
I N F O R M A T I O N
SCIENCES

A.N ~N~I~KNA~C~AL JOURKAL

ELSEVIER Information Sciences 114 (1999) 105-126

Three-quarter approximation for the number
of unused colors in graph coloring

Wen-Guey Tzeng *, Gow-Hsing King
Department of Computer and Information Science, National Chiao Tung University, Hsinchu 30050,

Taiwan, ROC

Received 27 January 1997; accepted 27 April 1998

Communicated by Kao Ming Yang

Abstract

The graph coloring problem is to color vertices of a graph so that no adjacent vertices
are of the same color. The problem is difficult not only in finding the optimal solution,
but also in approximation. Since it is hard to approximate the minimum number of
colors, we consider to approximate the maximum number of unused colors. This ap-
proximation is based on saving colors with respect to the most naive coloring method,
which colors each vertex with a different color. In this paper we propose a polynomial-
time graph coloring algorithm with approximation ratio 3/4 for the maximum number
of unused colors, which improves the previous result 2/3. © 1999 Elsevier Science Inc.
All rights reserved.

Keywords: Graph coloring; Approximation

1. Introduction

Let G be an undi rec ted s imple graph. The graph coloring p r o b l e m is to co lor
vertices o f G so tha t no ad jacent vertices are o f the same color . The chromatic
number z(G) o f G is the m i n i m u m n u m b e r o f colors a m o n g such color ings. The
g raph co lor ing p r o b l e m has been s tudied extensively in the pas t and has many
app l i ca t ions in solving o ther p rob l ems [6]. However , the p r o b l e m is difficult no t

* Corresponding author. Fax: 886 35 721 490; e-mail: tzeng@cis, nctu.edu.tw

0020-0255/99/$19.00 © 1999 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 0 - 0 2 5 5 (9 8) 1 0 0 5 8 - 0

106 V~-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-426

only in finding the optimal solution, but also in approximation. The best
polynomial-time approximation algorithm for z(G) is of ratio
O(n(log log n)2/(1og n)3), where n is the number of vertices of G. If z(G) is a
constant, such as 3, the approximation ratio can be slightly improved [2,10].
Lund and Yanakakis [9] show that there is a constant c > 0 such that no
polynomial-time graph coloring algorithm can have an approximation ratio
better than n ~ unless P = N P . Note that O(n(log log n)2/(log n) 3) is greater
than n e for any e > 0.

Since it is hard to approximate z(G), we consider to approximate n - z(G),
called the maximum number of unused colors [3,7]. This approximation is based
on saving colors with respect to the most naive coloring method, which colors
each vertex with a different color. This approximation is to maximize the ap-
proximation ratio), = (n - f l (G)) / (n - z(G)), where fl(G) is the number of
colors found by a polynomial-time graph coloring algorithm. If 7 is 1, fl(G) is
equal to z(G). We note that a constant t' does not imply that z(G) can be ap-
proximated within some constant ratio. Demange et al. [3] propose an algorithm
of 7 = 1/2. Later, Hassin and Lahav [7] propose another algorithm of y = 2/3.

To see the importance of approximation from this direction, we examine the
value z(G). The current result on approximating z(G) works only for very small
z(G). If z(G) is greater than O((log n)3/(log log n)2), the approximation
works no better than a naive coloring algorithm in the worst case. However,
for large z(G) an algorithm for approximating n - z(G) will work better. For
example, if z(G) is n/lO and the approximation ratio ? is 3/4, the algorithm can
color G with less than (13/40)n colors.

In this paper we propose a polynomial-time graph coloring algorithm of
t' = 3/4. To explain our algorithm better, we use clique cover to describe graph
coloring. The clique cover problem is to partition the vertices of G into vertex
sets V1, V2,..., Vk such that each V~, 1 ~< i ~< k, induces a clique. Let ~b(G) be the
minimum number of cliques to which the vertices of G can be partitioned. To
find the minimum coloring for G is equivalent to find the minimum clique cover
for G, the complimentary graph of G, that is, 4~(G) = z(G). The clique cover
problem is NP-complete even when k is fixed to 3. It remains NP-complete
when graphs are restricted to have maximum cliques of size at most 3 (4-clique-
free graphs) [5].

The key part of our approximation algorithm is to approximate n - ~b(G)
for 4-clique-free graphs within ratio 3/4. The algorithm uses a concept similar
to augmenting path in the matching problem, however, more complicated. We
use a charge scheme to distribute weights of single-vertex cliques found by our
algorithm to 3-cliques found by our algorithm as well as to 1-cliques and 2-
cliques in the optimal partition. A consequence of this result is a clique cover
algorithm of approximation ratio 1.5 for the minimum number of cliques for 4-
clique-free graphs. We note that the set of tripartite graphs is a subset of 4-
clique-free graphs.

W.-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-126

2. The algorithm A U C

107

Our graph coloring algori thm A U C in Table 1, which denotes "approxi -
mat ing unused cliques", approximates n - ~b(G) with ratio ~> 3/4.

