in Fig. 11. 
2. Type-2: [hl] - m l  - m 2  . . . . .  m k  - c i  - c i - i  . . . . .  c i - j  - r l  - r2 . . . . .  r t  

- [ t l ,  t2,t3] = [h2], which is shown in Fig. 12. 
3. Type-3: [hi] - m l  - m 2  . . . . .  m k  - d i  - d i+ l  . . . . .  d i + j  - r l  - r2  . . . .  

- r l  - [q, t2, t3] = [h2], which is shown in Fig. 13. 
4. Type-4: [hi] - ml - m2 . . . . .  m k  - -  d i  - d i - i  . . . . .  d i - j  - r l  - r2 . . . .  

- r l  - [tl, t2, t3] = [h2], which is shown in Fig. 14. 
We can define type-~ Cl-augmenting paths similarly, where 1 ~< ~ ~< 4. 

Suppose that there are fl C-augmenting paths found in the second phase. Let 
D1,D2,... ,DI~ be the order that A4CFG finds them. At least one of them is 
Type-l ,  Type-2, or Type-3 as we discussed above. We have the following cases 
to discuss. 

1. If  D~ (the last one) is of  Type-1, before adjusting by D~ the M-augmenting 
path [hi] - m l  - m 2  . . . . .  m k  - c i  - c i - i  . . . . .  Cl - dh  - d h - i  . . . . .  d l  

-[a] exists. 
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. . . . . . .  

Fig. 11. Type-1 C: augmenting path. 

2. If  D~ is of Type-2, before adjusting by D[j  the M-augmenting path 
[hi] - ml - m2 . . . . .  mk - -  C i  - -  C i + l  . . . . .  Crn - -  Cl - -  dh - -  d h - I  . . . . .  d l -  

[a] exists. 
3. If D/~ is of Type-3, before adjusting by D~ the M-augmenting path 

[hi] - m l  - m 2  . . . . .  m k  - d i  - d i - t  . . . . .  d !  - [a] exists. 
All the above three cases contradict Lemma 3.1. If Dt~ is of Type-4, we use 

[hi] to play the role of [a] and consider the C-augmenting paths 
D1, D2, . . . ,  D/~-l for the above three cases further. Then some o f D l , . . . ,  D¢_j is 
of Type-l, Type-2, or Type-3. We can show that an M-augmenting path exists 
also, which is a contradiction. Therefore, the assumption that GU has a cycle is 
false. This completes the proof. [] 

Remark 4.1. In the above lemma, we consider simpler C-augmenting paths 
only. More complicated cases like those in Lemma 3.1 can be discussed also. 
However, those cases all results in M-augmenting paths, which is a contradic- 
tion similarly. 
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Fig. 12. Type-2 C2 augmenting path. 

We can now show tha t  any 2-clique rh is charged at  mos t  once and thus has a 
final weight  o f  at  mos t  0. 

L e m m a  4.7. For any 2-clique rh : Ix,y] E ~1, vertices x and y cannot be in 
different charge trees. 

Proof.  Otherwise,  there is a 2-clique rh = [x,y] such that  vertex x is in Gf and 
vertex y is Gf, with f = [a] and f '  = [d], where a ~ d .  By L e m m a  4.3 pa th  
[a] . . . . .  x - y  . . . . .  [a'] is M-augment ing ,  which is a contradic t ion  by 
L e m m a  3.1. []  

L e m m a  4.8. After all weight propagation processes, the weight of  any 2-clique 
rh E ~l is <~ 0. 

Proof.  Let  rh = [a', b] be a 2-clique in M. I f  rh is not  in any  charge tree, 
its weight is -0 .5  since its weight is not  changed f rom the initial weight  assign- 
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Fig. 13. Type-3 C2 augmenting path. 

ment. By Lemma 4.6 and Lemma 4.7, rh is in at most one charge tree Gf and 
rh can be charged from f at most once. By the second case of the 
charge scheme, th is charged more weight one time only when vertex b is first 
visited. The charged weight is at most +0.5. Thus the final weight of ~h is at 
most 0. [] 

It can be shown that the final weight of t E T is at most 0. 

Lemma 4.9. For any 3-clique t = Ix, y, z] E T, each vertex of  x, y and z can be in at 
most one charge tree. 

