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SUMMARY

This study mathematically formulates the fluid field of a water-wave interaction with a porous structure
as a two-dimensional, non-linear boundary value problem (bvp) in terms of a generalized velocity
potential. The non-linear bvp is reformulated into an infinite set of linear bvps of ascending order by
Stokes perturbation technique, with wave steepness as the perturbation parameter. Only the first- and
second-order linear bvps are retained in this study. Each linear bvp is transformed into a boundary
integral equation. In addition, the boundary element method (BEM) with linear elements is developed
and applied to solve the first- and second-order integral equations. The first- and second-order wave
profiles, reflection and transmission coefficients, and the amplitude ratio of the second-order components
are computed as well. The numerical results correlate well with previous analytical and experimental
results. Numerical results demonstrate that the second-order component can be neglected for a deep
water-wave and may become significant for an intermediate depth wave. Copyright © 1999 John Wiley
& Sons, Ltd.

KEY WORDS: boundary element method; porous structure; reflection coefficient; transmission coefficient

1. INTRODUCTION

In ocean engineering, porous structures such as rubble-mound breakwaters have been widely
constructed to protect harbors, inlets and beaches from wave action. Porous structures provide
shelter from wave attack by reflecting and dissipating incident wave energy. These structures
are also frequently used as absorbers in laboratories to remove unwanted waves during
experiments. In addition, the functional efficiency of these structures can be evaluated by
calculating the reflection and transmission of waves. In permeable breakwaters, a portion of
the incident wave energy is transmitted through the porous structure. Water depth, as well as
wave properties such as wave period and wave height, and structural properties markedly
influence the distribution of reflected, transmitted and dissipated wave energies. The major
structural properties are geometry, porosity, permeability, size distribution and shape function
of the components of the porous structures.

The interaction among progressing waves and a porous structure can be addressed in several
ways. Previous investigations have derived theoretical solutions for the reflection and transmis-
sion coefficients by using eigenfunction expansions in the fluid and in the porous structure
[1–4]. However, their solutions are valid only for structures with rectangular cross-sections
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under normally incident linear waves. Dalrymple et al. [5] extended the solutions to structures
subjected to an oblique wave attack. Recently, Lee and Lan [6] analyzed the porous structural
problems up to the second-order. These investigators also analyzed trapezoidal breakwaters by
considering an equivalent breakwater of rectangular cross-section [1,4] or by boundary element
models [7].

In addition to the above efforts, other scholars have closely examined the porous problems
using various methods. Chwang [8] applied Taylor’s [9] concept of a porous screen to avert the
complicated porous structure flow and develop the so-called porous wavemaker theory. Huang
and Chao [10] proposed a solution involving the porous Reynolds number, thereby avoiding
the complex bvp. Owing to the problem’s complexity, experimental studies are considered
indispensable tools in providing reliable information for engineering applications, Iwasaki and
Numata [11], Dattatri et al. [12], Aminti and Franco [13] and Oumeraci and Partensucky [14].
However, such results are restricted only to specific types of porous structures.

In this study, a generalized potential theory is applied to describe both water and porous
flow regions. The original non-linear boundary value problem (bvp) is linearized by the
perturbation method. The numerical solutions are derived up to the second-order. The
boundary element method (BEM) is used to solve the first- and second-order bvps. An attempt
is also made to increase the numerical solution’s accuracy by using the linear element to
perform computations. Moreover, the numerical solution’s accuracy is demonstrated by
comparing the analytical solution and the experimental data.

2. THEORETICAL FORMULATION OF THE PROBLEM

Herein, the interaction of a gravity wave train with a single homogeneous, isotropic, porous
structure of width b, between two semi-infinite fluid regions of constant depth h, as shown in
Figure 1, is considered. A Cartesian co-ordinate is chosen with the origin located at the still
water surface. The porous structure is specified with given porous features and is considered
to be rectangular with a horizontal bottom. The incident wave is specified propagating in the
+x-direction, with a wave height H and a period T. The incident wave train encountering the
porous structure face is partially reflected and partially transmitted. The wave motion inside
the porous structure decays as it propagates through the pores. Then, as it encounters the
leeward structural face, it is partially reflected back into the structure and partially transmitted
into the leeward semi-infinite fluid region. Inside the porous structure, the transmitted and
reflected waves are subsequently reflected and transmitted back and forth between the two
outside faces.

