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Active impedance control of linear one-dimensional wave equations

JWUSHENG HU² * and JYH-FENG LIN²

Active impedance control of linear one-dimensional wave equations is investigated. The proposed control algorithms are
based on the concepts of wave propagation and impedance matching. Two control objectives are considered. The ® rst
objective is to obtain total re¯ ection, and the second objective is to achieve total absorption (e.g. matched impedance).
Both control laws utilize some interesting properties of the wave-type partial di� erential equation and do not require
information about the disturbance and boundary conditions. The resulting controllers, although boundary-independent,
contain an in® nite number of poles on the imaginary axis and the closed-loop systems are not internally stable. A simple
modi® cation is added to the control laws and the stability is analysed. An example of active sound cancellation in ducts
with a moving medium is given to demonstrate one of the control algorithms.

1. Introduction

A large class of distributed-parameter systems (DPS)
such as acoustic, elastic and electromagnetic systems are
governed by wave equations. Applications of active con-
trol techniques to those systems can be found in many
engineering practices (e.g. active vibration control).
Since the development of various control algorithms is
much more advanced for ® nite-dimensional systems, it is
natural to apply those algorithms directly to DPS by
assuming a ® nite-dimensional approximation (e.g.
modal expansion and truncation). Consequently, issues
such as the stability, robustness and spill-over become
very important.

Other than the problems described above, some
physical properties explicitly appearing in partial di� er-
ential equations (PDE) may be lost after ® nite-dimen-
sional approximation. However, dealing directly with
PDEs (no approximation) is not trivial, especially
when non-linearity is involved. An active research area
using PDE representation is boundary control (see, for
example, Wang and Chen 1989, Bucci 1992, Mbodje and
Montseng 1995). Extension of the optimal control
approach to DPS has also been studied (Pohjolainen
1987, MorguÈ l 1994). Recently, Helmicki et al. (1992)
published their work on the ill-posed problem about
modelling a DPS by PDE. Rather than deriving a suit-
able control law, many research work also focuses on
stability, controllability/observability and robustness
issues (Fabre 1992, Li and Ahmed 1992, Rebarber
1993, Cioranescu et al. 1994, Hu 1995).

This paper presents a di� erent controller design
approach for one-dimensional wave equations. It is
motivated by the concepts of wave propagation and
impedance matching. Impedance matching techniques
are widely used in transmission lines to ensure maximum

power transfer. In active vibration control, impedance
matching means energy absorption. For example, to
attenuate vibration of a ® nite-length string, one can
actively change the impedance of a boundary to absorb
the incident wave (Lu et al. 1989). This is equivalent to a
matched impedance which results in zero energy re¯ ec-
tion. Other related works using the idea of wave propa-
gation include the transfer matrix method (von Flotow
and SchaÈ fer 1986) and boundary stabilization (Chen and
Zhou 1990), as well as applications such as active noise
control and cylindrical shell vibration suppression
(BreÂ vart and Fuller 1993).

The plant considered in this paper is governed by a
class of linear one-dimensional wave equations with two
boundary points. It is assumed that the boundary con-
ditions can be described by simple impedance functions
in the frequency domain. All disturbance and control
sources are considered as point-type. The objective is
to design control laws such that the wave generated by
the noise source is blocked (e.g. total re¯ ection) or
passed (e.g. no re¯ ection) at the control source location.
Further, it is not necessary to know the boundary con-
ditions of the plant.

It should be emphasized that this paper only presents
an alternative controller design method using the prop-
erty of wave propagation and the idea of impedance
matching. Other important issues such as controllabil-
ity/observability and robustness are not discussed here.
Moreover, the proposed controller itself is also distrib-
uted in nature. Although the ideal control law is bound-
ary-independent, the closed-loop system induces
in® nitely many marginal stable poles. A simple modi® -
cation is presented and the corresponding stability
requirement is analysed. The control law can be imple-
mented by using delay operators. The main purpose of
this paper is to reveal some interesting properties hidden
in general linear wave equations, and show how those
properties could be used to construct simple feedback
control laws.
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2. The dynamic model

A class of stable, one-dimensional wave equations
can be formulated non-dimensionally as

A ¶ 2

¶ x2 B ¶ 2

¶ x ¶ t
C ¶ 2

¶ t2
P x,t Q x,t ,

x 0,1 ,t > 0 1

where A,B,C are constants, A C < 0 and
B2 4AC > 0. P x,t is the system response (output)
and Q x,t represents the external forcing term (input)
of the system. For example, in acoustic systems, equa-
tion (1) is a one-dimensional approximation of the
dynamic of sound in ® nite-length ducts. P x,t is the
acoustic pressure and Q x,t may be the strength of a
monopole or dipole.

