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Asymptotic stabilization of driftless systems

DER-CHERNG LIAW² * and YEW-WEN LIANG²

Issues of asymptotic stabilization of a class of non-linear driftless systems are presented. In addition to the necessary and
su� cient condition for the existence of a smooth time-invariant asymptotic stabilizer, su� cient condition for the exist-
ence of a quadratic-type Lyapunov function candidate is also proposed herein to alleviate the construction of stabilizing
control laws. Following the deduction of the equivalence of the su� cient condition and the determination of the local
de® niteness of a de® ned scalar function, the stabilizability checking conditions are then derived in terms of system
dynamics and its derivatives at the origin only. These are achieved by taking Taylor’s series expansion on system
dynamics. The derived conditions are shown to be consistent with those obtained by Brockett. Comparative results of
Liaw and Liang are also included. Finally, examples are given to demonstrate the use of the main results.

1. Introduction

Feedback stabilization of non-linear systems, speci® -
cally non-linear critical systems, have recently attracted
much attention (e.g. Aeyel 1985, Behtash and Sastry
1988, Liaw and Abed 1991, Liaw 1993, 1998, Fu and
Abed 1993). Critical systems occur at which the linear-
ized model of non-linear systems possess eigenvalues
lying on the imaginary axis with the remaining eigen-
values in the open left half of the complex plane. For the
most degenerated case, the linearized model of the
uncontrolled version of non-linear systems may possess
only zero eigenvalues. One class of such systems is the
so-called ǹon-linear driftless system’. A practical ex-
ample is the control model of a synchronous satellite’s
orbital motion (Ahmed and Sen 1980, 1981). In addi-
tion, non-holonomic systems in chain form or in power
form can also be treated as driftless systems (e.g. Walsh
et al. 1994, Samson 1995, Sordalen and Egeland 1995,
Godhavn and Egeland 1997, M’Closkey and Murray
1997).

The study of the asymptotic stabilization of non-lin-
ear driftless systems includes the existence conditions of
time-invariant smooth stabilizers (Brockett 1983, Liaw
and Liang 1993, 1997), design of time-varying stabilizers
(Coron 1992, Pomet 1992, Samson 1995, Sordalen and
Egeland 1995, Godhavn and Egeland 1997, M’Closkey
and Murray 1997), design of time-invariant piecewise
smooth stabilizers (Canudas de Wit and Sordalen
1992), and applications to the study of orbital motion
of satellites (Ahmed and Sen 1980, 1981) and car-like
robot systems (Walsh et al. 1994). In Liaw and Liang
(1997), conditions for the existence of the quadratic-type
Lyapunov function were proposed to relax the assump-
tion of stabilizability of the system as proposed by

Brockett (1983) for non-linear driftless systems.
However, in general, these conditions are not easy to
verify, especially when the system dynamics is highly
non-linear. The main goals of this paper are to establish
the asymptotic stabilizability checking conditions for the
non-linear driftless system and to propose the corre-
sponding polynomial asymptotic stabilizers for easier
implementation. In this paper the checking conditions
for system stabilization are proposed, which require the
information of system dynamics and its derivative at the
origin only.

The organization of this paper is as follows. In §2,
we study the asymptotic stabilizability of driftless
systems. The corresponding asymptotic stabilizers are
obtained either in terms of the whole system dynamics
or in terms of its Taylor’s series approximations In §3,
Taylor’s series expansion on system dynamics are
employed to derive the conditions of the local de® nite-
ness of a de® ned scalar-valued function, which are
equivalent to system stabilizability conditions. Results
are compared with those of Brockett (1983) and Liaw
and Liang (1997). In §4, examples are given to demon-
strate the use of the main results. Finally, § 5 gives the
conclusion.