To resolve the above problem, the domain is divided into three regions, i.e. a porous
structure region and two water regions in front of and behind the porous structure. In this
study, the mathematical model used to describe the flow regions for the porous structure and
water regions is generalized into one theory. Only the flow mechanism in the porous structure
is mathematically described.

By making the usually assumptions of classical hydrodynamics, the wave field outside the
structure can be specified by velocity potentials [1], F1 in the seaward region (denoted region
1) and F3 in the leeward region of the porous structure (region 3). In the porous structure, the
incompressible fluid motion for the discharge velocity is also describable by a potential (F2),
and a modified free-surface boundary condition. The velocity potentials Fj(x, z, t) can be
expressed as:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 265–288 (1999)



WAVE INTERACTION WITH POROUS STRUCTURES 267

Fj(x, z, t)=Real[fj(x, z) e− ivt], j=1, 2, 3, (1)

where i=
−1, and the velocity potentials fj(x, z) must satisfy the Laplace equation

92fj=0. (2)

The unsteady Bernoulli equation for the flow in the porous structure can be expressed as
[1,6]:

Figure 1. Schematic diagram of waves propagating over a porous structure; (a) physical domain; (b) computational
domain.
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where the subscript j denotes the jth flow region, Sj represents the virtual mass coefficient, r

is the fluid density, g denotes the gravity acceleration, and v represents the wave frequency.
The final term of the left-hand side of Equation (3) represents the flow resistance and fj is
referred to as the friction coefficient. In addition, the friction coefficient fj is defined by using
the Lorentz condition of equivalent work, and can be written as [15]:
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where Vb j denotes the real part of the seepage velocity, n represents the kinematic fluid viscosity,
Cfj denotes the turbulence drag coefficient, oj is the porosity of the medium, and Kpj represents
the intrinsic permeability of the porous medium. For Sj=1 and fj=0, Equation (3) is reduced
to the well-known Bernoulli equation for the irrotational flow of an ideal fluid.

Equations (3) and (4) indicate that the non-linearity of the flow resistance is maintained in
an implicit form. In the solution, the problem is iteratively solved by assuming a friction fj

value, which is then recalculated from the solved flow velocity. In the first-order solution, the
linear velocity is used to calculate the friction coefficient. However, in the second-order
solution, the linear velocity and the second-order component of the velocity are used to
calculate the friction coefficient. Furthermore, the use of Equation (3) implies irrotational flow
and the generalized velocity potential function exists. A theoretical proof was given by Lee [4].

Figure 1(a) depicts the physical domain of the present problem. The porous structure is
subjected to incident waves with frequency v and wave height H. The first region includes
incident waves F1

I and reflected waves F1
R, and the third region contains transmitted waves F3

T.
Based on the above theoretical framework, the boundary conditions for the jth region (Figure
1) are given below.

1. The kinematic free-surface boundary condition:

(hj
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+
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(x
=0 on z=hj ; j=1, 2, 3. (5)

2. The dynamic free-surface boundary condition:
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+ghj−vfjFj=0 on z=hj. (6)

3. The boundary condition at the water bottom:

(Fj

(n� =0 on z= −h, (7)

indicates that the bottom is impermeable. The vector n� is the unit normal vector pointing
out of the computation domain.

4. The radiation conditions: These conditions model the behavior of an outgoing wave at a
distance far away from the structure (where the water depth remains constant).

5. The matching boundary conditions at the interface of the (j−1)th and jth regions
(j=2, 3):
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These equations can be applied to pure fluid regions, j=1 and j=3, by specifying the virtual
mass coefficient to be unity (Sj=1) and the friction coefficient to be zero (fj=0) in the
equations.