The Laplace transform of equation (1) with zero
initial conditions is

A ¶ 2

¶ x2 Bs ¶
¶ x

Cs2 P x, s Q x,s 2

where P x,s and Q x,s are the Laplace transform of
P x,t and Q x,t , respectively. We introduce the homo-
geneous boundary conditions in the frequency domain as

P 0,s Z0 s ¶ P 0,s
¶ x , P 1,s Z1 s ¶ P 1,s

¶ x
3

where Z0 s and Z1 s are in¯ uence functions of each
boundary. In fact, they are closely related to impedance
functions. The impedance function is de® ned as the ratio
of velocity (voltage) to force (current). For example,
consider the longitudinal vibration of a uniform bar
(Rao 1995) with cross-sectional area A and Young’s
modulus E. Both ends of the bar are connected to
springs (with spring constants k1 and k2) and dampers
(with damping constants c1 and c2), as shown in ® gure 1.
The boundary conditions can be derived as

AE ¶ P 0,t
¶ x

k1P 0, t c1
¶ P 0,t

¶ t

at the left-hand end and

AE ¶ P 1,t
¶ x

k2P 1,t c2
¶ P 1,t

¶ t

at the right-hand end, where P , is the axial displace-
ment. Taking Laplace transforms of the above equa-
tions, we have the in¯ uence functions Z0 s
AE / k1 c1s and Z1 s AE / k2 c2s . In this case,
the corresponding impedance functions are sZ0 s /AE
and sZ1 s /AE, i.e.

Pt 0,s
AEPx 0,s

sZ0 s
AE , P1 1, s

AEPx 1,s
sZ1 s

AE

For the sake of simplicity, we use in¯ uence functions
(equation (3)) to derive the system model. Further,
since the boundaries are considered homogeneous (i.e.
no extra forcing terms), the in¯ uence function is di� er-
ent from the corresponding impedance function by only
one factor.

Solving for the Green’s function of equations (2) and
(3) (Butkovskiy 1982, Yang and Tan 1992), we have

P x,s 1
D

1

0
G x, x , s Q x , s dx 4

where D A (see bottom of page), ¸1 and ¸2 are distinct
characteristic roots (i.e. ¸1 ¸2 0) of the system and
are derived by solving

A¸
2 Bs¸ Cs2 0 5

i.e.

¸1,2
B B2 4AC

2A
s

Note that both ¸1 and ¸2 are independent of the bound-
ary conditions. If the distribution of the source Q x,s
in space is known, integration in equation (4) can be
carried out. Without loss of generality, we assume that
the system is excited by point sources, i.e. for a point
source located at x a,

Q x,s Qa s d x a 6
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G x, x ,s

f or x x
1 Z0 s ¸1 e ¸1 x 1 Z0 s ¸2 e ¸2 x 1 Z1 s ¸1 e¸1 ¸2x 1 Z1 s ¸2 e¸2 ¸1x

¸1 ¸2 1 Z0 s ¸2 1 Z1 s ¸1 e¸1 1 Z0 s ¸1 1 Z1 s ¸2 e¸2

f or x x
1 Z0 s ¸1 e¸2x 1 Z0 s ¸2 e¸1x 1 Z1 s ¸1 e¸1 1 x 1 Z1 s ¸2 e¸2 1 x

¸1 ¸2 1 Z0 s ¸2 1 Z1 s ¸1 e¸1 1 Z0 s ¸1 1 Z1 s ¸2 e¸2

Figure 1. Schematic diagram of the longitudinal vibration of
a bar.
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where Qa s is the source strength. As a result, the trans-
fer function of the plant described by equations (1) ± (3)
and (6) is (see (7)). De® ne the boundary re¯ ection coef-
® cients as

µ0 s
1 ¸1Z0 s
1 ¸2Z0 s , µ1 s

1 ¸2Z1 s
1 ¸1Z1 s

8

Using the de® nition of re¯ ection coe� cient in equation
(8), the transfer functions given by equation (7) can be
rearranged as (see (9)). To be able to realize proposed
control laws, ¸1 and ¸2 are selected such that all the
exponential terms on the right-hand side of equation
(9) are causal operators. This point will be illustrated
further in an example.

