

Discrete Mathematics 196 (1999) 219-227

DISCRETE **MATHEMATICS**

Rabin numbers of Butterfly networks¹

Sheng-Chyang Liaw, Gerard J. Chang*

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300.50, Taiwan

Received 19 May 1997; revised 24 February 1998; accepted 2 March 1998

Abstract

Reliability and efficiency are important criteria in the design of interconnection networks. Recently, the w-wide diameter $d_w(G)$, the $(w - 1)$ -fault diameter $D_w(G)$, and the w-Rabin number $r_w(G)$ have been used to measure network reliability and efficiency. In this paper, we study these parameters for an important class of parallel networks - Butterfly networks. The main result of this paper is to determine the Rabin number of Butterfly networks. @ 1999 Elsevier Science B.V. All rights reserved

Keywords: Diameter; Connectivity; Rabin number; Butterfly network; Banyan network; Level

1. Introduction

Reliability and efficiency are important criteria in the design of interconnection networks. Connectivity is widely used to measure network fault-tolerance capacity, while diameter determines routing efficiency along individual paths. In practice, we are interested in high-connectivity, small-diameter networks.

By a network, we mean a graph. For general notions of graphs, see [3]. The *distance* $d_G(x, y)$ from a vertex x to another vertex y in a network G is the minimum number of edges of a path from x to y. The *diameter* $d(G)$ of a network G is the maximum distance from one vertex to another. The *connectivity* $k(G)$ of a network G is the minimum number of vertices whose removal results in a disconnected or one-vertex network. According to Menger's theorem (see [3], Theorem 2.2.5), there are k internally vertex-disjoint paths (i.e. with disjoint vertices except for the extremities) from a vertex x to another vertex y in a network of connectivity k . Throughout this paper, 'vertex-disjoint' always means 'internally vertex-disjoint'.

For a network G with connectivity $k(G)$ and $w \leq k(G)$, the three parameters $d_w(G)$, $D_w(G)$, and $r_w(G)$ (defined below) arise from the study of, respectively, parallel

^{*} Corresponding author. E-mail: gichang@math.nctu.edu.tw.

^{&#}x27; Supported in part by the National Science Council under grant NSC86-2115-M009-002.

routing, fault-tolerant systems, and randomized routing (see [6,9,12-141). Due to widespread use of (and demand for) reliable, efficient, and fault-tolerant networks, these three parameters have been the subjects of extensive study over the past decade (see $[6]$).

Give an integer w, the w-wide diameter $d_w(G)$ of a network G is the minimum l such that for any two distinct vertices x and y there exist w vertex-disjoint paths of length at most l from x to y. The notion of w-wide diameter was introduced by Hsu [6] to unify the concepts of diameter and connectivity.

The $(w-1)$ -fault diameter of G is $D_w(G) = \max\{d(G-S): |S| \leq w-1\}$ for $w \leq k(G)$. This notion was defined by Hsu [6], and the special case in which $w = k(G)$ was first defined by Krishnamoorthy and Krishnamurthy [9], who studied the fault-tolerant properties of graphs and networks.

The *w*-Rabin number $r_w(G)$ of a network G is the minimum l such that for any $w + 1$ distinct vertices x, y_1, \ldots, y_w there exist w vertex-disjoint paths of length at most *l* from x to $y_1, y_2,..., y_w$. This concept was first defined by Hsu [6], and the special case in which $w = k(G)$ was studied by Rabin [14] in conjunction with a randomized routing algorithm.

It is clear that when $w = 1$, $d_1(G) = D_1(G) = r_1(G) = d(G)$ for any network G. On the other hand, these parameters can be very large, as in the case in which $w = k(G)$. For example, Hsu and Luczak [7] showed that $d_k(G) = n/2$ for some regular graphs G having connectivity and degree k and *n* vertices. The following are basic properties and relationships among $d_w(G)$, $D_w(G)$, and $r_w(G)$.