The resulting non-linear bvp can be reformulated using a perturbation method. With the
perturbation approach, it is assumed that the solution relies on the presumed small quantity e,
the wave steepness. The series form of the velocity potential can be written as [16]:

Fj(x, z, t)= %
�

n=1

Fjn(x, z, t), (10)

where a perturbation parameter, e, is implicitly included in the expansion. Other physical
quantities such as dynamic pressure, surface elevation and velocities can also be similarly
expanded. The fact that the location of the water surface is a priori unknown accounts for why
the free-surface boundary conditions must also be expanded in the Taylor series around the
still water level.

By applying the perturbation procedures, the bvps of the first- and second-order are
formulated. The first-order bvp can be expressed as:

92Fj1=0, j=1, 2, 3, (11)
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The matching boundary conditions on the interface of the (j−1)th and jth regions (j=2, 3),
are
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and radiation conditions, i.e. an outgoing wave at far-field.
The free-surface elevation can be computed according to the linearized Bernoulli equation

evaluated at the free-surface:
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which is identical to the linear problem given by Sollitt and Cross [1].
The second-order bvp can be expressed as:

92Fj2=0, j=1, 2, 3, (17)
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The matching boundary conditions at the interface of the (j−1)th and jth regions (j=2, 3),
are
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and radiation conditions, i.e. an outgoing wave at far-field.
The free-surface elevation at z=0 can be computed from the second-order Bernoulli

equation:
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The non-homogeneous terms in Equations (18) and (21) involve the products of the
first-order solutions. Although complex variables are used in the expression of the linear
solution, only the real part represents physical quantities. Therefore, redundant results
attributed to multiplication of the imaginary parts should be excluded. By using Vantorre’s
expression [17], Equations (18), (21) and (22) can be reformulated into a time-dependent term
proportional to e− i2vt and a time-independent term. The second-order velocity potential and
surface elevation can be written in the form

Fj2(x, z, t)=fj2(x, z) e− i2vt+8j2(x, z), (23)

hj2(x, t)= ĥj2(x) e− i2vt+ h̃j2(x). (24)

Equations (17)–(22), can be decomposed into two bvps: a time-dependent problem, fj2(x, z),
and a time-independent problem, 8j2(x, z). In addition, the bvp for the time-dependent part of
the second-order solution can be written as:
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where Dj(x) denotes
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In region 1, the time-dependent potential function contains the second-order incident wave f12
I

and a priori unknown reflected wave f12
R . The second-order time-dependent free-surface

elevation at z=0 can be expressed as
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The bvp, Equations (25)–(30), in terms of fj2 contains non-homogeneous boundary
conditions, i.e. Equations (26), (29) and (30). To facilitate the solution of the problem, it is
further decomposed into two parts: a Stokes wave problem, f j2

s , and a free-wave problem, f j2
f .

fj2=f j2
s +f j2

f , (32)

where f j2
s must satisfy Equations (25)–(27). The f j2

f must satisfy Equations (25) and (27), the
radiation conditions and a homogeneous free-surface boundary condition [18].

The bvp for the time-independent part of the second-order solution can be expressed as:
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where f( j1, (f( j1/(x and (2f( j1/(x2 represent the complex conjugate of fj1, (fj1/(x and (2fj1/
(x2 respectively. The matching boundary conditions between the (j−1)th and jth regions
(j=2, 3) are
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where (f( j1/(z denotes the complex conjugate of (fj1/(z. The time-independent part of the
corresponding free-surface elevation at z=0 can be expressed as
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The procedures to solve the time-dependent bvp can be applied herein to resolve the
time-independent bvp 8j2. Moreover, the solution can be written as the sum of a solution of
a bvp, 8 j2

s , and a solution of a bvp, 8 j2
f , i.e.

8j2=8 j2
s +8 j2

f , (40)

where 8 j2
s must satisfy Equations (33)–(35). Also, 8 j2

f must satisfy Equations (33) and (35), the
radiation conditions and a homogeneous free-surface boundary condition [19].