For a clear presentation of the proposed control law,
the following notations are de® ned ® rst.

GD x,a,s 1
¸1 ¸2 D

e¸2 x a
µ0 s e¸2x ¸1a 10a

GD x,a,s 1
¸1 ¸2 D

µ1 s e¸2 1 a ¸1 1 x

µ0 s µ1 s e¸2 ¸1 1 a x 10b

GU x,a,s 1
¸1 ¸2 D

µ0 s e¸2x ¸1a

µ0 s µ1 s e¸2 1 x a ¸1 10c

GU x,a,s 1
¸1 ¸2 D

e ¸1 a x
µ1 s e¸2 1 a ¸1 1 x 10d

The subscripts/superscripts used in equations (10) are
de® ned based on the nature of wave propagation.

Subscripts D and U denote a downstream (x > a in
this case) and upstream position (x < a), respectively,
while superscripts and relate energy (or wave)
transmission in the upstream and downstream direction,
respectively.

Suppose there are two point sources, Nd s (located
at x d) and Qa s (at x a), in the system. In what
follows, Nd s is referred to as the primary source, which
may represent a disturbance input, and Qa s is called
the secondary source, denoting a control input. For con-
venience, it is assumed that d < a. Based on the nota-
tions de® ned in equations (10), when x < a the response
of the system is written as

P x,s GU x,a,s GU x,a,s
1 µ0 s µ1 s e¸2 ¸1

Qa s

GU x,d,s GU x,d,s
1 µ0 s µ1 s e¸2 ¸1

Nd s 11a

when d < x < a,

P x,s GU x,a,s GU x,a,s
1 µ0 s µ1 s e¸2 ¸1

Qa s

GD x,d,s GD x,d,s
1 µ0 s µ1 s e¸2 ¸1

Nd s 11b

and when x > a,

P x, s GD x,a,s GD x,a,s
1 µ0 s µ1 s e¸2 ¸1

Qa s

GD x,d,s GD x,d, s
1 µ0 s µ1 s e¸2 ¸1

Nd s 11c

Further, equations (10) possess some interesting proper-
ties which are important in deriving the proposed con-
trol laws. Letting x and y be two arbitrary points and
x,y a, we have

L inear one-dimensional wave equations 249

P x,s

for x a

1 Z0 s ¸1 e ¸1a 1 Z0 s ¸2 e ¸2a 1 Z1 s ¸1 e¸1 ¸2x 1 Z1 s ¸2 e¸2 ¸1x

¸1 ¸2 D 1 Z0 s ¸2 1 Z1 s ¸1 e¸1 1 Z0 s ¸1 1 Z1 s ¸2 e¸2
Qa s

for x a

1 Z0 s ¸1 e¸2x 1 Z0 s ¸2 e¸1x 1 Z1 s ¸1 e¸1 1 a 1 Z1 s ¸2 e¸2 1 a

¸1 ¸2 D 1 Z0 s ¸2 1 Z1 s ¸1 e¸1 1 Z0 s ¸1 1 Z1 s ¸2 e¸2
Qa s

7

P x,s

f or x a

e¸2 x a
µ0 s e 2̧x ¸1a

µ1 s e¸2 1 a ¸1 1 x
µ0 s µ1 s e¸2 ¸1 1 a x

¸1 ¸2 D 1 µ2 s µ1 s e¸2 ¸1
Qa s

f or x a

µ0 s e¸2x ¸1a µ0 s µ1 s e¸2 1 x a 1̧ e ¸1 a x
µ1 s e¸2 1 a ¸1 1 x

¸1 ¸2 D 1 µ0 s µ1 s e¸2 ¸1
Qa s

9
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GD x,a,s GD x,d,s GD x,d,s GD x,a,s 0
12a

GD x,a,s GD y,d,s GD x,d,s GD y,a,s 0
12b

GD x,a,s GD y,d,s GD x,d,s GD y,a,s 0
12c

These equalities can be veri® ed by simply plugging in the
corresponding de® nitions.