Lemma 1 (Liaw et al. [ll]). *The following statements hold for any network G of connectivity k.*

(1) $D_1(G) \leq D_2(G) \leq \cdots \leq D_k(G)$. (2) $d_1(G) \leq d_2(G) \leq \cdots \leq d_k(G)$. (3) $r_1(G) \leq r_2(G) \leq \cdots \leq r_k(G).$ (4) $D_w(G) \le d_w(G)$ and $D_w(G) \le r_w(G)$ for $1 \le w \le k$.

This paper examines the above parameters for Butterfly networks, which are also known as banyan networks in the literature, see $[2,4,5,15]$ for discussions of these networks as multistage interconnection networks. The *ButterJy network B,* is the graph whose vertices are $x = (x_0, x_1, ..., x_n)$ with $0 \le x_0 \le n$ and $x_i \in \{0, 1\}$ for $1 \le i \le n$, and two vertices x and y are adjacent if and only if $y_0 = x_0 + 1$ and $x_i = y_i$ for $1 \le i \le n$ with $i \neq y_0$. Note that B_1 is a 4-cycle. For a vertex $x = (x_0, x_1, \ldots, x_n)$ in B_n , we say that x is in *level* x_0 of B_n and call x_i the *ith coordinate* of x. Fig. 1 shows an example of B_3 , in which the top row indicates the level numbers and the left column indicates the names (x_1, x_2, \ldots, x_n) .

Cao et al. [l] gave the connectivity, the diameter, the fault diameter, and bounds of the wide diameter and the Rabin number of the Butterfly network B_n as follows:

Theorem 2 (Cao et al. [1]). *If* $n \ge 2$, *then* $k(B_n) = 2$, $d(B_n) = 2n$, $D_2(B_n) = 2n+2$, $2n+2 \leq d_2(B_n) \leq 2n+4$, and $2n+2 \leq r_2(B_n) \leq 2n+4$.

Fig. 1. The Butterfly network B_3 .

In a previous paper [13], we determined the exact value of the wide diameter of *B,:*

Theorem 3 (Liaw and Chang [13]). If $n \ge 2$, then $d_2(B_n) = 2n + 2$.

In the same paper, we proposed the following conjecture.

Conjecture: If $n \ge 2$, then $r_2(B_n) = 2n + 2$.

In this paper, we confirm the conjecture.

2. The Rabin number $r_2(B_n)$

The *inverse* B_n^{-1} of a Butterfly network B_n is the network obtained from B_n by interchange levels *i* and $n - i$ for $0 \le i \le n$. It is trivial that B_n is isomorphic to B_n^{-1} by the following mapping:

$$
(x_0,x_1,x_2,\ldots,x_{n-1},x_n)\to (n-x_0,x_n,x_{n-1},\ldots,x_2,x_1).
$$

This is useful in the proof of our main result.

For any $a \in \{0, 1\}$, \overline{a} is defined to be $1 - a$. Suppose y and x are two vertices with $y_0 = i \le j = x_0$ and $y_k = x_k$ for $k \in \{1, 2, ..., i\} \cup \{j+1, j+2, ..., n\}$. Denoted as $P_{i,j}(y,x)$, or $P_{i,j}$ with y and x specified, the following path of length $j - i$ from y to x:

$$
(i, y_1, \ldots, y_i, y_{i+1}, y_{i+2}, y_{i+3}, \ldots, y_j, y_{j+1}, \ldots, y_n)
$$

\n
$$
\rightarrow (i+1, y_1, \ldots, y_i, x_{i+1}, y_{i+2}, y_{i+3}, \ldots, y_j, y_{j+1}, \ldots, y_n)
$$

\n
$$
\rightarrow (i+2, y_1, \ldots, y_i, x_{i+1}, x_{i+2}, y_{i+3}, \ldots, y_j, y_{j+1}, \ldots, y_n)
$$

\n
$$
\rightarrow \cdots
$$

\n
$$
\rightarrow (j, y_1, \ldots, y_i, x_{i+1}, x_{i+2}, x_{i+3}, \ldots, x_j, y_{j+1}, \ldots, y_n).
$$