3. OPEN BOUNDARY TREATMENT

At far-field, x=9 (W( + (b/2)), the radiation conditions stipulate that both the reflection wave
and the transmission wave propagate away from the porous structure. Therefore, the following
discussion encompasses the velocity potentials, the first- and second-order, which satisfy
governing equation and radiation conditions in the region of constant depth, h. The first-order
velocity potential at the reflection side that satisfies Equations (11)–(13) and the radiation
condition, can be expressed as [18]:

F1
r(x, z, t)=f1

r(x, z) e− ivt, (41)
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exp[− ik(x+W( + (b/2))]+evanescent modes. (42)

The subscript represents the order of magnitude. The first term is the velocity potential of the
first-order incident wave; the second term is the velocity potential of the first-order reflection
wave, where Hr denotes the wave height of the reflection wave. The last term decays away to
zero at far-field, W( =6h and therefore, is neglected herein. In addition, k and v must satisfy
the dispersion relation,

v2=gk tanh kh. (43)

At interface AB (Figure 1(b)), x= − (W( + (b/2)), the matching conditions provide continu-
ity of pressures and horizontal velocities normal to the vertical interface. The relation between
velocity potential, f11, and normal velocity, (f11/(n, on the vertical interface AB is derived in
Appendix A (Equation (69)). In the present context, it can be written as
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g
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cosh kh
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Similarly, on the vertical interface CD (x= (W( + (b/2))), the relation between f31 and (f31/(n
can be established as (Appendix A)
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The time-dependent velocity potential, F2
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order Stokes wave can be analytically solved as [18]:
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The first term is due to the interaction of the first-order incident wave and the first-order
reflection wave; the second term is the velocity potential of the second-order Stokes incident
wave, the third term is attributed to the interaction of the first-order reflection wave. The final
term decays away to zero at far-field and is therefore, neglected herein.

The time-dependent velocity potential F2
rf=f2

rf e− i2vt at the reflection side of the second-or-
der free-wave can be expressed as [18]:

f2
rf=A( cosh b(h+z) exp[− ib(x+W( + (b/2))]+evanescent modes, (47)

where A( is an unknown coefficient. Evanescent modes decay away to zero at far-field. b and
v must satisfy the dispersion relation

(2v)2=gb tanh bh. (48)

Similarly, at interface AB, using the matching conditions provides continuity of pressures and
horizontal velocities normal to the vertical interface. The open boundary condition can be
expressed as (Appendix B):

f12=R1(z)+
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On the transmission side,
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and
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tf=B( cosh b(h+z) exp[ib(x−W( − (b/2))]+evanescent modes, (51)

where B( denotes an unknown coefficient. The relation between f32 and f32n on the interface
CD (x= (W( + (b/2))) can be established as (Appendix B):
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The time-independent velocity potential, 82
rs, at the reflection side of the second-order wave

can be analytically solved [19], i.e.
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based on the assumption of no-uniform current, i.e. C( =0, and the series summation term
decays away to zero at far-field. Therefore, at interface AB, x= − (W( + (b/2))
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Similarly, on the transmission side,
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assuming no-uniform current (K( =0) exists and the series summation term decays away to zero
at far-field. Therefore, at interface CD, x= (W( + (b/2))

832=82
ts+82

tf=0. (58)

Equations (44), (45), (49), (52), (55) and (58) are the open boundary conditions on AB and
CD of Figure 1(b), which correspond to the first-order, the time-dependent part of the
second-order and the time-independent part of the second-order problems respectively.

4. BEM FORMULATION

The BEM has been used to solve a variety of problems in theoretical hydrodynamics and
elasticity theory [20]. For a bvp in which the free-space Green’s function is known, the BEM
can be used to perform computations only on the domain’s boundary.

