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Topological analysis of nearly S8, Symmetric Ginzburg-Landau theory, proposed for UB{
Machidaet al. shows that there exists a new class of solutions carrying two units of magnetic flux—
the magnetic Skyrmion. These solutions do not have singular corelike Abrikosov vortices and at low
magnetic fields they become lighter for strongly type-ll superconductors. Magnetic Skyrmions repel
each other ag/r at distances much larger than the magnetic penetration degdrming a relatively
robust triangular lattice. The magnetic induction né&g is found to increase agd — H.;)>. This
behavior agrees well with experiments. [S0031-9007(98)08317-3]

PACS numbers: 74.20.De, 74.25.Ha, 74.60.Ec, 74.70.Tx

Heavy fermion superconductors have surprising propwhile if it is long range,V(r) ~ 1/r", then one finds
erties on both the microscopic and macroscopic levelsB ~ (H — H.;)"*!. The physical reason for this differ-
The charge carrier’'s pairing mechanism is unconvenent behavior is very clear. For a short range repulsion,
tional. The vortex state is also rather different from that ofif one fluxon penetrated the sample, many more can
s-wave superconductors: there exist unusual asymmetrigenetrate almost with no additional cost of energy. This
vortices, and phase transitions between numerous vortdgads to the infinite derivative of magnetization. On the
lattices take place [1]. For the best studied materiabUPtother hand, for a long range interaction making a place
several phenomenological theories have been put forwarfdr each additional fluxon becomes energy consuming.
[2—4] which utilize a multicomponent order parameter. The derivative of magnetization thus becomes finite.

In particular, great effort has been made to qualitatively It is generally assumed that although vortices in {JPt
and quantitatively map the intricaté-7 phase diagram. differ from the usual Abrikosov vortices in many details
Most of the attention has been devoted to the region of8] two important characteristics are preserved. First,
magnetic fields neafl .. their sizeA is well defined: magnetic field and interactions

Magnetization curves of UPtearH.,; are also rather between vortices vanish exponentially beyond this length.
unusual (see Fig. 1). Theoretically, if the magnetizationSecond, their energy is proportional to leg However,
is due to the penetration of vortices into a superconductingn this Letter we show on the basis of a topological
sample then one expectsd7M to drop with an infinite  analysis of a model by Machidat al. [9] that there exists
derivative atH., (Fig. 1, dotted line). On the other hand, an additional class of fluxons which we call magnetic
experimentally —47M continues to increase smoothly Skyrmions. They carry two units of magnetic flisk= 2
(squares and triangles represent rescaled data taken frand do not have a singular core, similar to Anderson-
Refs. [5] and [6], respectively). Such a behavior wasToulouse-Chechetkin texture in superfldide [10]. We
attributed to strong flux pinning or surface effects [5]. show that their line energy = 2g, g9 = (®o/47A)? is
However, both experimental curves in Fig. 1, as well
as the other ones found in the literature, are close to
each other if plotted in units off.;. There might -
be a more fundamental explanation of the universal LV
smooth magnetization curve neéf.;. If one assumes
that fluxons are of an unconventional type for which
interaction is long range, then precisely this type of £
magnetization curve is obtained. S.:

Magnetization nearH.; due to fluxons carryingV b
units of fluxdy = hc/2e, with line energys and mutual
interactionV (r), is found by minimizing the Gibbs energy
of a very sparse triangular lattice, .
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. 12 . : FIG. 1. Magnetization of magnetic Skyrmion lattice (solid
where a = (®/B+/3)"/* is lattice spacing. When line) and experimental data for UPfrom Ref. [5] (squares)