Similarly, if y and x are two vertices with $y_0 = i \ge j = x_0$ and $y_k = x_k$ for $k \in \{1,2,\ldots,j\} \cup \{i+1,i+2,\ldots,n\}$. Denoted as $Q_{i,j}(y,x)$, or $Q_{i,j}$ with y and x specified, the following path of length $i - j$ from y to x:

$$
(i, y_1, \ldots, y_j, y_{j+1}, \ldots, y_{i-2}, y_{i-1}, y_i, y_{i+1}, \ldots, y_n)
$$

\n
$$
\rightarrow (i-1, y_1, \ldots, y_j, y_{j+1}, \ldots, y_{i-2}, y_{i-1}, x_i, y_{i+1}, \ldots, y_n)
$$

\n
$$
\rightarrow (i-2, y_1, \ldots, y_j, y_{j+1}, \ldots, y_{i-2}, x_{i-1}, x_i, y_{i+1}, \ldots, y_n)
$$

\n
$$
\rightarrow \cdots
$$

\n
$$
\rightarrow (j, y_1, \ldots, y_j, x_{j+1}, \ldots, x_{i-2}, x_{i-1}, x_i, y_{i+1}, \ldots, y_n).
$$

We are now ready to prove the main result.

Theorem 4. *If* $n \ge 2$, *then* $r_2(B_n) = 2n + 2$.

Proof. According to Theorem 2, it suffices to show that for any three distinct vertices $y=(y_0, y_1,..., y_n), x^1=(x_0^1, x_1^1,..., x_n^1), x^2=(x_0^2, x_1^2,..., x_n^2),$ there exist two vertexdisjoint paths of lengths at most $2n + 2$ from y to x^1 and y to x^2 , respectively. We, in fact, will construct two vertex-disjoint $y-x^1$ and $y-x^2$ walks, based on the following three cases. Without loss of generality, we may assume that $x_0^1 \ge x_0^2$.

Case 1: $x_0^1 \ge y_0 \ge x_0^2$. As $B_n = B_n^{-1}$, we only need to consider the case in which $y_0 > 0$. The $y-x^1$ walk is

$$
W=Q_{y_0,0}(y,u^1)P_{0,n}(u^1,u^2)Q_{n,x_0^1}(u^2,x^1),
$$

where

$$
y = (y_0, y_1, \dots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \dots, y_n),
$$

\n
$$
u^1 = (0, y_1, \dots, y_{y_0-1}, \overline{x_{y_0}}^2, y_{y_0+1}, \dots, y_n),
$$

\n
$$
u^2 = (n, x_1^1, \dots, x_{y_0-1}^1, x_{y_0}^1, x_{y_0+1}^1, \dots, x_n^1),
$$

\n
$$
x^1 = (x_0^1, x_1^1, \dots, x_{y_0-1}^1, x_{y_0}^1, x_{y_0+1}^1, \dots, x_n^1).
$$

Note that the total length of W is $y_0 + n + (n - x_0^1) = 2n + y_0 - x_0^1 \le 2n$. The $y-x^2$ walk is

$$
W' = Q_{y_0, y_0-1}(y, v^1) P_{y_0-1, n}(v^1, v^2) Q_{n,0}(v^2, v^3) P_{0,x_0^2}(v^3, x^2),
$$

where

$$
y = (y_0, y_1, \dots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \dots, y_n),
$$

\n
$$
v^1 = (y_0 - 1, y_1, \dots, y_{y_0-1}, x_{y_0}^2, y_{y_0+1}, \dots, y_n),
$$

\n
$$
v^2 = (n, y_1, \dots, y_{y_0-1}, x_{y_0}^1, y_{y_0+1}, \dots, y_n),
$$

\n
$$
v^3 = (0, x_1^2, \dots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \dots, x_n^2),
$$

\n
$$
x^2 = (x_0^2, x_1^2, \dots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \dots, x_n^2).
$$

