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Magnetic Skyrmion Lattices in Heavy Fermion SuperconductorUPt3
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Topological analysis of nearly SOs3dspin symmetric Ginzburg-Landau theory, proposed for UPt3 by
Machidaet al. shows that there exists a new class of solutions carrying two units of magnetic flux
the magnetic Skyrmion. These solutions do not have singular corelike Abrikosov vortices and at
magnetic fields they become lighter for strongly type-II superconductors. Magnetic Skyrmions re
each other as1yr at distances much larger than the magnetic penetration depthl, forming a relatively
robust triangular lattice. The magnetic induction nearHc1 is found to increase assH 2 Hc1d2. This
behavior agrees well with experiments. [S0031-9007(98)08317-3]

PACS numbers: 74.20.De, 74.25.Ha, 74.60.Ec, 74.70.Tx
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Heavy fermion superconductors have surprising pro
erties on both the microscopic and macroscopic leve
The charge carrier’s pairing mechanism is unconve
tional. The vortex state is also rather different from that
s-wave superconductors: there exist unusual asymme
vortices, and phase transitions between numerous vo
lattices take place [1]. For the best studied material UP3
several phenomenological theories have been put forw
[2–4] which utilize a multicomponent order paramete
In particular, great effort has been made to qualitative
and quantitatively map the intricateH-T phase diagram.
Most of the attention has been devoted to the region
magnetic fields nearHc2.

Magnetization curves of UPt3 nearHc1 are also rather
unusual (see Fig. 1). Theoretically, if the magnetizatio
is due to the penetration of vortices into a superconduct
sample then one expects24pM to drop with an infinite
derivative atHc1 (Fig. 1, dotted line). On the other hand
experimentally24pM continues to increase smoothl
(squares and triangles represent rescaled data taken
Refs. [5] and [6], respectively). Such a behavior wa
attributed to strong flux pinning or surface effects [5
However, both experimental curves in Fig. 1, as we
as the other ones found in the literature, are close
each other if plotted in units ofHc1. There might
be a more fundamental explanation of the univers
smooth magnetization curve nearHc1. If one assumes
that fluxons are of an unconventional type for whic
interaction is long range, then precisely this type
magnetization curve is obtained.

Magnetization nearHc1 due to fluxons carryingN
units of flux F0 ; hcy2e, with line energý and mutual
interactionV srd, is found by minimizing the Gibbs energy
of a very sparse triangular lattice,

GsBd ­
B

NF0
f´ 1 3V sadg 2

BH
4p

, (1)

where a ­ sF0yB
p

3 d1y2 is lattice spacing. When
V srd , expf2lrg, the magnetic induction has the
conventional behavior B , flogsH 2 Hc1dg22 [7],
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while if it is long range,V srd , 1yrn, then one finds
B , sH 2 Hc1dn11. The physical reason for this differ-
ent behavior is very clear. For a short range repulsio
if one fluxon penetrated the sample, many more c
penetrate almost with no additional cost of energy. Th
leads to the infinite derivative of magnetization. On th
other hand, for a long range interaction making a pla
for each additional fluxon becomes energy consumin
The derivative of magnetization thus becomes finite.

It is generally assumed that although vortices in UP3
differ from the usual Abrikosov vortices in many detail
[8] two important characteristics are preserved. Fir
their sizel is well defined: magnetic field and interaction
between vortices vanish exponentially beyond this leng
Second, their energy is proportional to logk. However,
in this Letter we show on the basis of a topologic
analysis of a model by Machidaet al. [9] that there exists
an additional class of fluxons which we call magnet
Skyrmions. They carry two units of magnetic fluxN ­ 2
and do not have a singular core, similar to Anderso
Toulouse-Chechetkin texture in superfluid3He [10]. We
show that their line energý ø 2´0, ´0 ; sF0y4pld2 is

FIG. 1. Magnetization of magnetic Skyrmion lattice (soli
line) and experimental data for UPt3 from Ref. [5] (squares)
and Ref. [6] (triangles). Magnetization of Abrikosov vorte
lattice (dotted line) is given for comparison.
© 1999 The American Physical Society 1261
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independent ofk and is smaller than that of Abrikosov
vortices for strongly type-II superconductors like UPt3
sk , 50d. Magnetic Skyrmion lattice becomes the
ground state at low magnetic fieldssH 2 Hc1dyHc1 ø 1.
We further find that the repulsion of magnetic Skyrmion
is, in fact, long range:V srd , 1yr. This allows us to
produce a nice fit to the magnetization curve (solid line
Fig. 1) which is universal (independent ofk).