Proof. This follows from Lemma 4.5 directly. [] 

Lemma 4.10. After all weight propagation processes the weight o f  any 3-clique 
t E  T is <~0. 
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Fig. 14. Type-4 C2 augmenting path. 
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Proof. Let t = [d,b,c] be a 3-clique in T. By Lemma 4.9 each vertex in t is 
charged at most +0.5. On the other hand, if it is not charged +0.5, it is charged 
at most +0.25. The Cl- and Cz-augmenting paths are the only two cases such 
that the total charged weight of  the three vertices in t is more than +1. 
However, by procedure A4CFG there are no C-augmenting paths with respect 
to the final P. Thus, the final weight of t is at most 0, which is the sum of the 
initial weight of t and the weights of  the three vertices in t in the weight 
propagation processes. [] 

The final weight of  any 1-clique in P is at most 0, 

1.emma 4.11. After all weight propagation processes, the weight o f  any 1-clique 
f E P i s < ~ O .  
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Proof. By Lemma 4.6 any vertex a o f f  = [a] can be in at most one charge tree. 
Therefore f can be charged at most +1 more. Thus the final weight o f f  is 
~<0. [] 

By the above lemmas the weights of cliques in P U/5 are all ~< 0. Therefore 
the total weight of cliques in P U P' is ~< 0. 

Corollary 4.1. After all weight propagation processes, the weight of  every clique 
in P U /s is <.0. 

Proof. This follows from Lemmas 4.8, 4.10, and 4.11. [] 

The main result for procedure A4CFG is now proved. 

Theorem 4.1. Procedure A4CFG has the approximation ratio >! 3/4. 

Proof. Let iw be the initial weights on cliques in P U/5 and fw be the final 
weights on cliques in P U/5 after all propagation processes. By Lemma 4.2 the 
total weight of all cliques after each propagation process is unchanged, that is, 

iw(F) + iw(T) + iw(F) + iw(f4) = Jiv(F) + fw(T) + fw(F) + fw([(4) 

Therefore, by Corollary 4.1 

fw(F) + fw(T) + fw(F) + fw(34) <<. O. [] 

Corollary 4.2. The algorithm A UC finds a clique partition P jbr a graph G such 
that (n - Ie l ) / (n  - ¢(a)) />  3/4. 

The ratio 3/4 is also the best that the procedure A4CFU, can achieve. 

Theorem 4.2. There is a 4-clique-free graph G such that the procedure A4CFG 
has the approximation ratio 3/4. 

Proof. For the 4-clique-free graph in Fig. 15, A4CFG could find a clique 
partition {[a],[c,f],[b,d,e]}. However, the minimum clique partition is 
{[a,b,c],[d,e,f]}. The approximation ratio for this example is 
( 6 -  3 ) / ( 6 -  2) = 3/4. [] 

Corollary 4.3. The approximation ratio °? of  algorithm A UC is 314. 

A consequence of this result is an algorithm with approximation ratio 1.5 
for the minimum clique partition problem for 4-clique-free graphs, therefore 
for tripartite graphs. 
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Theorem 4.3. There is a polynomial-time algorithm that finds a clique partition 
for 4-clique-free graphs such that the number of cliques in it is no more than 1.5 
times that of  the minimum clique partition. 

ProoL Let G be a 4-clique-free graph of n vertices and P is a clique partition 
found by A4CFG. Since ( n - I P [ ) / ( n -  q~(G)) >~ 3/4 and q~(G)/> n/3, 
IPI ~< n/2 <<. 1.5~b(G). [] 

Corollary 4.4. There & a polynomial time algorithm that finds a clique partition 
for tripartite graphs such that the number o f  cliques in it is no more than 1.5 times 
that of  the minimum clique partition. 

For  graph coloring, if a graph has no independent set of  size more than 3, its 
chromatic number can be approximated with ratio 1.5. 

Theorem 4.4. There & a polynom&l-time algorithm that colors vertices of  4- 
independent-set-free graph such that the number of  used colors is no more than 
1.5 times that of  its minimum coloring. 

Proof. This follows from Theorem 4.3 directly. [] 

5. Conclusion 

We have presented a polynomial-time graph coloring algorithm of  ~ = 3/4, 
which improves the previous best result 213. It is natural to further improve this 
ratio, or to show that 3/4 is a bound. 

In the direction to improve the ratio, we try to follow the technique used in 
this paper, that is, to find more complicated augmenting paths for adjustment. 
However, there are two obstacles. The first is that to find more complicated 
augmenting paths for a better ratio is not known to be polynomial-time solv- 

Fig. 15. An example with approximation ratio 3/4. 
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able. The second is for the analysis. We find no nice equation like the equation in 
Lemma 4.1, which is independent of n. This makes the analysis difficult. 
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