Note that the total length of W' is $1+(n-y_0+1)+n+x_0^2=2n+2-y_0+x_0^2\leq 2n+2$. Moreover, vertices in *W* and *W'* differ at the y_0 th coordinate and hence are disjoint, except the special case in which $x^2 = (y_0, x_1^1, x_2^1, \dots, x_{y_0}^1, y_{y_0+1}, y_{y_0+2}, \dots, y_n)$ is a vertex in $P_{0,n}(u^1, u^2)$ in *W*. For this special case, we may assume $x_0^1 = y_0$, otherwise we consider y, x^1 , x^2 in B_n^{-1} to avoid the special case. In this case, we only need to exchange the roles of x^1 and x^2 in the above process. From *W* and *W'* we can find two vertex-disjoint $y-x^1$ and $y-x^2$ paths as desired.

Case 2: $y_0 - 1 = x_0^1 \ge x_0^2$. The arguments in Case 1 also work except when $x^1 = (y_0 - 1,$ $y_1, y_2, \ldots, y_{y_0-1}, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2$ or $(y_0-1, y_1, y_2, \ldots, y_{y_0-1}, x_{y_0}^2, y_{y_0+1}, \ldots, y_n)$ is a ver tex in $Q_{n,0}(v^2, v^3)$ in W' or is equal to v¹. We consider the following two sub-cases *Case* 2.1: $y_0 - 1 = x_0^1 > x_0^2$. Let $a = [(y_0 + x_0^2 - 2)/2]$. The y-x¹ walk is

$$
W = Q_{y_0, y_0+1}(y, u^1) P_{y_0-1, n}(u^1, u^2) Q_{n, x_0^1}(u^2, x^1),
$$

where

$$
y = (y_0, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u^1 = (y_0 - 1, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, x_{y_0}^2, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u^2 = (n, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, x_{y_0}^2, y_{y_0+1}, \ldots, y_n^1),
$$

\n
$$
x^1 = (y_0 - 1, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, x_{y_0}^2, x_{y_0+1}^1, \ldots, x_n^1).
$$

Note that the total length of *W* is $1 + (n-x_0^1) + (n-x_0^1) = 2n+1-2x_0^1 \leq 2n+1$. The $y-x^2$ walk is

$$
W' = Q_{y_0,a}(y,v^1)P_{a,n}(v^1,v^2)Q_{n,0}(v^2,v^3)P_{0,x_0^2}(v^3,x^2),
$$

where

$$
y = (y_0, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^1 = (a, y_1, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^2}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^2 = (n, y_1, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}}^2, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^3 = (0, x_1^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2),
$$

\n
$$
x^2 = (x_0^2, x_1^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2).
$$

Note that the total length of *W'* is $(y_0-a) + (n-a) + n+x_0^2 = 2n-2a + y_0 + x_0^2 \le 2n + 2$. Moreover, between levels *n* and y_0 , vertices in *W* and *W'* differ at $(a + 1)$ th coordinate; between levels y_0 and 0, vertices in *W* and *W'* differ at y_0 th coordinate. So, *W* and *W'* are vertex-disjoint.

Case 2.2: $y_0 - 1 = x_0^1 = x_0^2$. The $y-x^1$ walk *W* is the same as in Case 2.1. The $y-x^2$ walk is

$$
W' = Q_{y_0,0}(y,v^1)P_{0,n}(v^1,v^2)Q_{n,x_0^2}(v^2,x^2),
$$

where

$$
y = (y_0, y_1, \dots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \dots, y_n),
$$

\n
$$
v^1 = (0, y_1, \dots, y_{y_0-1}, \overline{x_{y_0}}^2, y_{y_0+1}, \dots, y_n),
$$

\n
$$
v^2 = (n, x_1^2, \dots, x_{y_0-1}^2, \overline{x_{y_0}}^2, x_{y_0+1}^2, \dots, x_n^2),
$$

\n
$$
x^2 = (x_0^2, x_1^2, \dots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \dots, x_n^2).
$$

Note that the total length of W' is $y_0 + n + (n - x_0^2) = 2n + y_0 - x_0^2 = 2n + 1$. Moreover, vertices in W and W' differ at the y_0 th coordinate and hence are disjoint, except the special case in which $x^2 = (y_0-1, y_1, y_2,...,y_{y_0-1},x_{y_0}^2, y_{y_0+1},...,y_n)$. For this special case, we only need to exchange the roles of $x¹$ and $x²$ in the above process.