3. Active control of impedance

A schematic diagram of the system described by
equations (11) is shown in ® gure 2. The control objective
is simple: determine a control law such that the im-
pedance at x a is changed into a speci® ed value. In
the ® rst case, explained later, the primary source is
assumed to be a disturbance input and its excitation is
required to be blocked at x a. This means that the
impedance (or the in¯ uence function) is either in® nity
or zero. A typical engineering application for this prob-
lem is the active noise cancellation in ® nite-length ducts
(Hu 1995). For the second case, the impedance must be
matched at x a, i.e. no upstream re¯ ection of the pri-
mary source excitation. This impedance matching prob-
lem is common in transmission lines exhibiting wave
propagation phenomena. For example, mismatched
impedance in ¯ uid transport piping systems may lead
to pressure build-up or structural vibration. In particu-
lar, knowledge of the impedance functions at both ends
is not required since they are usually quite di� cult to
measure precisely.

3.1. Total re¯ ection
A zero or in® nite impedance at x a means that the

corresponding re¯ ection coe� cient is one. To accom-
plish total re¯ ection, the control law at x a is designed
as

Qa s
GD y,d, s

GD y,a,s Nd s 13

where y is any location satisfying y > a. Further,
GD y,d,s and GD y,a,s have the properties

GD y,d,s GD y1,d,s e¸2 y y1 , y1 > d

and

GD y,a,s GD y1,a,s e¸2 y y1 , y1 > a

Putting the above two equations into equation (13)
shows that the control law is independent of y.
Further, the response P x,s at any downstream loca-
tion (i.e. x > a) will satisfy

P x, s 0 14

Equation (14) can easily be veri® ed by substituting equa-
tion (13) into equation (11c) and using the equality of
equations (12b) and (12c) (see Appendix). Since the
plant is assumed to be stable, equation (14) means that
the response at any downstream location will go to zero.
In other words, the excitation of the primary source is
completely blocked at x a. Moreover, the response at
the upstream area becomes (see (15)) when x < d, and
(see (16)) when d < x < a. Denoting ¸1 ¸1 /a and
¸2 ¸2 /a, equations (15) and (16) are changed into
the same type as equations (11a) and (11b) by scaling.
Therefore, it can be veri® ed that equations (15) and (16)
are the exact solution of the PDE,

A ¶ 2

¶ x2 B ¶ 2

¶ x ¶ t
C ¶ 2

¶ t2
P x,t N t d x d ,

x 0,a ,t > 0 17

with boundary conditions

P 0,s Z0 s
¶ P 0,s

¶ x , P a,s 0 18

In other words, the boundary impedance at x a is
made zero, which is totally re¯ ective.

Equation (13) can be realized by using signals meas-
ured from two upstream locations. Considering two sen-

250 J. Hu and J.-F. Lin

Figure 2. Schematic diagram of active impedance control
(total re¯ ection).

P x,s µ0 s e¸2x ¸1d µ0 s e¸2 x a d ¸1a e ¸1 d x e ¸2 a d ¸1 a x

¸1 ¸2 D 1 µ0 s e ¸2 ¸1 a Nd s 15

P x, s e¸2 x d
µ0 s e¸2x ¸1d e¸2 a d ¸1 a x

µ0 s e¸2a ¸1 a d x

¸1 ¸2 D 1 µ0 s e ¸2 ¸1 a Nd s 16
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sors placed at x1 and x2, as shown in ® gure 2 whose
measurements are denoted as P x1, s and P x2,s ,
respectively, we have

^P1
^P2 e ¸1 x2 x1 1 e ¸2 ¸1 x2 x1

GU x1,a,s Qa s

GD x1,d,s Nd s 19

where
^P1 P x1,s µ0 s µ1 s e¸2 ¸1P x1,s 20a

and
^P2 P x2,s µ0 s µ1 s e¸2 ¸1P x2,s 20b

Substituting equation (13) into equations (20) results in

Qa s
¸1 ¸2 D P x1,s P x2,s e ¸1 x2 x1 e¸2 a x1

1 e ¸2 ¸1 x2 x2

21

The most important point about equation (21) is that
the control law does not require information about the
disturbance signal and boundary conditions of the
plant. Further, the time-domain counterpart of equation
(21) can easily be found and implemented by using delay
operators (see section 5).