2. Set up

Consider a class of non-linear control driftless
systems as given by

Çx g x u
m

k 1
ukgk x 1

where x R
n, u u1, . . . ,um

T
R

m and g x
g1 x , . . . ,gm x R

n m. In addition, gi x are
assumed to be smooth vector ® elds of R

n for
1 i m. It is clear that system (1) is a special class
of a� ne systems (see, e.g. Bacciotti 1992, p. 16). Various
results have been presented regarding the asymptotic
stabilization of the operating point of system (1)
(Brockett 1983, La� erriere 1991, Canudas de Wit and
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Sordalen 1992, Coron 1992, Pomet 1992, Walsh et al.
1994, Samson 1995, Sordalen and Egeland 1995,
Godhavn and Egeland 1997, M’Closkey and Murray
1997). Two practical examples of driftless systems can
be found in Ahmed and Sen (1980, 1981) and Walsh
et al. (1994). The former cites the control model of the
orbital motion of synchronous satellites; while the latter
cites the motion equation of car-like robots. For simpli-
city and without loss of generality, the origin is assumed
to be the operating point of interest.

An existence condition of smooth time-invariant sta-
bilizing control laws for system (1) obtained by Brockett
(1983) is shown in Lemma 1.

Lemma 1 (Brockett 1983): Suppose all the vectors
gk 0 and 1 are linearly independent. Then there exists
a smooth time-invariant asymptotic stabilizer for the
origin of system 1 if and only if m n.

Lemma 1 provides a necessary and su� cient con-
dition for the existence of a smooth stabilizing controller
for system (1) while all the vectors gk 0 are assumed to
be linearly independent. However, as discussed in Liaw
and Liang (1997), the linear independency of gk 0 is not
a necessary condition to identify the stabilizability of
system (1).

By applying Lyapunov stability theory and converse
theorem on the uniformly asymptotic stability (e.g.
Vidyasagar 1993), the origin of system (1) is locally
asymptotically stabilizable by time-invariant control
law u u x if and only if there exists a locally
positive de® nite function (1pdf) V x such that

T
x V x g x u x < 0 for all x around a deleted neigh-

bourhood X of the origin (i.e. X \{0}). We therefore have
the next necessary and su� cient condition for the
asymptotic stabilization of the origin of system (1).

Theorem 1: The origin of system 1 is locally asymp-
totically stabilizable by C1 time-invariant control law
u u x if and only if there exists a smooth lpdf V x
such that

T
x V x g x 0 2

for all x around a deleted neighbourhood X of the origin.
Moreover, the result can be extended for guaranteeing the
global stabilizability if equation 2 holds for all x 0
and V is a positive de® nite function satisfying a radially
unbounded assumption, that is, V x and x .

Though Theorem 1 provides a necessary and su� -
cient condition for determining the asymptotic stabiliz-
ability of system (1), the proposed condition, however,
strongly depends on the selected Lyapunov function
V x . In general, such a Lyapunov function is not
easy to construct. A potential candidate is given in the
next lemma to illustrate its usage.

Lemma 2 (Liaw and Liang, 1997): Suppose there ex-
ists a symmetric positive de® nite matrix P such that

xTPg x 0 for all x in a deleted
neighbourhood X of the origin 3

Then the origin of system 1 is asymptotically stabiliz-
able. Moreover, the stabilizing control law can be in the
state feedback form as in 4 or in a bang± bang form as
in 5

ui g i xTPgi x , for i 1, . . . ,m 4

or

ui g i sgn xTPgi x , for i 1, . . . ,m 5

Here, g i > 0 for all i 1.

Note that it is obvious that the condition in equation
(3) of Lemma 2 holds for some P > 0 if g 0 is of full
rank with m n. The su� cient condition of system sta-
bilization for system (1) as in Lemma 1 can therefore be
abstracted from Lemma 2.

In general, conditions (3) are not easy to verify. In
the following we will transform these conditions into
equivalent checking conditions. For this purpose we
introduce the scalar functions h x as

h x
xTPg x for the single-input case
xTPg x gT x Px for the multi-input case

6

Note that, though the de® nition of h x for the multi-
input case can also be applied to the study of the single
input case, as presented in §3.1, the de® nition of h x in
(6) for the single input case can induce more fruitful
results.

The next result investigates the relationship between
the local de® niteness of h x as in (6) and the checking
condition (3) in Lemma 2.

Lemma 3:
(a) For single-input case i.e. m 1 , however, con-

dition 3 holds if h x is a locally de® nite function
ldf i.e. h x or h x is an lpdf .