A U C first finds a maximal 4-clique set S f rom G. It then removes S f rom G
to induce a 4-clique-free graph G' and calls procedure A 4 C F G , which denotes
"approximat ing 4-clique-free graphs" , to find a clique part i t ion P ' for G'. The
max imum clique in U is at mos t 3 and G' has n~= n - 4 [S] vertices. I f
(n' - IP'l)/(n' - @(G~)) 1> 3/4, the 4-clique set S together with P ' form a clique
part i t ion for G and approximate n - ~b(G) with ratio 314.

Theorem 2.1. Assume that procedure A 4 C F G approximates n - O(G) for 4-
clique-free graphs with ratio 3/4. The algorithm A UC finds a clique partition P
for G with (n - I P I) / (n - ~ (G)) /> 3/4.

Proof. n - @(G) is at mos t 4lSI + n' - @(G0 = n - @(G'). The size o f clique
part i t ion P = S U U is IS[+]P']. Therefore,

3 n~ n - I P I = n - I S I - le'l = 31sl + (n ' - IP'I) > / ~ (4 1 s I + - q~(G'))

3 (n - ~ (c ')) / > 3 (n _ ~ (c)) . []

3. The procedure A4CFG

Procedure A 4 C F G finds a clique part i t ion P for a 4-clique-free graph G o f n
vertices such that (n - IPl)/(n - ok(G)) >7 3/4. We assume that G = (V ,E) is 4-
clique-free hereafter if not stated otherwise. A set o f 3-cliques without c o m m o n
vertices is a tri-matching of G, while a set o f 2-cliques without c o m m o n vertices
is a bi-matching of G. We shall use matching and clique-partition interchange-

Table 1
The algorithm AUC

Input: A graph G= (V,E).
Output: A clique partition P for G.
1. S, P, P' ~-- O;
2. Find a maximal 4-clique set S for G;
3. G' ~ G~S;
4. P' ~- A4CFG(G');
5. P ~-- SuP'
6. end.

108 W.-G. Tzeng. G.-H. King/Information Sciences 114 (1999) 105-126

ably, by which readers should not be confused. Procedure A4CFG uses the
concept of augmenting path, which we call C-augmenting path, in contrast to
the M-augmenting path in solving the maximum (bi-) matching problem [8]. A
C-augmenting path is used to reduce the number of cliques in a clique partition
by one.

Let P = T U M tO F be a clique partition for G and T, M, and F be the sets of
3-, 2-, and l-cliques in P, respectively. The vertices of l-cliques are also called
the Jkee vertices. For example, for the graph in Fig. 1, P = {[a],[i],
[/7],[q], [r], [b,d], [j,k], [c,e,f], [g, l,m], [h,n,o]} is a clique partition with
T = { [c, e, f] , [g, l, m], [h, n, o] }, M = { [b, d], ~, k] } and F = { [a], [i], [p], [q], Jr] }.

M-alternating and M-augmenting paths in the bi-matching problem are
denoted by our notations in the following. Note that we distinguish M-alter-
nating path from M-augmenting path in this paper.

Definition 3.1. An M-alternating path (with respect to P) is a path

~¢~] - ml - m2 m2k i - m2k

or

m l -- m2 m2k-i -- m2k

with (f, ml) and (m2i, m2i+J) in E \ M for k>>.O, l<~i<~k- 1, [f] in F, and
[m2j-1, m2j] in M for 1 ~< j <~ k, where E \ M denotes the set of edges that are not
in cliques of M.

An M-augmenting path is a path

- m , - m 2 m 2 , - 1 - m 2 k -

Fig. 1. A 4-clique-free graph and its clique partition.

W.-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-126 109

with (fl,m~), (m2k,f2) and (m2~,m2i+l) i n E \ M for k >t O, 1 <<. i<~ k - 1, ill] and
if2] in F, and [rn2j-~,m21] in M f o r 1 <~j<<.k.

The C-augmenting path, which has two types C1 and (?2, is crucial in our
algorithm and defined as follows.

Definition 3.2. A Cl-augmenting path (with respect to P) is a path

DC,] - ml - m2 m2k-i - m2k - [h, t2, t3] - If2], Dq]

with (fl, ml), (m2e, tl), (t2,f2), (t3,f3) and (m2~, m2i+l) in E \ M for 1 ~< i ~< k - 1,
[f~], If2] and If3] in F, [t~,t2,t3] in T and [m2j-~,m2j] in M for l<<.j<~k.

A Cz-augmenting path (with respect to P) is a path

[11] -- ml - m2 mzk-i - - m 2 k - - [tl, tz, t3] = if2]

with (fl, m 1), (m2k, tl), (t~,f2), (t3,fz) and (mzi, mE,+1) in E \ M for 1 ~<i~< k - 1,
[f~] and be2] in F, [h,tz,t3] in T and [m2j-~,m2j] in M for l<.j<~k.