3.2. Impedance matching
In contrast to total re¯ ection, it is also possible to

design the control law such that no re¯ ection occurs for
wave propagating toward the boundary of µ1 s 0.
The control law proposed is

Qa s
GD y,d, s

GU y,a,s Nd s 22

where d < y < a. Notice that the control law Qa s has
the same property as equation (13) in that it is indepen-
dent of the spatial variable. Substituting equaton (22)
into equations (11a) and (11b), the response P x,s
satis® es

P x,s 1
1̧ ¸2 D

µ0 s e¸2x ¸1d e ¸1 d x Nd s 0

23

when x < d, and

P x,s GD x,d,s Nd s 0 24

when d < x < a.
In other words, after adding the secondary source Qa s ,
the wave travelling downstream will be absorbed
exactly, regardless of what value µ s has at x 1, i.e.
the system response becomes

P x, s 1
¸1 ¸2 D

µ0 s e¸2x ¸1d e ¸1 d x Nd s

GU x,d,s µ1 s 0 GU x,d,s µ1 s 0 Nd s

25

when x < d, and

P x,s GD x,d,s Nd s 26

when d < x < a. It can be veri® ed that equations (25)
and (26) are the PDE solution of equation (17), with the
following boundary conditions:

P 0,s Z0 s ¶ P 0,s
¶ x , P a,s 1

¸2

¶ P a,s
¶ x

i.e. µ a s 0 27

where µa s is the boundary re¯ ection coe� cient at
x a. Equation (22) can be realized as in section 3.1
by using signals measured from two downstream loca-
tions (x > a).

Considering two sensors placed at x1 and x2, as
shown in ® gure 3, with corresponding measurements
denoted as P x1,s and P x2,s , we have

^P1 e¸2 x2 x1 ^P2 e ¸2 ¸1 x2 x1 1

GD x2,a,s Qa s

GD x2,d, s Nd s 28

where ^P1, ^P2 are the same type as equatons (20a) and
(20b). Substituting equation (22) into equation (28)
results in

Qa s
¸1 ¸2 D P x2,s P x1,s e¸2 x2 x1 e ¸1 x2 a

1 e ¸2 ¸1 x2 x1

29

Equation (29) has the same property as equaiton (21),
i.e. the control law does not need information about the
primary source and boundary conditions of the plant.

L inear one-dimensional wave equations 251

Figure 3. Schematic diagram of active impedance control
(impedance matching).
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The system response in the downstream area becomes

P x,s GD x,d,s GD x,d,s
1 µ1 s e ¸2 ¸1 1 a Nd s 30

4. Stability analysis and controller modi® cation

Suppose that both boundaries of the system are con-
sidered as passive, i.e. no re¯ ecting wave is generated in
the absence of an incident wave. From the physical
viewpoint, the system is either stable or marginally
stable. In this paper, we consider only the stable case
by making the following assumption.

Assumption 1: The boundary re¯ ection coe� cients
equation 8 satisfy µ0 jx < 1 and µ1 jx < 1,
x > 0.

Under the above assumption, the following charac-
teristic equations have stable roots no matter what
T > 0 is:

(1) 1 µ0 s µ1 s e Ts 0
(2) 1 µ0 s e Ts 0
(3) 1 µ1 s e Ts 0

4.1. Total re¯ ection
The closed-loop schematic diagram of the active

impedance control problem, i.e. total re¯ ection, is
shown in ® gure 4, and the system can be further repre-
sented by the block diagram shown in ® gure 5. From
equations (11a) ± (11c) and (21), it can be seen that the
composition of each block can be written as