The order parameter in the weak spin-orbit couplin
model of UPt3 is a three dimensional complex vector
cis$rd [2]. The Ginzburg-Landau free energy reads

F ­ Fsym 1 DF , (2)

Fsym ­ 2acic
p
i 1

b1

2 scic
p
i d2 1

b2

2 jcicij
2 (3)

1 K1sjDxcij
2 1 jDycij

2d 1 K2jDzcij
2 1

1
8p B2

j ,

(4)

DF ­ 2gjcxj2 2 ljcz j
2 1

Dx

2 jciBij
2 (5)

1
X

i­x,y

fki
1sjDxcij

2 1 jDycij
2d 1 ki

2jDzcij
2g , (6)

whereDj ; ≠j 2 is2eyh̄cdAj andBj ­ s= 3 $Adj. We
separated Eq. (2) into a symmetric partFsym which is in-
variant under the spin rotation group SOs3dspin acting on
the indexi of the order parameter and into terms brea
ing the SOs3dspin symmetry (anisotropy, coupling to anti-
ferromagnetic spin fluctuations, and spin-orbit coupling
AlthoughDF is crucial in explaining the double supercon
ducting phase transition in UPt3 at zero external magnetic
field and the shape ofHc2sT d curve on theH-T phase
diagram, it can be considered as a small perturbat
in the low temperature superconducting phase (phaseB)
well below its critical temperatureT ø T2

c . 0.45 K
and at low magnetic fieldsH . Hc1. Indeed, estimation
of coefficients ofDF at T ­ T2

c y2 yields gya . 0.2,
lya . 0.05, and s Dx

2 H2
c1dys a2

2b1
d . 1026, and alsok ø

K [2]. Therefore, in a certain range of magnetic field
and temperatures there is an approximate O(3) symme
and we first turn to minimizeFsym.

In the vacuum of phaseB the order parameter is
$c ­ c0s $n 1 i $mdy

p
2, c

2
0 ; ayb1, $n ' $m, $n2 ­ $m2 ­

1. Stability requiresa . 0, b1 . 0, and b2 . 2b1.
The symmetry breaking pattern of phaseB is as fol-
lows. Both the spin rotations SOs3dspin and the U(1)
gauge symmetries are spontaneously broken, but a d
onal subgroup U(1) survives. The subgroup consists
combined transformations: rotations by angleq around
the axis $l ; $n 3 $m accompanied by gauge transforma
tions eiq . Each vacuum state is specified by orientatio
of a triad of orthonormal vectors$n, $m, and$l. The vacuum
manifold is therefore isomorphic to SO(3). Topolog
cal defects might be of two kinds: regular and “singular
To find regular topological line defects, it is enough t
consider the London approximation [10], i.e., to assum
that the order parameter gradually changes in space fr
1262
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one vacuum to another. The triad$n, $m, and $l then be-
comes a field. The Abrikosov vortex is a singular defec
it has a core where the modulus of the order parame
vanishes and energy diverges logarithmically. Accord
ingly, a cutoff parameter—the correlation length—shoul
be introduced and one obtains logk dependence for the
vortex line energy. This fact alone means that if ther
exists a regular solution it is bound to become energe
cally favorable for large enoughk. Below we consider
a situation where the external magnetic field is oriente
along thez axis and all configurations are translationally
invariant in this direction. We use dimensionless units
r ; lr̃, A ; sF0y2pldÃ, B ; sF0y2pl2dB̃, and F ­
s´0y2pl2dF̃, wherel ; sF0y2pd

p
b1y4paK1 (the tilde

will be dropped hereafter). The free energy takes th
form,

FL ­ 1y2s≠k
$ld2 1 s $n≠k $m 2 Akd2 1 B2

k , (7)

and the field equations are

np
$=mp 2 $A ­ $= 3 s $= 3 $Ad ­ $j , (8)

D$l 2 $ls$l ? D$ld 1 2jks$l 3 ≠k
$ld ­ 0 . (9)

Equation (8) shows that the superconducting velocity
given by np

$=mp ­ 2 $=q , where the angleq specifies
the orientation of vector$n or $m in the plane perpendicular
to $l (see inset of Fig. 2). Thus,q is the superconducting
phase.

Now we proceed to classify the boundary conditions
The magnetic field vanishes at infinity, while topology o
the orientation of the triad$n, $m, and$l at different distant
points is described by the first homotopy group of vacuu
manifold:p1sssSOs3dddd ­ Z2 [10]. It yields a classification
of solutions into two topologically distinct classes (“odd”
and “even”). This classification is too weak, however, fo
our purposes because it does not guarantee nontrivial fl
penetrating the plane. We will see that configuration
having both “parities” are of interest. In the presence o
the magnetic flux possible configurations are further co
strained by the flux quantization condition. The vacuum