For example, in Fig. 1 [a] - b - d - [h ,n ,o] - [q], [r] is a Cl-augmenting
path and [a] - b - d - [g, l, m] = [p] is a C2-augmenting path with respect to
the clique parti t ion P.

The vertices in a C-augmenting path can be re-parti t ioned to reduce the
number of cliques of P by one. For a Cl-augmenting path [f l] -
m l - - m 2 m 2 k - i - - m 2 k - - [t l , t2 , t3] - - i f 2] , I f3] , removing cliques I l l] ,

Im2i_l,m2i], l<<.i<~k, [tt,t2,t3], If2] and [[i] f rom P and then adding cliques
[fl~ ml], [m2i, m2i+l], 1 ~< i ~< k - 1, [m2k, tl], [re,f2] and [t3,f3] into P will reduce
the number of cliques in P by one. Similarly, for a C2-augmenting path
Ill] - ml - m2 m2k-l -- m2k -- [h,t2,t3] = If2], removing cliques ~fl],
[m2i-l, mEi], 1 <<. i <<. k, [q, t2, t3] and De2] f rom P and then adding cliques Ill, ml],
[m2i, m2i+~], 1 ~< i ~< k - l, [reEk, t l] and [re, t3,f2] into P also decreases the size of
P by one.

For example, the clique part i t ion in Fig. 1 can be adjusted to

{ [i], [p], [a, b], [d, hi, In, q], [o, r], [/', k], [c, e, f] , [g, l, m] }

using the Cl-augmenting path [a] - b - d - [h, n, o] - [q], jr].

R e m a r k 3.1. There are other types of augmenting paths that can reduce the size
of P. However , they are either hard to find in polynomial time [4] or not
important for the correctness of our algorithm.

Procedure A 4 C F G is shown in Table 2. The input to the procedure is a 4-
clique-free graph G. A 4 C F G first finds a maximal 3-clique set T (tri-matching)
for G. It then finds a maximum 2-clique set M (bi-matching) for G \ T. Finally,
one by one it finds a C-augmenting path and adjusts the current clique parti-
tion till no C-augmenting path can be found.

110 W.-G. Tzeng, G.-H. King/Information Sciences 1t4 (1999) 105-126

Table 2
The procedure A4CFG

Input: A 4-clique-free graph G = (V, E).
Outlmt: A clique partition P for G.
1. T , M , F ~ (~ ;
2. Find a maximal 3-clique set T for G;
3. Find a maximum 2-clique set M for G~T;
4. Let F be the set of vertices in (G~T)\M;
5. P*-- TUMUF;
6. while 3 C-augmenting path D with respect to P do
7. Adjust P according to D;
8. return partition P;
9. end.

To find a C-augmenting path can be done in polynomial time by a
straightforward (brute-force) method. Adjusting a C-augmenting path reduces
the number of free vertices of P by at least two. Therefore, the total time for
finding C-augmenting paths and adjusting partitions is polynomial. The time
complexity of procedure A 4 C F G is thus polynomial since to find a maximal 3-
clique partition set and a maximum 2-clique partition set is also solvable in
polynomial time. Note that to find a maximum 2-clique-partition set is well
known as the maximum matching problem.

For each C-augmenting path the bi-matching in the adjusted clique partition
P is maximum for G \ T. That is, adjusting the clique partition by C-aug-
menting paths does not generate M-augmenting paths. This property is im-
portant for our analysis in the next section.

Lemma 3.1. Let P = T U M U F be a clique partition for a 4-clique-free graph G
and D be a C-augmenting path for G with respect to P. I f M is a max imum bi-
matching for G \ T, M' o f the adjusted partition P' = T ~ U M ~ U F r by D is a
max imum hi-matching for G \ T'.

Proof. We consider the case for D being a Cn-augmenting path only. The case
for D being a C2-augmenting path can be discussed similarly. Let D be
[,f l] - - m l - - m 2 m 2 k - i - - m 2 k - - [t l , t2, t3] - - I f 2] , []"3]. We assume otherwise
that H of [gl] - nl - n2 n2t-q - n21 - [g2] is an M-augmenting path with
respect to M' after adjusting P by D with f l # gl and f l # g2. Let mp = nF¢ be
the first vertex that beginning from f~, D encounters H. That is, vertices m j,
l <~j<~p - 1, are not in H. Let nq, = mq be the first vertex that beginning from
gl, H encounters D. That is, vertices n j, 1 <~ j ~< q' - 1, are not in D. Let mr = n,~
be the first vertex that beginning from m2k, D encounters H. That is, vertices m j,
r + 1 ~< j ~< 2k are not in H. Let ns, = ms be the first vertex that beginning from
g2, H encounters D. That is vertices nj, st + 1 ~<j ~< 2l, are not in D. There are

W.-G. Tzeng, G.-H. K i n g / I n f o r m a t i o n Sciences 114 (1999) 105-126 111

771 +.1 . ~ n f ' -~- 17111 TlSl - - Iris "1 - 1 :' 1

Fig. 2. Intersect ion of D and H: case 1.

four cases for the position relation of vertices mp and nq and that of vertices mr
and n,, which is shown in Figs. 2-5.