T1 s
GD y,d,s GD y,d,s

X s
31

T2 s
GD y,a,s GD y,a, s

X s
32

c

CT s C1 s C2 s

¸1 ¸2 D e¸2 a x1

1 e ¸2 ¸1 x2 x2
1 e ¸1 x2 x1 33

c

M s
M1 s

M2 s

GD x1,d, s GD x1,d,s
X s

GD x2,d, s GD x2,d,s
X s

34

c

F s
F1 s

F2 s

GU x1,a,s GU x1,a,s
X s

GU x2,a,s GU x2,a,s
X s

35

X s 1 µ0 s µ1 s e¸2 ¸1 36

The stability problem of the closed-loop system with
a two-sensor control law in ® gure 5 can be analysed by
using the following lemma:

Lemma 1: The closed-loop feedback system in ® gure 5
is internally stable if and only if 1

c

CT s
c

F s 1 c

CT s
is stable.

Proof: The stability problem considered in ® gure 5 is
equivalent to ® gure 6 under Assumption 1 that

c

F s ,

252 J. Hu and J.-F. Lin

Figure 4. Schematic diagram of active impedance control.

Figure 5. Block diagram of an active control system with two
sensors in the downstream area.

Figure 6. Diagram of an active controller subblock.
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c

M s , T1 s and
c

T2 s in ® gure 5 are stable, and the
feedback system in ® gure 6 can be described by

ce1

e2

c

H s

cu1

u2

I
c

F s
c

CT s 1 I
c

F s
c

CT s 1 c

F s

1
c

CT s
c

F s 1 c

CT s 1
c

CT s
c

F s 1

cu1

u2

37

From equation (37), the stability of the four transfer
matrices in

c

H s can be ascertained if and only if the
transfer matrix 1

c

CT s
c

F s 1 c

CT s is stable
(Vidyasagar 1985).

From equations (33) and (35) we have

1
c

CT s
c

F s 1 c

CT s

1 µ0 s µ1 s e ¸2 ¸1

1 µ0 s e ¸2 ¸1 a
¸1 ¸2 D e¸2 a x1

1 e ¸2 ¸1 x2 x1

1 e ¸1 x2 x1

By Lemma 1, the closed-loop feedback system in ® gure 5
is not internally stable because 1

c

CT s
c

F s 1 c

CT s is
unstable (marginally stable). To resolve the stability
issue, the optimal controller is modi® ed by adding a
ǹotch ® lter’ Re s , i.e.

c

Cm s C1m s C2m s

C1 s Re s C2 s Re s 38

where the notch ® lter is

Re s
1 e ¸2 ¸1 x2 x1

1 1 e e ¸2 ¸1 x2 x1
, e e e > 0, e 1

39

Substituting ¸1 and ¸2 (equation (5)) into equation (39),
it is obvious that Re s have an in® nite number of
ǹotches’ located at

x k
A

B2 4AC
2kp

x2 x1
, k 1,2,3, . . .

The value e in equation (39) determines the amount of
maximum amplitude attenuation at the point of ǹotch’.
Substituting the modi® ed controller into the block dia-
gram, the performance degradation (response at y,
y > a) becomes

P y,s
e

1 µ0 s µ1 s e ¸2 ¸1

1 µ0 s e ¸2 ¸1 a e ¸2 ¸1 x2 x1

1 1 e
1 µ0 s µ1 s e ¸2 ¸1

1 µ0 s e ¸2 ¸1 a e ¸2 ¸1 x2 x1

T1 s Nd s

40a

where T1 s is given in equation (31). At notch frequen-
cies, equation (40a) becomes (substituting equations
(31) and (36))

P y, jx k T1 jx k Nd jx k

GD y,d, jx k GD y,d, jx k

1 µ0 jx k µ1 jx k e¸2 ¸1
Nd jx k 40b

Referring to equation (11c), equation (40b) shows that
the response at those notch frequencies is as if there is no
control applied.