V(r) ~ exd—Ar], the magnetic induction has the and Ref. [6] (triangles). Magnetization of Abrikosov vortex
conventional behavior B ~ [log(H — H.1)]"> [7], lattice (dotted line) is given for comparison.
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independent ofc and is smaller than that of Abrikosov one vacuum to another. The triad 7, and] then be-
vortices for strongly type-Il superconductors like WPt comes a field. The Abrikosov vortex is a singular defect:
(k ~ 50). Magnetic Skyrmion lattice becomes the it has a core where the modulus of the order parameter
ground state at low magnetic fieldd — H.;)/H.; < 1. vanishes and energy diverges logarithmically. Accord-
We further find that the repulsion of magnetic Skyrmionsingly, a cutoff parameter—the correlation length—should
is, in fact, long rangeV(r) ~ 1/r. This allows us to be introduced and one obtains legdependence for the
produce a nice fit to the magnetization curve (solid line invortex line energy. This fact alone means that if there
Fig. 1) which is universal (independent oJ. exists a regular solution it is bound to become energeti-
The order parameter in the weak spin-orbit couplingcally favorable for large enougk. Below we consider
model of UP{ is a three dimensional complex vector: a situation where the external magnetic field is oriented
i(7) [2]. The Ginzburg-Landau free energy reads along thez axis and all configurations are translationally
F = Fym + AF, ) invariant in this direction. We use dimensionless units:
r=AF, A= (Dy/2wN)A, B = (®y/27A*)B, andF =
Fam = —abt + B (i) + B> (3)  (eo/2mAY)F, wherer = (®y/2m)y/B1/4ma K, (the tilde

will be dropped hereafter). The free energy takes the

+ Ki(IDuil? + 1Dyyil?) + Kol Doy + - B2, form,
(4) Fr = 1/20007 + (hoeim — A)? + BY,  (7)
AF = —yll> = My.)? + ATX |y B;|* (5) and the field equations are
. . Vi, —A=VxX (VXA =7, 8
+ Y HIDaP + 1Dyl + KID.yP), ©) "V V=i @
ey A Al = 1(1 - Al) + 2j,(I X axl) = 0. Q)
whereD; = 9; — i(2e/hc)Aj andB; = (V X A);. We : . -
separated Eq. (2) into a symmetric péil, which is in- E.quatlon (8) shows that the superconducting veIpqty is
variant under the spin rotation group 8@, acting on  9'Ven by n,Vm, = -V, where the anglej specifies

the indexi of the order parameter and into terms break-the orientation of vectof or /z in the plane perpendicular
ing the S@3)spin Symmetry (anisotropy, coupling to anti- to [ (see inset of Fig. 2). Thus} is the superconducting
ferromagnetic spin fluctuations, and spin-orbit coupling).Phase.

Although A F is crucial in explaining the double supercon- Now we proceed to classify the boundary conditions.
ducting phase transition in UPat zero external magnetic The magnetic field vanishes at infinity, while topology of
field and the shape off.,(T) curve on theH-T phase the orientation of the triad, /7, and/ at different distant
diagram, it can be considered as a small perturbatiopoints is described by the first homotopy group of vacuum
in the low temperature superconducting phase (pt&se manifold: 7 (SQ(3)) = Z, [10]. It yields a classification
well below its critical temperaturd” < 7. = 0.45 K of solutions into two topologically distinct classes (“odd”
and at low magnetic field& = H.,. Indeed, estimation and “even”). This classification is too weak, however, for
of coefficients of AF at T = T /2 yields y/a = 0.2, our purposes because it does not guarantee nontrivial flux
Ma = 0.05, and(ATXHfl)/(%) ~ 107°, and alsok < penetrating the _p_Iane. We _WlII see that configurations
K [2]. Therefore, in a certain range of magnetic fieldshaving both “parities” are of interest. In the presence of
and temperatures there is an approximate O(3) symmeu’xﬁ'e magnetic flux possible configurations are further con-
and we first turn to minimize.,,. Strained by the flux quantization condition. The vacuum

_ In the vacuum of phase the order parameter is
g = ol + im)/N2, g5 = a/Bi, it L i, 7> = in® =

1. Stability requiresa > 0, 81 > 0, and B, > — ;.
The symmetry breaking pattern of phaseis as fol- ® @
lows. Both the spin rotations S8),,;, and the U(1) da

gauge symmetries are spontaneously broken, but a diay —~ \ 7

onal subgroup U(1) survives. The subgroup consists o ® I -
combined transformations: rotations by angtearound J/ ‘ \ -
the axis/ = n X m accompanied by gauge transforma- é Cb
tions ¢’”. Each vacuum state is specified by orientation

of a triad of orthonormal vectors, m, andl. The vacuum
manifold is therefore isomorphic to SO(3). Topologi-
cal Qefects might be of 'FWO k_'ndS: regular_apd “smgular.”FlG_ 2. Configuration of a magnetic Skyrmion. Solid arrows
To find regular topological line defects, it is enough 10 e eseni field while the “clocks” show that phasé rotates

consider the London approximation [10], i.e., to assum&wice as an infinitely remote contour is circumvented. Inset
that the order parameter gradually changes in space froexplains definitions of} and®.