It can be seen that no matter which case there is an M-augmenting path
among free vertices f l , gl, and g2, with respect to M, which is a contradiction.
For example, in the fourth case (see Fig. 5) with q < p and r < s path
[gl] - - n l nq, - - mq+l - - mq+2 ms - - n # + l n21 - - [g2] is a n
augmenting path with respect to M. Therefore, the lemma holds. []

4. The charge scheme

In this section we prove that procedure A4CFG approximates n - ~b(G) for
4-clique-free graphs with ratio i> 3/4.

Let P = T U M U F be the clique partition found by A4CFG, where
T = { t l , t 2 , . . . ,tp}, M = {ml,m2,. . . ,mq} and F = { f l , f2 , . . . ,fs}. Let /5 =

U M U F be the minimum clique partition for G, where T = {tl, t2,---, t~},
h~/= {m],m2,.. . ,rh~} a n d F = { f l , f2 , . . . ,/~.} be the sets of 3-, 2- and 1-cliques
of/5, respectively.

We use a charge scheme which assigns weights w to cliques of P and/5. The
initial weights of cliques are assigned as follows:

w(t) = -1 for t E T,

w(m) = O f o r m E M ,

112 W.-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-126

n,s:m, ~ l ~ 1 - - - n . ~ . ~ - 1 ~ ' ~

L ~ ~-n~. ~ A mr-,..

Fig. 3. Intersection of D and H: case 2.

i 1 1
B y "" I'i'lq ~ m r 1 1'18~ 1"?1 -'+.t,~>-o ~b<gT ~ + ,

Fig. 4. Intersection of D and H: case 3.

w(f) = +1 for f e F,

w(t)=0 for t e l ?,

w(rh)=-0.5 for th6M,

W.-G. Tzeng, G.-H. King I Information Sciences 114 (1999) 105-126 113

.

rap = rip, mr = nr, ~ t ~

. m s ~ ~ 1

Fig. 5. Intersection of D and H: case 4.

w (/) = - I f o r f 6 F .

Let w(S) = }--~,es w(s) for any subset S of cliques in P U/5. By this weight as-
signment we show a necessary and sufficient condition for A4CFG to have
ratio 3/4.

Lemma 4.1. The approximation ratio of A4CFG is ~> 3/4 / f and only i f
w(F) + w(T) + w(M) + w(P) <. O.

Proof. To have the approximation ratio, it needs

n - (p + q + s) 3

n - (ct + fl q- y) >~ -4"

Since 3~ + 2fl + 7 = 3p + 2q + s = n, the above equation can be simplified to
s - p - fl/2 - y ~< 0. Therefore, w(F) + w(T) + w(M) + w(F) <, O. []

The remaining work is to show that the total weight of cliques in P U/5 is
~< 0. To achieve this, we propagate the positive weights of the 1-cliques f in F

~ -

to the cliques in F, M, and T. The propagation scheme is shown in Table 3.
We shall show that the weight of every clique in P U t5 is ~< 0 after this prop-
agation.

114 W.-G. Tzeng, G.-H. King I Information Sciences 114 (1999) 105-126

Table 3
The charge scheme

1. Vt E T, w(t) +-- - I . 0 ; Vm E M, w(m) ,--- 0;
2. V f E F, w (f) ~-- + 1.0; Vi E T, w(t-) +-- 0;
3. v,h e M, w(,h) , - -0 .5; VfeP, w(f)---1.O;
4. Vv E V, visited(v) +-- false;
5. Vf = [a] ~ F, w(a) = +1.0 and w(f) = 0;
6. while (there is a vertex a' with visited(a') = f a l se and w(a') > O)
7. { case [a'] = f E/7:
8. wl /) ~- w @ + w(a');
9. case [a',b 1 = th E M and visited(b)---false:
10. w(th) *-- w(rh) + min{+0.5, w(a')};
11. w(b) +-- max{0, w(a') - 0.5};
12. visited(b) = true;
13. case [a', b] E M and visited(b)=false:
14. w(b) ,-- w(a');
15. visited(b) = true;
16. case [a', b, c] E]" and visited(b)=.false and visited(c)=false:
17. w(b) =~- w(a') /2;
18. w(c) =*-- w(a') /2;
19. visited(b) ~ true;
20. visited(c) 4-- true;
21. case [a', b, c] = t, E T:
22. w(t,) +-- w(t,) + w(a');
23. visited(a') ~ true;
24. w(a') ~- 0;
25.)