(b) For multi-input case i.e. m > 1 , condition 3
holds if and only if the scalar function h x as
given by 6 is an lpdf .

Remark 1: Converse of the statement in Lemma 3(a)
might not be true. A trivial counterexample is given by
g x x2. However, it is not di� cult to show by Inter-
mediate-Value Theorem that the condition of xTPg x
being an ldf as required in Lemma 3(a) is equivalent
to the condition as in equation (3) for n > 1. More-
over, for the single-input case, g 0 0 is an inevitable
result if h x is an ldf. The reason is that the lowest or-
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der term of an ldf cannot be an odd number. This
agrees with the result of Lemma 1.

It is observed that the control law as given by (4) or
(5) might be highly non-linear. To demonstrate that the
control law can be easily implemented, the next attempt
will be to investigate the possibility of the existence of a
polynomial asymptotic stabilizer for system (1). Taking
Taylor’s series expansion of g x at the origin, we have

g x ga x o x k 7

where ga x denotes Taylor’s polynomial of g x up to
order k and o x k denotes terms of order higher than
k. It is clear that function h x as given in (6) is an ldf if
ha x xTPga x for a single-input case is an ldf or
ha x xTPga x gT

a x Px for multi-input case is an
lpdf. Moreover, in such a case, system (1) possesses an
asymptotic stabilizer in the form of (4) or (5) with g x
being replaced by ga x . In the following, we give a
result on the determination of the local de® niteness of
a scalar function de® ned in (8) below to facilitate the
checking of local de® niteness of ha x . Note that, in the
following, for simplicity, denotes the L2-norm of
vector or matrix, o k denotes terms of order higher
than k and ¸min denotes the smallest eigenvalue.

Consider a scalar function as given by

d y,z yTRy q yzz q zzz q zzzz R3 y,z
R4 y,z o y,z 4 8

where y R
r, z R

n r, R R
r r, q yzz is a scalar poly-

nomial function of order in y,z exactly 1 and 2, q zzz is
a 3-linear function in z (the de® nition of k-linear func-
tion can be referred to, e.g. Fu and Abed 1993), q zzzz is a
4-linear function in z, R3 y,z is a scalar polynomial
function in y,z of order 3 except for the terms q yzz
and q zzz, and R4 y,z is a scalar polynomial function
in y,z of order 4 except for the term q zzzz.

The next result provides a su� cient condition on
determining whether the real-values function d y,z is
an lpdf.

Lemma 4: Suppose there exist a 1 > 0, a 2 > 0 and
b 1 > 0 such that

yTRy a 1 y 2 9

q yzz b 1 y z 2 10

q zzz 0 11

and

q zzzz a 2 z 4 12

If 4a 1 a 2 > b 2
1, then d y,z given in 8 is an lpdf.

Proof: It is known that there exist ²1 > 0, b 2 > 0 such
that

R3 y,z b 2 z y y 2 13

and

R4 y,z b 2 z 2 y y y 2 y 2

b 2 y z 3 14

for all y , z < ²1. From (9) ± (12), we then have

d y,z o y,z 4
¢1 y 2

¢2 y z 2 a 2 z 4

¢1 y
¢2

2¢1
z 2

2

1
4¢1

4a 1 a 2 b
2
1

o y,z z 4 15

Here

¢1 : a 1 b 2 y z y 2 y z z 2

and

¢2 : b 1 b 2 z

It is clear that there exists ²2 with 0 < ²2 ²1 such that
d y,z > 0 for all y , z < ²2 if 4a 1 a 2 > b

2
1. The con-

clusion of the lemma is hence implied. h

Remark 2: The conditions for local de® niteness of
two-variable functions obtained in Fu and Abed
(1993) can be abstracted from Lemma 4.

3. Main results

In this section we will take Taylor’s series expansion
of g x and apply Lemma 4 to determine the local de® -
niteness of the function h x as de® ned in (6). In §3.1, we
consider the single-input case, while the multi-input case
is studied in §3.2. Details are given as follows.

3.1. The single-input case i.e. m 1
First, we consider the single-input case. It is clear

that g 0 0 implies that g 0 is of full rank, which
has been discussed in Lemma 1. In the following, we
will discuss the case of g 0 0 only.