FIG. 2. Configuration of a magnetic Skyrmion. Solid arrow
represent$l field while the “clocks” show that phaseq rotates
twice as an infinitely remote contour is circumvented. Inse
explains definitions ofq andQ.
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manifold is naturally factored into SOs3d ! SOs2d ≠ S2,
where theS2 is a set of directions of$l and the SO(2) is
the superconducting phaseq . For a given number of flux
quantaN , the phaseq makesN windings at infinity; see
Fig. 2. The first homotopy group of this part is therefor
fixed: p1sssSOs2dddd ­ Z. If, in addition, $l is constant,
there is no way to avoid singularity in the phaseq

wherej $cj ­ 0. However, the general requirement that
solution has finite energy is much weaker. It tells us th
the direction of$l should be fixed only at infinity [11]. The
relevant homotopy group is nontrivial:p2sS2d ­ Z. The
second homotopy group appears because fixing$l at infin-
ity (say, up) effectively “compactifies” two dimensiona
physical space intoS2. Unit vector $l winds towards
the center of the texture. The new topological numb
is Q ­ s1y8pd

R
´ij

$ls≠i
$l 3 ≠j

$ldd2 r. Therefore, all
configurations fall into classes characterized by the tw
integersN andQ. For regular solutions, however, thes
two numbers are not independent. Upon integrating t
supercurrent equation, Eq. (8), along a remote conto
and making use of the identitý pqslps≠ilqd s≠jlsd ­
s≠inpd s≠jmpd 2 s≠impd s≠jnpd, we obtain Q ­ Ny2.
We call these regular solutions magnetic Skyrmions.

The lowest energy solution within the London approx
mation corresponds toNy2 ­ Q ­ 21 (or Ny2 ­ Q ­
11). We analyze a cylindrically symmetric situation an
choose the triad$n, $m, and$l in the form,

$l ­ $ez cosQsrd 1 $er sinQsrd ,

$n ­ f$ez sinQsrd 2 $er cosQsrdg sinw 1 $ew cosw ,

$m ­ f$ez sinQsrd 2 $er cosQsrdg cosw 2 $ew sinw ,

(10)

where r and w are polar coordinates andQ ­ $ez
b$l.

Boundary conditions areQs0d ­ p andQs`d ­ 0. The
vector potential is given by$A ­ Asrd$ew. The general
form of such a configuration is shown in Fig. 2. Th
unit vector$l (solid arrows, Fig. 2) flips its direction from
up to down as it moves from infinity toward the ori
gin. The phaseq (arrow inside small circles in Fig. 2)
winds twice while completing an “infinitely remote”
circle. If in Eq. (7) only the first term were presen
we would deal with a standard SO(3) invariant nonlin
ear s model [12]. Being scale invariant, it possesse
infinitely many pure Skyrmion solutionsQssr; dd ­
2 arctansdyrd, which have the same energy equal to 2 (
units of ´0) for any sized of a Skyrmion. However, in
the present case the structure of the order paramete
more complex and the above degeneracy is lifted by t
second and third terms of Eq. (7).

Below we make use of the functionsQssr; dd to
explicitly construct the variational configurations. W
show that as the size of these configurations increa
the energy is reduced to a value arbitrarily close
the absolute minimum of́ms ­ 2. Substituting Eq. (10)
e

a
at

l

er

o
e
he
ur

i-

d

e

-

t
-
s

in

r is
he

e
ses
to

into Eq. (7) and integrating over thex-y plane we
obtain the energy of the magnetic Skyrmion in the form
´ms ­ ´s 1 ´cur 1 ´mag, where ´s ;

R
rd rsQ02y2 1

sin2 Qy2r2d, ´cur ;
R

rd rfs1 1 cosQdyr 1 Ag2, and
´mag ;

R
rd rsAyr 1 A0d2. The first term ´s is the

same as in the nonlinears model without a magnetic
field. It is bound from below by 2, the energy of
pure Skyrmion. The second terḿcur , the “supercurrent”
contribution, is positive definite. One still can mainta
zero value of this term when the fieldQsrd is a pure
SkyrmionQssr; dd of certain sized. Assuming this, one
getsAsrd ­ 2s1 1 cosQdyr ­ 22rysr2 1 d2d. The
third term, the magnetic field contribution (which is als
positive definite), becomeśmag ­ 8y3d2. It is clear that
when d ! ` we obtain energy arbitrarily close to th
lower bound:́ ms # 2 1 8y3d2 ! 2. A single magnetic
Skyrmion therefore blows up.