The stability of the feedback system using
c

Cm s can
be tested by Lemma 1. Since

c

Cm s is stable, the internal
stability is guaranteed if 1

c

Cm s
c

F s 1 is stable,
where

1
c

Cm s
c

F s 1

1
1 C1 s F1 s Re s C2 s F2 s Re s

1 1 e e ¸2 ¸1 x2 x1

S s

1

1 1
e

S s
e ¸2 ¸1 x2 x1

41

where

S s
1 µ0 s e ¸2 ¸1 a

1 µ0 s µ1 s e ¸2 ¸1
42

Since S s and 1/S s are stable by Assumption 1, using
the Nyquist criterion, equation (41) is stable if
1 e /S jx < 1, x . The following corollary gives
a su� cient condition. h

Corollary 1: Under Assumption 1, 1
c

Cm s
c

F s 1 is
stable if the following conditions hold:

1 Sup
x >0

sin 1
µ0 jx Sup

x >0
sin 1

µ0 jx µ1 jx

a 1 a 2 <
p
2

43

2 0 < e < e , e < e Inf
x >0

2Re S jx

Inf
x >0

S jx S jx 44

where

S jx
1 µ0 jx e ¸2 ¸1 a

1 µ0 jx µ1 jx e ¸2 ¸1
45
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Proof: Given µ0 jx < 1 and µ1 jx < 1, the maxi-
mum possible angle of S jx can be shown graphically
as in ® gure 7. Therefore, equation (43) guarantees that
Re S jx > 0. Further, from equation (44) we have

1
e

S jx

2

1 e
1

S jx
1

S jx
e

2

S jx S jx

1
e

S jx S jx
S jx S jx e

1
e

S jx 2 e e

< 1 46

By the Nyquist criterion, we conclude that
1

c

Cm s
c

F s 1 is stable. h

Remark 1: The range for which the magnitude of
boundary re¯ ection coe� cients µ0 jx and µ1 jx
satisfy equation (43) is relatively large, as indicated in
® gure 8.

4.2. Impedance matching
The stability problem of impedance matching in sec-

tion 3.2 is similar to the case of total re¯ ection (section
4.1). Therefore, we conclude this section by providing
the following corollary:

Corollary 2: Under Assumption 1, the optimal control-
ler in equation 29 is modi® ed by adding the same
notch ® lter Re s as in equation 39 . Then the closed-
loop system is stable if the following conditions hold:

1 Sup
x >0

sin 1
µ1 jx Sup

x >0
sin 1

µ0 jx µ1 jx

a 1 a 2 <
p
2

47

2 0 < e < e , e Inf
x >0

D jx D jx 48

where

D jx
1 µ1 s e ¸2 ¸1 1 a

1 µ0 s µ1 s e ¸2 ¸1
49

5. Example

Many physical systems can be described by the PDE
in equation (1), e.g. sound propagation of a ® nite-length
duct, and vibration control of the axially moving string
and impedance matching in power transmission lines.
We now give an example of noise cancellation in a
® nite-length duct with a moving medium to demonstrate
the proposed control law derived in section 3.1.

5.1. Finite-length duct with a moving medium
The one-dimensional sound propagation through a

moving medium in a hard-walled duct can be expressed
as

¶ 2

¶ T2 2V0
¶ 2

¶ X ¶ T
t

2 V2
0

¶ 2

¶ X2 p X,T q t
2q X,T ,

X 0, L ,T > 0 50

where L is length of a duct, q and t are the ambient mass
density and speed of sound, respectively, V0 < t is the
speed of the medium travelling in the downstream direc-
tion, and p X, T and q X,T are sound pressure and
source strength, respectively, using the following non-
dimensional variables:

t
t

L
T, x

X
L , P

p
q t 2 , c

V0

t
, Q

L 2

c2 q

51

The non-dimensional hyperbolic PDE is equal to

¶ 2P x,t
¶ t2

2c ¶ 2P x,t
¶ x ¶ t

1 c2 ¶ 2P x,t
¶ x2 Q x,t

52
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Figure 7. The possible maximum di� erence angle between
1 µ0 jx e ¸2 ¸1 a and 1 µ0 jx µ1 jx e ¸2 ¸1 .

Note that A represents the candidate vector of
1 µ0 jx e ¸2 1̧ a and B represents the candidate

vector of 1 µ0 jx µ1 jx e ¸2 ¸1 .