Taking Taylor’s series expansion on g x at the
origin up to third order and choosing P to be the iden-
tity matrix, from equation (6) we then have

h x xTg x

xT Lx Q x,x C x,x,x o x 4 16

where L , Q , and C , , denote the Jacobian
matrix, quadratic and cubic terms, respectively. The
next result follows readily from Lemma 3.
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Theorem 2: If xTLx is an ldf , then the origin of the
system 1 is asymptotically stabilizable by a constant
or quadratic feedback.

In the following, we suppose the Jacobian matrix
L g 0 has rank r < n. For simplicity, we assume
that

L
R 0
0 0

17

where R R
r r is a non-singular matrix. Otherwise, a

change of variable will lead L to this form. It is known
that h x as in (16) cannot be an ldf if R is an inde® nite
matrix. For simplicity and without loss of generality, we
may assume that R is a positive de® nite matrix. Results
for the case of which R is a negative de® nite can be
obtained by a similar approach. Details are omitted.

Let y R r, z R n r such that x yT,zT T and par-
tition the quadratic and the cubic terms in the form

and

Q x,x
Q1 x,x
Q2 x,x

C x,x,x
C1 x,x,x
C2 x,x,x

18

where Q1 x,x , C1 x,x,x R
r and Q2 x,x ,

C2 x,x,x R
n r. Equation (16) can then be rewritten

as

h x yTRy yTQ1 x,x zTQ2 x,x
yTC1 x,x,x zTC2 x,x,x o x 4 19

Comparing equation (19) with the notation as in 8 , we
have

q zzz zTQ2 z,z 20

q yzz yTQ1 z,z zTQ2 y,z 21
and

q zzzz zTC2 z,z,z 22

Denote a 1 the smallest eigenvalue of the matrix R,
i.e. a 1 ¸min R . It follows that yTRy a 1 y 2. In
addition, the condition q zzz 0 implies Q2 z,z 0 for
all z.

From Lemmas 3 and 4 and Theorem 1, we then have
the next obvious result.

Proposition 1: Suppose m 1, g 0 0 and g 0 is
in the form of 17 with R being a positive de® nite ma-
trix. The origin of system 1 is asymptotically stabiliz-
able if Q2 z,z 0 and

b
2
1 < 4a 1 a 2 23

where a 1 ¸min R , zTC2 z,z,z a 2 z 4 and
yTQ1 z,z zTQ2 y,z b 1 y z 2. Moreover, an

asymptotic stabilizer can be chosen in either the form
4 or 5 , or in a polynomial form of 4 or 5 with

g x replaced by Lx Q x,x C x,x,x .

One of the choices for b 1 and a 2, as stated in
Proposition 1, can be obtained as follows.

Let

Q1 z,z
zTD1z

..

.

zTDrz

and Q2 y,z
yTE1z

..

.

yTEn rz
24

where Di R
n r n r for l i r and Ej R

r n r

for 1 j n r. From (21), we then have

q yzz y
r

i 1
zTDiz

2 z
n r

j r
yTEjz

2

b 1 y z 2 25

where

b i

r

i 1
Di

2
n r

j r
Ej

2 26

Let z z1, . . . ,zn r
T. q zzzz given in (22) can then be

rewritten as

q zzzz zTC2 z,z,z
n r

i 1
z2

i zT
U iiz

i<j<k<l
dijkl zizjzkzl 27

where U ii R
n r n r . In order to estimate a larger

lower bound for q zzzz, the j, j -entry of U ii and the
i, i -entry of U jj are set to be the same value of 1

2 (coef-
® cient of z2

i z2
j in q zzzz) for all i, j 1, . . . ,n r. It is

observed that
n r

i 1
z2

i zT
U iiz min

1 i n r
¸min U ii z 4 28

It is known that the function f x x1x2x3x4, subject to
the constraint: x 2 n

i 1 x2
i ²

2, has a global mini-
mum value ²

4 /16 which occurs at the points
x2

1 x2
2 x2

3 x2
4 and x5 xn 0. Let

a 2 min
1 i n r

¸min U ii
1
16 i<j<k<1

dijkl 29

From (27) and (28) we then have

q zzzz min
1 i n r

¸min U ii
1
16 i<j<k<l

dijkl z 4

a 2 z 4 30
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Thus, we have the next corollary.