Utilizing the BEM initially involves converting the bvps into an integral equation represen-
tation. Using Green’s second identity&

G

�
f. (q
(n� −q

(f.
(n�

�
dG=

&
V

(f. 92q−q92f. ) dV, (59)

where q denotes the fundamental solution of the governing equation, G represents the
boundary of the solution domain, V is the solution domain, and f. denotes the velocity
potential at a selected point of the boundary.
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The fact that the governing equation of the fluid domain is the Laplace equation accounts
for why the fundamental solution is [21]

q=
1

2p
ln
�1

r
�

, (60)

where r represents the distance from the source point to the field point. From Equation (59)
any velocity potential f. j of the boundary is given by

−
b

2p
f. j=

&
G

�
f. (q
(n� −q

(f.
(n�

�
dG, (61)

where j denotes the source point and b represents the internal angle of the source point j.
The numerical procedure of the BEM entails dividing the boundary into N segments or

elements. To increase the numerical method’s accuracy, the linear element is used to perform
computations on the domain’s boundary. Next, Equation (61) is numerically integrated using
Gaussian quadrature. Finally, a system of N equations is established. The system of N
equations can be written as

[H ]{f. }= [G ]
!(f.
(n

"
, (62)

in which [H ] and [G ] are known and rely only on the geometry. Therefore, instead of
attempting to obtain the unknown distribution of the boundary values over the discretized
surface, the problem is reduced to finding the unknown f. and (f. /(n at the nodal points.

In the previous section, the relation between f. and (f. /(n was established. Herein, the
discretized forms of the open boundaries are established on the basis of linear element. By
combining Equation (62) with the discretized form of the open boundary conditions, a
sufficient number of equations exist to solve unknown quantities. After rearranging the
equations in such a manner that all unknowns are taken to the left-hand side and all the
knowns are moved to the right-hand side, Equation (62) can be written as:

[A ][X ]= [B ], (63)

where [X ] denotes the vector of unknown fjm and (fjm/(n (m=1, 2), [B ] represents the
known vector and [A ] is the matrix of coefficients. Equation (63) can be solved by employing
the Gauss elimination method.

5. NUMERICAL RESULTS AND DISCUSSION

This work has examined the second-order problem of the interaction of progressive wave and
porous structure in water of constant depth by the BEM. To ensure the accuracy of the
computation, the numerical solutions of the BEM are compared with available analytical
solutions of Lee and Lan [6] and experimental results of Sollitt and Cross [1]. The friction
coefficient used to describe the flow mechanism in the porous region is calculated by the
Lorentz’s condition [15] of equivalent work, i.e. Equation (4). In addition, the flow velocities
of the first- and second-order are defined using the perturbation definition:

The first order: �Vb 1�=
Real{ux21}2+Real{uz21}2 (64)

The second order: �Vb 2�=
Real{ux21+ux22}2+Real{uz21+uz22}2, (65)
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where the first subscript of u represents velocity direction, the second subscript denotes flow
region and the third subscript is the order of magnitude.

The reflection and transmission coefficients of the first- and second-order waves are defined
as

K1r=
'E1r

E1i

K2r=
'E2r

E2i

K1t=
'E1t

E1i

K2t=
'E2t

E2i

(66)

where E1i, E1r and E1t are the first-order energies of incident, reflected and transmitted waves
respectively. Moreover, E2i, E2r and E2t are the complete second-order total energies of
incident, reflected and transmitted waves respectively.

Figure 2 presents the numerical solutions for wave steepness H/L=0.01, dimensionless
width of the porous structure b/h=1.0, porosity o2=0.439, turbulence drag coefficient
Cf2=0.295, intrinsic permeability Kp2=0.1138×10−5 (ft2) and kinematic viscosity n=1.09×
10−5 (ft2 s−1). This figure also compares numerical results in this study with points taken from
analytical results of Lee and Lan [6]. The results of this study closely correlate with those of
Lee and Lan [6], with the only discrepancy found in the linear reflection coefficient. Next, the
proposed numerical model’s accuracy is confirmed by reanalyzing the linear problem by the
method of matched eigenfunction expansion, as used by Lee and Lan [6]. The analytical
solutions, plotted in Figure 2, closely correlate with the BEM solutions. Therefore, the
proposed numerical model’s accuracy is verified. Reasons for the discrepancy between this
study and Lee and Lan [6] still remain unknown.