The positive weights of 1-cliques f E F are propagated as follows. In
propagation the related induced graphs are also established for later analysis.
For each 1-clique f = [a] in F, we first transfer its weight to vertex a such that
w(f) = 0 and w(a) = +1. There are five cases for further propagation for a
vertex a' with a positive weight. That is, the propagation stops when no vertices
of positive weights exist. We first claim that all visited vertices of G will not be
visited again to resolve the case conflicts in the following. For the first case, if
[a'] is a clique f E F, the weight of vertex a' is charged to f such that
w(f) = w(f) + w(a') and w(a') = 0. For the second case, if vertex a' is in a 2-
clique [a', b] = rh E ~/, the weight of vertex a I is charged to ~ up to +0.5 and
the remaining weight of a r is charged to vertex b such that
w(rh) = w(rh) + min{+0.5, w(d)} , w(b) = max{0, w(a') - 0.5} and w(a') = O.
For the third case, if vertex a' is in a 2-clique [a', b I E M, the weight is trans-
ferred to b such that w(b) = w(a') and w(a') = 0. For the fourth case, if vertex
a' is in a 3-clique [a', b, c] E T, the weight of vertex a' is equally charged to
vertices b and c such that w(b) = w(c) = w(a') /2 and w (d) = 0. For the last
case, if vertex a' is in a 3-clique t = [a', b, c] E T, the weight of vertex a' is

W..-G. Tzeng, G-H. King/Information Sciences 114 (1999) 105-126 115

Fig. 6. A 4-clique-free graph and its minimum clique partition.

charged to t such that w(t)= w(t)+ w(a') and w(a')= 0. Note that in the
above weight propagation vertices b and c should both be first visited. We shall
show that no vertices can be visited twice or more. The process of propagating
the weight of an f E F to other cliques is called a weight propagation process.

An example of this charge propagation is shown in Figs. 6-9. The graph in
Fig. 6 is a 4-clique-free graph and its minimum clique partition such that the 2-
clique [e,i] is with a negative weight -0.5. The clique partition found by
A4CFG is shown in Fig. 7 with negative weights on 3-clique [g, l, m] and
[c, e,f] and positive weights on 1-cliques [a] and [i]. We consider the charge
graph G[~] induced by the 1-clique [a] first. The weight of [a] is transfered to
vertex a first. The weight is distributed to vertices b and c with 0.5 each. Since
vertex c is a vertex in the 3-clique [c, e,f] E T, its weight is charged to [c, e,f]
and stops. For vertex b, its weight is transfered to vertex d since [b, d] is a 2-
clique in M. The weight of vertex d is equally distributed to vertices g and h
with 0.25 each. The weight of vertex g is then charged to the 3-clique [g, l, m]
and stops. The weight of vertex h is transfered to vertex n and then further
distributed to vertices l and rn with 0.125 each. The weights of vertices l and m
are then both charged to the 3-clique [g, l, m] and stops. For the 1-clique [i],
since [e, i] is a 2-clique in ~/, 0.5 of its weight is charged to [e, i] and the other
0.5 is charged to vertex e. The weight of vertex e is then charged to the 3-clique
[c,e,f] and stops. The charge graphs G[al and G[i] are shown in Fig. 8. The
weight distribution before charged to cliques in P is shown in Fig. 9. The final
weight of 3-clique [g, l,m] is -1.0 + w(g) + w(l) + w(m) = -0.5. The final
weight of 3-clique [c, e,f] = -1.0 + w(c) -+- w(e) ÷ w(f) = 0. The final weight
of 2-clique [e, i] is -0.5 + 0.5 = 0.

By the charge scheme it can be seen that the total weight w(P U/3) is un-
changed after any weight propagation process.

116 W.-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105--126

+1.0

Fig. 7. The clique partition found by A4CFG.

Fig. 8. Two charge graphs Gi,] and Gi:.

Lemma 4.2. After each weight propagation process the total weight w(P U P) is
unchanged.

Proof. This is straightforward from the defined charge scheme in the weight
propagation process. []

For each f = [a] c F, all the passed vertices and edges form a charge graph
GU. Note that for the clique [a', b, c] in the above, only edges (a', b) and (a', c)
are passed.

W.-G. Tzeng, G.-H. King I Information Sciences 114 (1999) 105-126

5

Fig. 9. Weight distribution before charged to cliques in P.

117

Definition 4.1. For each f = [a] E F, the charge graph Gf = (Vf ,Ef) is defined
such that Vf is the set all vertices that have been charged a positive weight and
Ef is the set of all passed edges in the weight propagation process of f .

By the charge scheme the edges of a path in Gf is alternating between ~t and
M except that the path can end at a vertex in m E M or t E T.

Lemma 4.3. For any Gf o f f = [a], any path starting f rom vertex a is an M-
alternating path except that the end vertex could be in a 2-clique m E M or a 3-
clique t E T.