Corollary 1: Suppose m 1, g 0 0 and g 0 is in
the form of 17 with R being a positive de® nite matrix.
The origin of system 1 is asymptotically stabilizable if
Q2 z,z 0 and b 2

1 < 4a 1 a 2, where a 1 ¸min R , b 1

and a 2 are de® ned in 26 and 29 , respectively.

Remark 3: If there exists an i such that the coe� cient
of z4

i in q zzzz is negative or zero, then a 2 cannot be a
positive number. This implies that (23) does not hold.
Thus, Proposition 1 or Corollary 1 cannot be applied
to the determination of the local stabilizability of
system (1).

3.2. The multi-input case i.e. m > 1
Next, we consider the case of which m > 1. Suppose

that the constant matrix g 0 has rank r. For simplicity,
we may assume that g 0 is in the form of the right-hand
side of (31) below, where A R r r is a non-singular
matrix. Otherwise, by the use of elementary row and
column operations (see, e.g. Noble and Daniel 1988),
there exist two non-singular matrices W1 R

n n and
W2 R

m m such that

W1g 0 W2
A 0
0 0

31

Let h W1x and u W2v. System (1) is then trans-
formed into

Çh W1g W 1
1 h W2v 32

which has the desired constant term. Thus, without
loss of any generality, we may impose the following
assumption.

Assumption 1: rank g 0 r and g 0 R n m is in
the form of the right-hand side of (31) above with non-
singular matrix A R r r.

Taking the Taylor’s series expansion on g x at the
origin, we have

g x g 0 L x Q x,x C x,x,x o x 3

33

Here, L x , Q x,x and C x,x,x denote the linear,
bilinear and trilinear terms of g x , respectively. For
simplicity, choose the matrix P as the identity matrix.
From (6)

h x xTg 0 gT 0 x xT g 0 LT x L x gT 0 x

xT g 0 QT x,x L x LT x

Q x,x gT 0 x o x 4 34

Similarly, let x yT,zT T, where y R
r and z R

n r.
Rewrite L x and Q x,x as

L x
L 1 x L2 x
L 3 x L4 x

35

and

Q x,x Q1 x,x Q2 x,x
Q3 x,x Q4 x,x 36

where
L1 x ,Q1 x,x R r r

and

L 4 x ,Q4 x,x R n r n r .

The dimension of the remaining matrices are obvious.
Equation (34) can then be rewritten as

h x yT AAT ALT
1 x L 1 x AT AQT

1 x,x
L 1 x LT

1 x L 2 x LT
2 x Q1 x,x AT y

2yT ALT
3 x AQT

3 x,x
L 1 x LT

3 x L 2 x LT
4 x z

zT L 3 x LT
3 x L 4 x LT

4 x z

o y,z 4 37

Now, we employ Lemma 4 to check the local de® nite-
ness of h x . Comparing equation (37) with the
notations as in (8), we have

R AAT, q zzz 0, q yzz 2yT ALT
3 z z

and

q zzzz zT L 3 z LT
3 z L 4 z LT

4 z z.

Let a 1 ¸min AAT . It is clear that we have

yTRy a 1 y 2 38

From Lemmas 3 and 4 and Theorem 1, we then have
the next result.

Proposition 2: Suppose Assumption 1 holds. The origin
of system 1 is asymptotically stabilizable if

b
2
1 < 4a 1 a 2 39

where a 1 ¸min AAT , 2yT ALT
3 z z b 1 y z 2

and zT L 3 z LT
3 z L4 z LT

4 z z a 2 z 4. More-
over, the stabilizing control laws can be obtained in the
form of 4 or 5 .

To demonstrate that condition (39) in Proposition 2
is not vacuous, we will derive in the following the
expressions for the candidate of b 1 and a 2. Let

L 3 z , L4 z M1z, . . . , Mrz,Mr 1z, . . . ,Mmz 40

where Mi R
n r n r for i 1, . . . ,m. q zzzz can then

be rewritten as
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q zzzz zT M1z, . . . ,Mmz

zTMT
1

..