This study also considers two different wave steepnesses, H/L=0.01 and 0.02, and two
different porous structural properties (Table I). The first-order problems are solved by both the
BEM and the analytical method; the second-order problems are solved by the BEM only.
Figures 3–5 plot the numerical results.

Figures 3–5 present the reflection and transmission coefficients for a permeable breakwater
of rectangular cross-section, as a function of relative water depth, kh. Notably, more wave
energy is dissipated in the porous structure for a deeper water-wave. The effect of second-order
is important in the region of intermediate depth wave, p/10BkhBp. In addition, the
importance of the second-order effect increases with an increasing wave steepness.

The surface elevation can be computed according to Equations (16) and (22). For kh=0.4
and 1.0, Figures 6 and 7 display the temporal waveforms at four different locations. Each
figure includes the temporal waveforms h1, h1+h2s and h1+h2s+h2f, where h1 denotes the
first-order wave profile, h2s represents the second-order Stokes’ wave profile, and h2f is the
second-harmonic free-wave profile. These figures reveal that the surface elevations differ at
different position. This phenomenon is attributed to the fact that the second-order free-wave
moving with phase velocity is smaller than the Stokes’ wave, (Equations (43) and (48)).

Figure 6, kh=0.4, indicates that the second-order free-surface elevation, h1+h2, has an
obvious deformation, implying that the second-order component is important. On the other
hand, Figure 7, kh=1.0, indicates that the deformation of the second-order free-surface is
insignificant, i.e. the second-order component can be neglected. Therefore, it can be concluded
that the effect of second-order wave component gradually decreases with an increasing relative
water depth. Herein, an attempt is also made to further understand the relative importance of
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Figure 2. Friction (a), reflection (b) and transmission (c) coefficients (H/L=0.01, o2=0.439, Kp2=0.1138×10−5,
Cf2=0.295).
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Figure 2 (Continued)

the second-harmonic free-wave and the second-order Stokes’ wave. Figure 8 plots the ratio of
free-wave amplitude and Stokes’ wave amplitude, �h2f�/�h2s� for different relative water depths.
According to this figure, the second-harmonic free-wave is overwhelmingly larger than the
Stokes’ wave.

6. CONCLUSIONS

This study establishes the BEM with linear elements to examine second-order wave interaction
with a porous structure in water of finite depth. The accuracy of the proposed BEM is verified
by comparing the present numerical results with previous analytical solutions and experimental
data. For a low value of relative water depth, the numerical results indicate that second-order
components may be important in the region of intermediate depth wave. The second-order
components consist of a second-harmonic free-wave and a second-order Stokes’ wave. In
addition, the wave height of a free-wave is markedly higher than that of a Stokes’ wave.
Moreover, the fact that the free-wave travels with lower speed down the leeside of the porous
structure accounts for why the water surface profile meanders, i.e. surface profiles vary at
different positions.

Table I. Media physical properties

Kp2 (ft2)Cf2 o2 (%)

0.4390.295 0.1138×10−5

0.4340.4820×10−50.282
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Figure 3. Friction (a), reflection and transmission (b) coefficients (H/L=0.01, o2=0.434, Kp2=0.4820×10−5,
Cf2=0.282).
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Figure 4. Friction (a), reflection and transmission (b) coefficients (H/L=0.02, o2=0.439, Kp2=0.1138×10−5,
Cf2=0.295).
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Figure 5. Friction (a), reflection and transmission (b) coefficients (H/L=0.02, o2=0.434, Kp2=0.4820×10−5,
Cf2=0.282).
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Figure 6. Time variation of the surface elevation at different positions (H/L=0.01, o2=0.439, Kp2=0.1138×10−5,
Cf2=0.295, kh=0.4).
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Figure 6 (Continued)
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Figure 7. Time variation of the surface elevation at different positions (H/L=0.01, o2=0.439, Kp2=0.1138×10−5,
Cf2=0.295, kh=1.0).
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Figure 7 (Continued)
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Figure 8. The ratio of second-order wave amplitudes, �h2f/h2s� (H/L=0.01, o2=0.439, Kp2=0.1138×10−5, Cf2=
0.295).
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APPENDIX A