Proof. This is proved by induction on the length of the path. Let
p = a - xl - x2 x~ for k/> 0 be a path of Gf. It holds for the induction
basis of p = a since a is a free vertex. Assume that the above holds for k = i.
For the induction step of k = i + 1, xi cannot be a vertex in some 3-clique in T
since such a vertex cannot transfer its weight to other vertices in the charge
scheme and thus no further vertices are connected to it in the charge graph. If
vertices xi-1 and xi form a 2-clique in M, vertices xi and xi+l are in the same
clique in ~ /U T, that is, xi+l is a vertex in a clique in M U T. Otherwise, vertex
x;+l is free and path p is M-augmenting, which contradicts Lemma 3.1. I f
vertices x~-L and x~ do not form a 2-clique in M, vertex x~ is a vertex in M.
Therefore, [xi,xi+l] is a 2-clique in M and p is an M-alternating path. []

It is easy to see that the cliques that are both in M and ~7/or both in T and
are not in any charge tree.

! 18 W.-G. Tzeng, G.-H. King I Information Sciences 114 (1999) 105-126

1.emma 4.4. The vertices o f the cliques in M n ~t and T N]" are not in any charge
graph GU.

Proof. Vertices in M N A?/and T n T cannot be charged positive weights since
no weight can be transferred in by vertices in 2-cliques of M. []

If two charge graphs share a common vertex, there will exist an augmenting
path. By Lemma 3.1 this cannot happen.

Lemma 4.5. All charge graphs are vertex disjoint.

Proof. Otherwise, assume that vertex x is in two charge graphs GT and Gf, with
f = [a] and f ' = [a'] such that M-alternating paths [a] y - x and
[a'] y ' - x are vertex-disjoint. If [y ,x]EM and [y',x]•M, path
[a] y - x - y ' [a'] is M-augmenting. If Iv, x] ~ m and
[y', x] ~ M, clique Ix, y,)/l must be in T. Thus, path
[a] y - y' [a'] is M-augmenting. Both cases contradict Lemma
3.1. Therefore, no charge graphs share common vertices. []

We can actually show that a charge graph is a tree. Otherwise, there is a
cycle in the charge graph such that the charge scheme will not end in charging
positive weights of vertices to cliques.

Fig. 10. A charge cycle cl - c~ c,~.

W.-G. Tzeng, G.-H. King I Information Sciences 114 (1999) 105-126 119

Lemma 4.6. F o r a n y f E F , t h e c h a r g e g r a p h G f i s a t r e e .

Proof. We assume otherwise that G f with f = [a] is not a tree such that
c l - c 2 C m - Cl in G f is a cycle. By the charge scheme [c l , c 2 , C m] is a
clique in]" and m is an odd number. Without loss of generality, we assume that
cl is the closest vertex to the free vertex a among vertices Cl, c 2 , . . . , c m , shown
in Fig. 10. Therefore, by Lemma 4.3 the path from a to cl is M-alternating and
2-cliques [c 2 i , c ~ . + l] for 1 < < . i < ~ (m - 1) / 2 are in final M. The execution of
procedure A4CFG can be divided into two phases. The first phase finds a
maximal 3-clique set T and then a maximum 2-clique set M. The second phase
adjusts P by C-augmenting paths.

Since [Cl, c2, c,,] is in 1", at least one of cl, c2 and Cm is a vertex in t ~ T found
in the first phase. For the case that Cm is such vertex in t = [C , n , y , z] , since
[Cm-l, Cm] is a 2-clique in final M there is a C-augmenting path D passing C m - 1

and c,, such that [c,,-i, Cm] is not a 2-clique in M found in the first phase. I f D is
of C2-type (the Cl-type case is similar), it is of form
~] - q l - - q 2 q 2 k - -C2 j -1 - -C2 j C m - 1 - - [c m , y , z] = [X] for some
free vertices p and x. For the case that c2 is a vertex in some t E T, it can be
discussed similarly. For the case that cl is; a vertex in some t = [c l , y , z] E T

found in the first phase. Let the M-alternating path from a to cl be
[a] - d ~ - d2 d h - cl, where h is odd. Analogously, there is a C-aug-
menting path D passing dh and Cl such that D is of form
[P] - q l - q 2 q2k - - d 2 j - d 2 j + l dh - [c l , y , z] = [x], where p and x
are free vertices. Therefore, if G U contains a cycle, there exists at least one C-
augmenting path after the first phase.

We now classify the C2-augrnenting paths found in the second phase into the
following 4-types.
1. Type-l: [hl] - m l - m 2 m k - - C i - - C i + l Ci+j - - r l - - r 2

r t - - [tl, t2, t3] = [h2], which is shown in Fig. 11.
2. Type-2: [hl] - m l - m 2 m k - c i - c i - i c i - j - r l - r2 r t

- [t l , t2,t3] = [h2], which is shown in Fig. 12.
3. Type-3: [hi] - m l - m 2 m k - d i - d i+ l d i + j - r l - r2

- r l - [q, t2, t3] = [h2], which is shown in Fig. 13.
4. Type-4: [hi] - ml - m2 m k - - d i - d i - i d i - j - r l - r2

- r l - [tl, t2, t3] = [h2], which is shown in Fig. 14.
We can define type-~ Cl-augmenting paths similarly, where 1 ~< ~ ~< 4.