If many magnetic Skyrmions are present, then th
interactions can stabilize the system. They repel ea
other, as we will see shortly, and therefore form
lattice. Since they are axially symmetric, the interaction
axially symmetric and thus a triangular lattice is expecte
Assume that the lattice spacing isa. At the boundaries
of the hexagonal unit cells the angleQ is zero, while at
the centers it isp. The magnetic fieldB is continuous
on the boundaries. Therefore, to analyze a magn
Skyrmion lattice we should solve Eqs. (8) and (9) o
the unit cell with these boundary conditions demandi
that two units of flux pass through the cell (by adjustin
the value of magnetic field on the boundary). We ha
approximated the hexagonal unit cell by a circle
radiusR ­ 31y4ay

p
2p and the same area, and performe

numerical integration of the equations,

A00 1
A0

r
2

A
r2 2 A 2

1 1 cosQ

r
­ 0 , (11)

Q00 1
Q0

r
1

sinQ

r

µ
2 1 cosQ

r
1 2A

∂
­ 0 , (12)

which follow from the cylindrically symmetric ansatz o
Eq. (10). Calculations forR from R ­ 5 until R ­ 600
were done by means of a finite element method. T
energy per unit cell in a wide range ofR is satisfactorily
described (deviation atR ­ 10 is 1%) by the function
´cell . 2 1 5.62yR. Note that in the limitR ! ` we
recover our previous variational estimate:´cell ! ´ms ­
2. The dominant contribution to magnetic Skyrmio
energy at largeR comes from the first terḿ s, similar
to the analytical variational state described above. T
contribution to´cell from magnetic field,́ mag, is small
for large R but becomes significant in denser lattice
The most interesting feature of the solution is that t
supercurrent contributiońcur to the energy of a magnetic
Skyrmion is negligibly small for all considered value
of R. This is to be compared with the usual Abrikoso
vortex where at highk the total energy is dominated by
magnetic and supercurrent contributions which are of
1263
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same order of magnitude. Most of the flux goes throu
the region where the vector$l is oriented upwards. In
other words, the magnetic field is concentrated close
the center of a magnetic Skyrmion.

Line energy of Abrikosov vorticeś y for the present
model was calculated numerically (beyond London a
proximation) in [13]. For k ­ 20 and 50 we obtain
2´yy´ms ø 3.5 and 4.4, respectively. Therefore we ex
pect that the lower critical field of UPt3 is determined
by magnetic Skyrmions:hc1 ­ ´msy2N . Returning to
physical units,

Hc1 ­ F0y4pl2 . (13)

To find magnetization, we now utilize Eq. (1). Interac
tions among magnetic Skyrmions follow easily from th
energy of a unit cell of the hexagonal lattice:V srd ­
2s´cell 2 2dy6 . 1.87yr. The resulting averaged mag
netic induction, in units ofF0y2pl2, reads

B . 0.225sHyHc1 2 1d2 . (14)

This agrees very well with the experimental result
see Fig. 1. For fields higher then severalHc1, Lon-
don approximation is not valid anymore since magne
Skyrmions will start to overlap. In this case, one expec
that ordinary Abrikosov vortices, which carry one un
of magnetic flux, become energetically favorable. Th
usual vortex picture has indeed been observed at h
fields by Yaronet al. [14]. Curiously, our result is simi-
lar to conclusions of Burlachkovet al. [15] who investi-
gated stripelike (quasi-one-dimensional) spin textures
triplet superconductors. Having established the magne
Skyrmion solution ofFsym we next estimated how it is
influenced by various terms ofDF [Eqs. (5) and (6)]. It
was found that these perturbations do not lead to desta
lization of a magnetic Skyrmion.

In conclusion, we have performed a topological class
fication of the solutions in SOs3dspin symmetric Ginzburg-
Landau free energy. This model, with the addition of ve
small symmetry breaking terms, describes heavy fermi
superconductor UPt3 and possibly otherp-wave super-
conductors. A new class of topological solutions in
weak magnetic field was identified. These solutions, ma
netic Skyrmions, do not have a normal core. At sma
magnetic fields the magnetic Skyrmions are lighter th
Abrikosov vortices and therefore dominate the physic
Magnetic Skyrmions repel each other as1yr at distances
much larger than magnetic penetration depth forming
relatively robust triangular lattice.Hc1 is reduced by a
factor logk as compared to that determined by the usu
Abrikosov vortex [see Eq. (13)].

The following characteristic features, in addition to th
slope of the magnetization curve, can allow experimen
identification of a magnetic Skyrmion lattice: (i) Unit of
flux quantization is2F0. (ii) Superfluid densityj $cj2 is
almost constant throughout the mixed state. This can
1264
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tested using scanning-tunneling microscopy techniqu
(iii) Because of the fact that there is no normal cor
in which usually dissipation and pinning take place, on
expects that pinning effects are reduced.

It is interesting to note that our results are actual
applicable to another model of UPt3 with accidentally
degenerate A and E representations [16]. Although th
model adopts the strong spin-orbit coupling scheme,
has a structure closely related toFsym of Eqs. (3) and (4)
at low temperatures where both order parameters beco
of equal importance and can be viewed as a single th
dimensional order parameter.
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