Figure 8. The range of boundary re¯ ection coe� cients that
satisfy equation (42) (shaded area).
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We adopt the concept of acoustic impedance (Morse
and Ingard 1968) and introduce homogeneous boundary
conditions at x 0 and 1 in the frequency domain as

P 0,s Z0 s ¶ P 0,s
¶ x , P 1,s Z1 s ¶ P 1,s

¶ x
53

Z0 s and Z1 s are the speci® c boundary impedances at
x 0 and x 1, respectively. Supposing that both
boundaries are considered as passive, i.e. no re¯ ecting
wave is generated in the absence of an incident wave,
then both Z0 s and Z1 s are positive-real transfer
functions.

Comparing equations (52) and (1), we have

A 1 c2 , B 2c, C 1 54

Substituting equation (54) into equation (5), we can ® nd
the characteristic roots of the system as s / 1 c and

s / 1 c . Selecting ¸1 s /1 c and ¸2 s /1 c to
satisfy causality requirements, equations (10a) ± (10d)
can be rewritten as

GD x,a,s 1
2s

e
s

1 c x a
µ0 s e

s
1 cx

s
1 ca

55a

GD x,a,s 1
2s

µ1 s e
s

1 c 1 a s
1 c 1 x

µ0 s µ1 s e
s

1 c
s

1 c 1 a x 55b

GU x,a,s 1
2s

µ0 s e
s

1 cx
s

1 ca

µ0 s µ1 s e
s

1 c 1 x a s
1 c 55c

GU x,a,s 1
2s

e
s

1 c a x
µ1 s e

s
1 c 1 a s

1 c 1 x

55d

where µ0 s and µ1 s are de® ned in equation (8). Since
both boundaries are passive, the duct itself is stable. It is
reasonable to assume that the boundary re¯ ection coef-
® cients satisfy Assumption 1.

As a result, the controller is derived as (equation
(38))

Qa s C1m s C2m s
P x1,s
P x2,s

2s P x1,s P x2,s e
s

1 c x2 x1 e
s

1 c a x1

1 1 e e
2s

1 c2 x1 x1

56

Taking the inverse Laplace transform, equation (56) is
realized in the time domain as

Qa t 1 e Qa t t1 2
d
dt

P x1,t t2

P x2, t t2 t3 57

where

t1
2

1 c2 x2 x1 , t2
1

1 c
a x1 ,

t3
1

1 c
x2 x1

We conclude this section by providing the following
example.

5.2. Numerical simulation
A point external disturbance Nd t sin 20p t is

applied at d 0.2 during the time-interval 0.0
t 0.1, an active controller is supplied at a 0.7 and
the sensors are located at x1 0.4 and x2 0.415. For
convenience, let the transport velocity c 0.5. The
homogeneous boundary condition µ0 s µ1 s 0.7
is assumed, from equation (43) we have e 0.37 and
the control law developed in equation (57) can be writ-
ten as (let e 0.01)

Qa t 0.99 Qa t 0.04

2 Pt x1, t 0.2 Pt x2,t 0.23

The frequency response of the noise in the duct with and
without active control is shown in ® gure 9. From ® gure
9 we can see that the ® rst notch frequency is located at

x 1
1 c2 p
x2 x1

157.0

6. Conclusion

Active impedance control of one-dimensional wave
equations is discussed. Both total re¯ ection and im-
pedance matching control are considered. Using the
control laws proposed, we can achieve total re¯ ection
or impedance matching conditions in the upstream sec-
tion. It is shown that di� erent types of source excitation
result in di� erent blocking or matching conditions. An
example of active noise control in ducts with a moving
medium is given to demonstrate the proposed control
law, and a simulation result is shown.
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Appendix

Proof of equation (14): Substituting equation (13) into
equation (11c) we have

P x,s GD y,d,s GD x,a,s GD y,d,s GD x,a,s
1 µ0 s µ1 s e¸2 ¸1 GD y,a,s Nd s

GD x,d,s GD y,a,s GD x,d,s GD y,a,s
1 µ0 s µ1 s e¸2 ¸1 GD y,a,s Nd s

GD y,d,s GD x,a,s GD x,d,s GD y,a,s
1 µ0 s µ1 s e¸2 ¸1 GD y,a,s Nd s

GD y,d,s GD x,a,s GD x,d,s GD y,a,s
1 µ0 s µ1 s e¸2 ¸1 GD y,a,s Nd s

By equations (12b) and (12c) we have

P x,s 0 h
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