1262




VOLUME 82, NUMBER 6 PHYSICAL REVIEW LETTERS 8 EBRUARY 1999

manifold is naturally factored into S@) — SO(2) ® S, into Eg. (7) and integrating over the-y plane we
where thes, is a set of directions of and the SO(2) is obtain the energy of the magnetic Skyrmion in the form,
the superconducting phase For a given number of flux &ms = & + &cur + Emag, Wheree, = [pd p(0/2 +
quantan, the phasey makesN windings at infinity; see  si* ©/2p?), ecie = [ pd p[(1 + c0s0)/p + AP, and
Fig. 2. The first homotopy group of this part is thereforeemse = [ pd p(A/p + A’)>. The first terme, is the
fixed: 71(SO(2)) = Z. If, in addition, I is constant, Same as in the nonlinear model without a magnetic
there is no way to avoid singularity in the phage field. It is bound from below by 2, the energy of a
where|yj| = 0. However, the general requirement that aPure Skyrmion. The second tersg,;, the “supercurrent”
solution has finite energy is much weaker. It tells us thafontribution, is positive definite. One still can maintain
the direction of should be fixed only at infinity [11]. The 2ro value of this term when the field(p) is a pure
relevant homotopy group is nontriviat,(S,) = Z. The Skyrmion®,(p; 6) of certain sizes. Assgmlngzthls, one
second homotopy group appears because fikiaginfin- getsA(p) = —(1 + c0s0)/p = —2p/(p” + &7). The

: ; p e ; . third term, the magnetic field contribution (which is also
ity (say, up) effectively “compactifies” two dimensional " L _ 2 e
physical space intaS,. Unit vector [ winds towards positive definite), becomes,, = 8/35°. Itis clear that

. when 6 — o« we obtain energy arbitrarily close to the
the center of the texture. The new topological numbeqower bound:s,, = 2 + 8/362 — 2. A single magnetic

is 0= (]/877) fs,-jl(a,-l X 8jl)d2r. Therefore, all Skyrmion therefore blows up.
configurations fall into classes characterized by the two ¢ many magnetic Skyrmions are present, then their
integersN and Q. For.regular solutions, ho_vvever, _theseinteractions can stabilize the system. They repel each
two numbers are not independent. Upon integrating th%ther, as we will see shortly, and therefore form a
supercurrent equation, Eg. (8), along a remote contolbttice. Since they are axially symmetric, the interaction is
and making use of the identity q/,(dil,) (Ejls) —  axially symmetric and thus a triangular lattice is expected.
(9inp) (3jmp) — (9imy) (3np), we obtain O = N/2. agqume that the lattice spacingds At the boundaries
We call these regular solutions magnetic Skyrmions. ot the hexagonal unit cells the ang® is zero, while at
The lowest energy solution within the London approxi-yhe centers it isr. The magnetic fieldB is continuous
mation corresponds /2 = Q = —1 (0rN/2=Q = 4 the poundaries. Therefore, to analyze a magnetic
+1). We ana_llyze acylmg_rlcally symmetric situation and Skyrmion lattice we should solve Egs. (8) and (9) on
choose the triad, 7, and! in the form, the unit cell with these boundary conditions demanding
i3 5 that two units of flux pass through the cell (by adjusting
= + P
L= ¢é:cos0(p) + é,sinO(p), the value of magnetic field on the boundary). We have
n=[e,sin@(p) — ¢,cosO(p)]sing + ¢, cose, approximated the hexagonal unit cell by a circle o
[ O(p) O(p)] + d the h | Il b le of
radiusR = 3'/%a/~/27 and the same area, and performed

n = [e,sin®(p) — ¢, cos® CoSp — é, Sin o ' .
m = Le: (p) = ¢ (p)]cose — é,sing, numerical integration of the equations,