.

zTMT
m

z

m

i 1
zTMiz zTMT

i z

a 2 z 4 41

where a 2
m
i 1 ¸

2
i with

i̧

¸min
Mi MT

i

2
if

Mi MT
i

2
is positive semidefinite

¸max
Mi MT

i

2
if

Mi MT
i

2
is negative semidefinite

0 otherwise

42

Next, let

b 1 2 A
r

i 1
Mi

2 43

From the de® nition of q yzz above and (40), we then have

q yzz 2 A LT
3 z y z

b 1 y z 2 44

These lead to the next result.

Corollary 2: Suppose Assumption 1 holds. The origin
of system 1 is asymptotically stabilizable if

b
2
1 < 4a 1 a 2 45

where a 1 ¸min AAT , a 2
m
i 1 ¸

2
i with i̧ de® ned in

42 and b 1 de® ned in 43 .

In the following we study the two special cases which
might not be covered by the discussions above.

Case 1: g 0 is of full rank with m n.

First, consider the case of which g 0 is of full rank
with m n. This implies that matrices L 2 x , L4 x ,
Q2 x,x and Q4 x,x in 35 and 36 are all null. For
the case of m < n, we claim that i̧ Mi for each
i 1, . . . ,r m, where i̧ is de® ned in (42). To see this,
let x be the unit eigenvector of Mi MT

i /2 corre-
sponding to the eigenvalue i̧ ¸min Mi MT

i /2 for
Mi MT

i /2 being a positive semide® nite matrix. We
then have

i̧ x T Mi MT
i

2 x

Mi 46

Similarly, we can prove that i̧ Mi for the case
of which Mi MT

i /2 is a negative semide® nite matrix.
According to the de® nition of L 2 norm, we have
A 2

¸max AAT . From the de® nitions of a 1, a 2 and
b 1 in §3.2, we have

4a 1 a 2 4 ¸min AAT
m

i 1
¸

2
i

4 ¸max AAT
m

i 1
Mi

2

b 2
1 47

Thus, Corollary 2 fails to verify the local stabilizability
of system (1).

Note that, in general, the matrix L 4 x in §3.2 is not
null and it will enlarge the magnitude of a 2. That is why
Proposition 2 or Corollary 2 can be applied to some of
the cases of which g 0 does not have full rank. For the
case of m n, the matrix g 0 gT 0 is a non-singular
matrix. This implies that h x de® ned in (6) is an lpdf.
The origin of system (1) is therefore concluded by
Lemmas 2 and 3 to be asymptotically stabilizable,
which agrees with the result of Lemma 1.

Case 2: g 0 0 with 1 m n.

For the case of which 1 < m n and g 0 0, we
then have a 1 0. The results of §3.2 cannot be applied
since the relation b 2

1 < 4a 1 a 2, as required in Proposition
2 or Corollary 2, cannot hold. Alternatively, in the fol-
lowing we consider the e� ect of linear terms of g x only
on the local de® niteness of h x . Details are given below.

For the case for which m 1, Theorem 2 in §3.1
provides a stabilizability condition for system (1). We
now investigate the more general case of m > 1. Since
g 0 0, matrix A de® ned in Assumption 1 is null. This
implies that state variable z x. Thus, all the matrices
L 1 x , L 2 x , L 4 x , Q1 x,x , Q2 x,x and Q4 x,x
in (35) and (36) are null. Equation (37) can then be
rewritten as

h x xTL 3 x LT
3 x x 48

Similarly, let

L3 x M1x, . . . ,Mmx 49

where Mi R
n n for i 1, . . . ,m. It follows that

h x
m

i 1
xTMix xTMT

i x
m

i 1
xTMix

2 50

since xTMix xTMT
i x is a scalar. We then have the next

theorem.
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Theorem 3: Suppose g 0 0. Then the origin of
system 1 is asymptotically stabilizable if

m

i 1
xTMix

2 > 0 for all x 0 51

The next two results follow readily from Theorem 3.