According to the match conditions of continuity of pressure and horizontal velocity normal to
the vertical interface AB and Equation (42), one gets

f11=f1
r =

g
2v

cosh k(h+z)
cosh kh

(H+Hr), (67)

f11n= −f1x
r = − i

gk
2v

cosh k(h+z)
cosh kh

(H−Hr). (68)

The relationship between f11 and f11n on the interface AB can be established as [18]:

f11=H
g
v

cosh k(h+z)
cosh kh

+
cosh k(h+z)

ikQ0

&
−h

0 (f11

(n
cosh k(h+z) dz, (69)

where

Hr=H+
2v cosh (kh)

igkQ0

&
−h

0 (f11

(n
cosh k(h+z) dz, (70)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 265–288 (1999)



WAVE INTERACTION WITH POROUS STRUCTURES 287

Q0=
&

−h

0

cosh2 k(h+z) dz. (71)

Similarly, on the vertical interface CD,

f31=f1
t =

gHt

2v

cosh k(h+z)
cosh kh

, (72)

f31n=f1x
t = i

gkHt

2v

cosh k(h+z)
cosh kh

. (73)

The relationship between f31 and f31n on the interface CD can be established as:

f31=
cosh k(h+z)

ikQ0

&
−h

0 (f31

(n
cosh k(h+z) dz, (74)

where

Ht=
2v cosh (kh)

igkQ0

&
−h

0 (f31

(n
cosh k(h+z) dz. (75)

APPENDIX B

According to the match conditions of continuity of pressure and horizontal velocity normal to
the vertical interface AB and Equations (46) and (47), one gets

f12=f2
rs+f2

rf= i
�gk

4v

(2 cosh (2kh)−1)
2 sinh (2kh)

n
HHr+ (− i)

3v

32
cosh[2k(h+z)]

sinh4(kh)
H2

+ (− i)
3v

32
cosh[2k(h+z)]

sinh4(kh)
H r

2+A( cosh b(h+z), (76)

f12n= −f2x
rs −f2x

rf = −
3kv

16 sinh4 kh
(H2−H r

2)cosh 2k(h+z)+ ibA( cosh b(h+z). (77)

The relationship between f12 and f12n on the interface AB can be established as [18]:

f12=R1(z)+
− i cosh b(h+z)

bW0

&
−h

0 (f12

(n
cosh b(h+z) dz, (78)

where

A( = 1
ibW0

&
−h

0 (f12

(n
cosh[b(h+z)] dz+R( L, (79)

W0=
&

−h

0

cosh2 b(h+z) dz, (80)

R( L=
1

ibW0

&
−h

0 (f2
rs

(x
cosh[b(h+z)] dz, (81)

R1(z)=f2
rs(z)+R( L cosh b(h+z). (82)

Similarly, on the vertical interface CD,
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f32=f2
ts+f2

tf=
− i3v

32 sinh4 kh
H t

2 cosh 2k(h+z)+B( cosh b(h+z), (83)

f32n=f2x
ts +f2x

tf =
3kv

16 sinh4 kh
H t

2 cosh 2k(h+z)+ ibB( cosh b(h+z). (84)

The relationship between f32 and f32n on the interface CD can be established as:

f32=R2(z)+
− i cosh b(h+z)

bW0

&
−h

0 (f32

(n
cosh b(h+z) dz, (85)

where

B( = 1
ibW0

&
−h

0 (f32

(n
cosh[b(h+z)] dz+R( R, (86)

R( R=
−1

ibW0

&
−h

0 (f2
rs

(x
cosh[b(h+z)] dz, (87)

R2(z)=f2
rs(z)+R( R cosh b(h+z). (88)
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