(10) /
A A 1 + cos®
_ .2 A”+———2—A—7S=O, (11)
where p and ¢ are polar coordinates an® = ¢,!. p p p
Boundary conditions ar®(0) = 7 and® () = 0. The , .
vector potential is given byl = A(p)é,. The general 0" + o + sin® <2 + cos6 + 2,4) =0, (12
form of such a configuration is shown in Fig. 2. The p p p

unit vectori (solid arrows, Fig. 2) flips its direction from which follow from the cylindrically symmetric ansatz of
up to down as it moves from infinity toward the ori- Eq. (10). Calculations foR from R = 5 until R = 600
gin. The phasej (arrow inside small circles in Fig. 2) were done by means of a finite element method. The
winds twice while completing an “infinitely remote” energy per unit cell in a wide range &fis satisfactorily
circle. If in Eq. (7) only the first term were present described (deviation aR = 10 is 1%) by the function
we would deal with a standard SO(3) invariant nonlin-g..;; = 2 + 5.62/R. Note that in the limitR — « we
ear o model [12]. Being scale invariant, it possessesrecover our previous variational estimatg;;; — &ens =
infinitely many pure Skyrmion solution®;(p;8) = 2. The dominant contribution to magnetic Skyrmion
2 arctarié /p), which have the same energy equal to 2 (inenergy at largeR comes from the first terng,, similar
units of g¢) for any sized of a Skyrmion. However, in to the analytical variational state described above. The
the present case the structure of the order parameter @®ntribution tos..;; from magnetic field,ep,,, is small
more complex and the above degeneracy is lifted by théor large R but becomes significant in denser lattices.
second and third terms of Eq. (7). The most interesting feature of the solution is that the
Below we make use of the function®;(p;5) to  supercurrent contributios.,, to the energy of a magnetic
explicitly construct the variational configurations. We Skyrmion is negligibly small for all considered values
show that as the size of these configurations increased R. This is to be compared with the usual Abrikosov
the energy is reduced to a value arbitrarily close tovortex where at highe the total energy is dominated by
the absolute minimum of,,; = 2. Substituting Eg. (10) magnetic and supercurrent contributions which are of the
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same order of magnitude. Most of the flux goes throughested using scanning-tunneling microscopy techniques.
the region where the vectadr is oriented upwards. In (i) Because of the fact that there is no normal core,
other words, the magnetic field is concentrated close tén which usually dissipation and pinning take place, one
the center of a magnetic Skyrmion. expects that pinning effects are reduced.

Line energy of Abrikosov vortices, for the present It is interesting to note that our results are actually
model was calculated numerically (beyond London ap-applicable to another model of UPwith accidentally
proximation) in [13]. Forx = 20 and 50 we obtain degenerate A and E representations [16]. Although this
2e,/ems = 3.5 and 4.4, respectively. Therefore we ex- model adopts the strong spin-orbit coupling scheme, it
pect that the lower critical field of URtis determined has a structure closely related kg, of Egs. (3) and (4)
by magnetic Skyrmionsh,.; = £,,,/2N. Returning to at low temperatures where both order parameters become
physical units, of equal importance and can be viewed as a single three

dimensional order parameter.
He = /4w A%, (13) The authors are grateful to B. Maple for the discussion
of the results of Ref. [5], to L. Bulaevskii, T.K. Lee,
To find magnetization, we now utilize Eq. (1). Interac-and J. Sauls for discussions, and to A. Balatsky for
tions among magnetic Skyrmions follow easily from thehospitality in Los Alamos. The work is supported by
energy of a unit cell of the hexagonal latticE(r) = NSC, Republic of China, through Contract No. NSC86-
2(gcen — 2)/6 = 1.87/r. The resulting averaged mag- 2112-M009-034T.
netic induction, in units ofPy/27 A2, reads

B = 0.225(H/H., — 1)*. (14)

This agrees very well with the experimental results;
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