Suppose that there are fl C-augmenting paths found in the second phase. Let
D1,D2,... ,DI~ be the order that A4CFG finds them. At least one of them is
Type-l , Type-2, or Type-3 as we discussed above. We have the following cases
to discuss.

1. If D~ (the last one) is of Type-1, before adjusting by D~ the M-augmenting
path [hi] - m l - m 2 m k - c i - c i - i Cl - dh - d h - i d l

-[a] exists.

120 W.-G. Tzeng, G.-H. K i n g / InJbrmat ion Sc i ences 114 (1 9 9 9) 1 0 5 - 1 2 6

.

Fig. 11. Type-1 C: augmenting path.

2. If D~ is of Type-2, before adjusting by D[j the M-augmenting path
[hi] - ml - m2 mk - - C i - - C i + l Crn - - Cl - - dh - - d h - I d l -

[a] exists.
3. If D/~ is of Type-3, before adjusting by D~ the M-augmenting path

[hi] - m l - m 2 m k - d i - d i - t d ! - [a] exists.
All the above three cases contradict Lemma 3.1. If Dt~ is of Type-4, we use

[hi] to play the role of [a] and consider the C-augmenting paths
D1, D2, . . . , D/~-l for the above three cases further. Then some o f D l , . . . , D¢_j is
of Type-l, Type-2, or Type-3. We can show that an M-augmenting path exists
also, which is a contradiction. Therefore, the assumption that GU has a cycle is
false. This completes the proof. []

Remark 4.1. In the above lemma, we consider simpler C-augmenting paths
only. More complicated cases like those in Lemma 3.1 can be discussed also.
However, those cases all results in M-augmenting paths, which is a contradic-
tion similarly.

121

i

W..-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-126

Fig. 12. Type-2 C2 augmenting path.

We can now show tha t any 2-clique rh is charged at mos t once and thus has a
final weight o f at mos t 0.

L e m m a 4.7. For any 2-clique rh : Ix,y] E ~1, vertices x and y cannot be in
different charge trees.

Proof. Otherwise, there is a 2-clique rh = [x,y] such that vertex x is in Gf and
vertex y is Gf, with f = [a] and f ' = [d], where a ~ d . By L e m m a 4.3 pa th
[a] x - y [a'] is M-augment ing , which is a contradic t ion by
L e m m a 3.1. []

L e m m a 4.8. After all weight propagation processes, the weight of any 2-clique
rh E ~l is <~ 0.

Proof. Let rh = [a', b] be a 2-clique in M. I f rh is not in any charge tree,
its weight is -0 .5 since its weight is not changed f rom the initial weight assign-

122 W.-G. Tzeng, G.-H. King / InJbrmation Sciences 114 (1999) 105-126

Fig. 13. Type-3 C2 augmenting path.

ment. By Lemma 4.6 and Lemma 4.7, rh is in at most one charge tree Gf and
rh can be charged from f at most once. By the second case of the
charge scheme, th is charged more weight one time only when vertex b is first
visited. The charged weight is at most +0.5. Thus the final weight of ~h is at
most 0. []

It can be shown that the final weight of t E T is at most 0.

Lemma 4.9. For any 3-clique t = Ix, y, z] E T, each vertex of x, y and z can be in at
most one charge tree.

Proof. This follows from Lemma 4.5 directly. []

Lemma 4.10. After all weight propagation processes the weight o f any 3-clique
t E T is <~0.

W..-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-126

Fig. 14. Type-4 C2 augmenting path.

123

Proof. Let t = [d,b,c] be a 3-clique in T. By Lemma 4.9 each vertex in t is
charged at most +0.5. On the other hand, if it is not charged +0.5, it is charged
at most +0.25. The Cl- and Cz-augmenting paths are the only two cases such
that the total charged weight of the three vertices in t is more than +1.
However, by procedure A4CFG there are no C-augmenting paths with respect
to the final P. Thus, the final weight of t is at most 0, which is the sum of the
initial weight of t and the weights of the three vertices in t in the weight
propagation processes. []

The final weight of any 1-clique in P is at most 0,

1.emma 4.11. After all weight propagation processes, the weight o f any 1-clique
f E P i s < ~ O .

124 W.-G. Tzeng, G.-H. King / lnJbrmation Sciences 114 (1999) 105-126

Proof. By Lemma 4.6 any vertex a o f f = [a] can be in at most one charge tree.
Therefore f can be charged at most +1 more. Thus the final weight o f f is
~<0. []

By the above lemmas the weights of cliques in P U/5 are all ~< 0. Therefore
the total weight of cliques in P U P' is ~< 0.

Corollary 4.1. After all weight propagation processes, the weight of every clique
in P U /s is <.0.

Proof. This follows from Lemmas 4.8, 4.10, and 4.11. []

The main result for procedure A4CFG is now proved.