Corollary 3: Suppose g 0 0. The origin of system
1 is asymptotically stabilizable if there exists some i

such that the symmetric part of Mi is a de® nite matrix.

Corollary 4: Suppose g 0 0 and none of Mi is a de-
® nite matrix. Then the origin of system 1 is asymptoti-
cally stabilizable if there exists a semide® nite matrix Mj

with simple zero eigenvalue and some i 1, . . . ,m
such that x T

j Mi x j 0, where x j is an eigenvector corre-
sponding to the zero eigenvalue of the symmetric part of
Mj.

Remark 4: The results of Theorem 3 and Corollaries
3 and 4 can also be applied to the case where gi 0 0
and gj 0 0 for some i and j. For instance, if there is
only one i such that gi 0 0, we can transform
system (1) into a single input system by letting uj 0
for all j i. Corollary 3 can then be applied to the de-
termination of local stabilizability of system (1). If
there are more than one such i we have gi 0 0.
Similarly, we can apply Theorem 3 by letting uj 0
for all j in which gj 0 0.

Remark 5: The result of Theorem 3 relates to the
asymptotic stabilization problem of the bilinear drift-
less systems, which is di� erent from those of Liaw and
Liang (1997, Theorem 8 and Corollary 2). In Liaw
and Liang (1997), the checking conditions were ob-
tained for investigating the possibility of the existence
of a constant asymptotic stabilizer for the bilinear
driftless systems. The results of this paper consider not
only the constant stabilizer but also the quadratic
asymptotic stabilizer. However, either of these two re-
sults can imply the other. In the next section, Example
1 demonstrates that the system might not possess a
constant asymptotic stabilizer but satis® es the con-
dition of Theorem 3. Moreover, Example 2 presents a
driftless system which possesses a constant asymptotic
stabilizer but yet checking condition (51) does not
hold.

4. Illustrative examples and simulation results

In this section, we present four examples. Example 1
gives a driftless system whose constant and linear terms
satisfy the condition of Theorem 3 but not possessing
any constant asymptotic stabilizer. Example 2 presents a
driftless system which possesses a constant asymptotic
stabilizer yet checking condition (51) does not hold.
Examples 3 and 4 are given to demonstrate the use of

the checking operations derived in §3. Simulation results
are also given for Example 3.

Example 1: Consider the following two-input driftless
system

Çx u1g1 x u2g2 x 52

where gi x Mix o x for i 1,2 with

M1
1 1
1 1 and M2

1 2
2 1 53

It is observed that both matrices M1 and M2 are inde® -
nite and not commutative. For any constants c1 and c2
which are not both zero, the trace and the determinant
of the matrix c1M1 c2M2 are calculated, respectively,
to be zero and 2c2

1 2c1c2 5c5
2 < 0. This implies the

matrix c1M1 c2M2 always possess a positive real
eigenvalue unless c1 c2 0. Thus, system (52) does
not possess any constant stabilizer. On the other hand,
by direct calculation, we have xTM1x 0 if and only if
x1 1 2 x2 and xTM2x 0 if and only if
x1 2 5 x2. It follows that the condition (51) of
Theorem 3 holds. The origin of system (52) is hence
concluded to be stabilizable by a quadratic-type asymp-
totic stabilizer.

Example 2: Consider system (1) with x x1,x2
T

R 2 and

g x x1 2x2 x1 2x2 x1x2
x2 x2 sinx1 x2 x2

2
54

We have g 0 0 and

M1 M2
1 2
0 1 55

It is clear that the origin of system (1) de® ned by (54) is
asymptotically stabilizable by constant control law:
u1 c1 and u2 c2 with c2 c2 < 0. However, the
asymptotic stabilizability of the origin cannot be con-
cluded by Theorem 3 since for all x on the line spanned
by the vector 1,1 T we have

2

i 1
xTMix

2 0 56

Example 3: Consider the following system

Çx1 2u1 x2x3u2 57

Çx2 sin x2 x2
3 u1 3x2u2 58

Çx3 sin x3 x2
2 u1 3x3u2 59

where x x1,x2,x3
T

R
3, u u1,u2

T
R

2 and
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g x
2 x2x3

sinx2 x2
3 3x2

sinx3 x2
2 3x3

60

It is observed that g 0 satis® es Assumption 1 with
rank g 0 1 and A 2. Thus, Lemma 1 (Brockett
1983) cannot draw any conclusion about asymptotic
stabilizability of the origin. However, the origin of this
system can be shown to be asymptotically stabilizable by
checking the local de® niteness of the de® ned scalar-
valued function h x proposed in this paper. Details
are given below.