Theorem 4.1. Procedure A4CFG has the approximation ratio >! 3/4.

Proof. Let iw be the initial weights on cliques in P U/5 and fw be the final
weights on cliques in P U/5 after all propagation processes. By Lemma 4.2 the
total weight of all cliques after each propagation process is unchanged, that is,

iw(F) + iw(T) + iw(F) + iw(f4) = Jiv(F) + fw(T) + fw(F) + fw([(4)

Therefore, by Corollary 4.1

fw(F) + fw(T) + fw(F) + fw(34) <<. O. []

Corollary 4.2. The algorithm A UC finds a clique partition P jbr a graph G such
that (n - Ie l) / (n - ¢(a)) /> 3/4.

The ratio 3/4 is also the best that the procedure A4CFU, can achieve.

Theorem 4.2. There is a 4-clique-free graph G such that the procedure A4CFG
has the approximation ratio 3/4.

Proof. For the 4-clique-free graph in Fig. 15, A4CFG could find a clique
partition {[a],[c,f],[b,d,e]}. However, the minimum clique partition is
{[a,b,c],[d,e,f]}. The approximation ratio for this example is
(6 - 3) / (6 - 2) = 3/4. []

Corollary 4.3. The approximation ratio °? of algorithm A UC is 314.

A consequence of this result is an algorithm with approximation ratio 1.5
for the minimum clique partition problem for 4-clique-free graphs, therefore
for tripartite graphs.

W..-G. Tzeng, G.-H. King I Information Sciences 114 (1999) 105-126 125

Theorem 4.3. There is a polynomial-time algorithm that finds a clique partition
for 4-clique-free graphs such that the number of cliques in it is no more than 1.5
times that of the minimum clique partition.

ProoL Let G be a 4-clique-free graph of n vertices and P is a clique partition
found by A4CFG. Since (n - I P [) / (n - q~(G)) >~ 3/4 and q~(G)/> n/3,
IPI ~< n/2 <<. 1.5~b(G). []

Corollary 4.4. There & a polynomial time algorithm that finds a clique partition
for tripartite graphs such that the number o f cliques in it is no more than 1.5 times
that of the minimum clique partition.

For graph coloring, if a graph has no independent set of size more than 3, its
chromatic number can be approximated with ratio 1.5.

Theorem 4.4. There & a polynom&l-time algorithm that colors vertices of 4-
independent-set-free graph such that the number of used colors is no more than
1.5 times that of its minimum coloring.

Proof. This follows from Theorem 4.3 directly. []

5. Conclusion

We have presented a polynomial-time graph coloring algorithm of ~ = 3/4,
which improves the previous best result 213. It is natural to further improve this
ratio, or to show that 3/4 is a bound.

In the direction to improve the ratio, we try to follow the technique used in
this paper, that is, to find more complicated augmenting paths for adjustment.
However, there are two obstacles. The first is that to find more complicated
augmenting paths for a better ratio is not known to be polynomial-time solv-

Fig. 15. An example with approximation ratio 3/4.

126 W.-G. Tzeng, G.-H. King / Information Sciences 114 (1999) 105-126

able. The second is for the analysis. We find no nice equation like the equation in
Lemma 4.1, which is independent of n. This makes the analysis difficult.

Acknowledgements

This research was supported in part by National Science Council, Taiwan,
ROC, under grant NSC-86-2213-E-009-024.

References

[I] S. Arora, S. Safra, Approximating clique is NP-Complete, in: Proc. of The 33rd IEEE Symp.
on Foundations of Computer Science, 1992.

[2] A. Blum, Some tools for approximate 3-coloring, in: Proc. of The 31st IEEE Symp. on
Foundations of Computer Science, 1990, pp. 554-562.

[3] M. Demange, P. Grisoni, V.T. Paschos, Approximation results for the minimum graph
coloring problem, Information Processing Letters 50 (1994) 19-23.

[4] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979.

[5] M. Garey, D. Johnson, L. Stockmeyer, Some simplified NP-Complete graph problems,
Theoret. Comput. Sci. 1 (1976) 237-267.

[6] A. Gibbons, Algorithmic Graph Theory, Cambridge Univ. Press, Cambridge, 1985.
[7] R. Hassin, S. Lahav, Maximizing the number of unused colors in the vertex coloring problem,

Information Processing Letters 52 (1994) 87-90.
[8] P. Peterson, M. Loui, The general matching algorithm of Micali and Vazirani, Algorithmica

(1988) 511--533.
[9] C. Lund, M. Yanakakis, On the hardness of approximating minimization problems, in: Proc.

25th Annual ACM Symp. Theory of Computing, 1993, pp. 286-293.
[10] A. Widgerson, Improving the performance guarantee for approximate graph coloring, J.

ACM 30 (1983) 729-735.
[11] C.K. Wong, L.T. Kou, L.J. Stockmeyer, Covering edges by cliques with regard to keyword

conflicts and intersection graphs, Commun. ACM 21 (1978) 135-139.