First, we examine the local de® niteness of xTgi x for
i 1,2 by choosing the matrix P to be the identity
matrix. Clearly, xTg1 x cannot be an ldf because the
order of its lowest order term is an odd number. Also,
xTg2 x is not an ldf since it vanishes at the line
x2 x3 0. Thus, condition (3) cannot be applied to
each single-input case. On the other hand, it is clear that
we have

and

g 0

2 0

0 0

0 0

, Lx

0 0

x2 3x2

x3 3x3

Q x,x
0 x2x3

x2
3 0

x2
2 0

61

According to the discussions in §3.2, it is easy to have
a 1 4, a 2 4, b 1 4 and b

2
1 < 4a 1 a 2. Thus, according

to Proposition 2 or Corollary 2, the origin of system
(57) ± (59) is asymptotically stabilizable by the control
law (4) or (5) or the polynomial stabilizer in the
form of (4) or (5) with g x being replaced by
g 0 Lx Q x,x .

Simulation results are given in ® gures 1 and 2 by
taking the control input in the form of (4) with
g 1 g 2 1 and the initial condition x1 0 ,x2 0 ,
x3 0 0.1,0.1,0.2 . Figure 1 shows the timing
response of the state variables, while ® gure 2 indicates
the norm of the state vector. It is observed from these
two ® gures that all the state variables and the norm of
state vector are converged to zero, which agrees with the
theoretical results. However, since the closed loop
system has order greater than one, the convergent rate
is getting smaller as states come closer to the origin.

Example 4: Consider a two-input non-linear driftless
system as given by

Çx g x u u1g1 x u2g2 x 62

where x R
3, gi x Mix o x for i 1,2 with

M1

1 3 2
1 1 5
2 5 4

and M2

1 0 0
6 4 1
3 0 2

63

It is observed that rank g 0 0. Thus, Lemma 1
(Brockett 1983) cannot draw any conclusion about
asymptotic stabilizability of the origin. Since g 0 is a
zero matrix, the asymptotic stabilizability of system (62)
can then be determined by that of bilinear driftless
system

Çx u1M1x u2M2x 64

It is noted that either of the symmetric part of the two
matrices M1 and M2 is de® nite. In addition, matrices M1
and M2 are not commutative. Thus, the results of Liaw
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Figure 1. Timing response of state variables for Example 3
with the initial condition x1 0 .x2 0 ,x3 0

0.1,0.1,0.2 .

Figure 2. Norm of state variables for Example 3 with the
initial condition x1 0 ,x2 0 ,x3 0 0.1,0.1,0.2 .
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and Liang (1997) cannot be applied. However, the sym-
metric part of matrix M1 is found to be a positive semi-
de® nite matrix with simple zero eigenvalue. By direct
calculation, x 1 2, 2,0 T is an eigenvector of
zero eigenvalue for the symmetric part of M1 and
x T

1 M2 x 1 18 0. According to Corollary 4, the origin
of system (62) is concluded to be asymptotically stabiliz-
able. Moreover, stabilizing control laws can be chosen in
the form of u gT x x or ui xTMT

i x for i 1,2.

5. Conclusions

In this paper, we have derived the asymptotic stabi-
lizability conditions for non-linear driftless systems. The
asymptotic stabilizers were obtained by checking the
local de® niteness of a de® ned real-valued function
which is a function of system dynamics. By invoking
Taylor’s series expansion on system dynamics, the sta-
bilizability conditions and their corresponding asympto-
tic stabilizers were explicitly attained in terms of system
dynamics and its derivatives at the origin only.
Moreover, both constant control laws and quadratic-
type control laws were proposed in this paper for the
stabilization of bilinear systems. These were not covered
by our earlier work (1997).
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