Case 3: $y_0 - 1 > x_0^1 \ge x_0^2$.

Case 3.1: $x^1 \neq (x_0^1, y_1, y_2, \ldots, y_{x_0^1}, x_{x_0^1+1}^2, x_{x_0^1+2}^2, \ldots, x_n^2)$. Let $a = [(y_0 + x_0^1 - 2)/2]$. The $y-x^1$ walk is

$$
W = P_{y_0,n}(y,u^1)Q_{n,a}(u^1,u^2)Q_{a,0}(u^2,u^3)P_{0,a+1}(u^3,u^4)Q_{a+1,x_0^1}(u^4,x^1),
$$

where

$$
y = (y_0, y_1, \ldots, y_{x_0^1}, y_{x_0^1+1}, y_{x_0^1+2}, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u^1 = (n, y_1, \ldots, y_{x_0^1}, y_{x_0^1+1}, y_{x_0^1+2}, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u^2 = (a, y_1, \ldots, y_{x_0^1}, y_{x_0^1+1}, y_{x_0^1+2}, \ldots, y_a, x_{a+1}^2, x_{a+2}^1, \ldots, x_{y_0-1}^1, x_{y_0}, x_{y_0+1}^1, \ldots, x_n^1),
$$

\n
$$
u^3 = (0, x_1^1, \ldots, x_{x_0^1}^1, x_{x_0^1+1}^1, x_{x_0^1+2}^1, \ldots, x_a^1, x_{a+1}^2, x_{a+2}^1, \ldots, x_{y_0-1}^1, x_{y_0}, x_{y_0+1}^1, \ldots, x_n^1),
$$

\n
$$
u^4 = (a + 1, x_1^1, \ldots, x_{x_0^1}^1, \overline{y_{x_0^1+1}}, x_{x_0^1+2}^1, \ldots, x_a^1, \overline{x_{a+1}^2}, x_{a+2}^1, \ldots, x_{y_0-1}^1, x_{y_0}, x_{y_0+1}^1, \ldots, x_n^1),
$$

\n
$$
x^1 = (x_0^1, x_1^1, \ldots, x_{x_0^1}^1, x_{x_0^1+1}^1, x_{x_0^1+2}^1, \ldots, x_a^1, x_{a+1}^1, x_{a+2}^1, \ldots, x_{y_0-1}^1, x_{y_0}, x_{y_0+1}^1, \ldots, x_n^1).
$$

Note that the total length of *W* is $(n-y_0)+(n-a)+a+(a+1)+(a+1-x_0^1)=$ $2n+2+2a-y_0-x_0^1\leq 2n+1$. The y-x² walk is

$$
W' = Q_{y_0,a}(y,v^1)P_{a,n}(v^1,v^2)Q_{n,0}(v^2,v^3)P_{0,x_0^2}(v^3,x^2),
$$

where

$$
y = (y_0, y_1, \ldots, y_{x_0^1}, y_{x_0^1+1}, y_{x_0^1+2}, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^1 = (a, y_1, \ldots, y_{x_0^1}, y_{x_0^1+1}, y_{x_0^1+2}, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^1}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^2 = (n, y_1, \ldots, y_{x_0^1}, y_{x_0^1+1}, y_{x_0^1+2}, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^1}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^3 = (0, x_1^2, \ldots, x_{x_0^1}^2, x_{x_0^1+1}^2, x_{x_0^1+2}^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2),
$$

\n
$$
x^2 = (x_0^2, x_1^2, \ldots, x_{x_0}^2, x_{x_0^1+1}^2, x_{x_0^1+2}^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2).
$$

Note that the total length of *W'* is $(y_0 - a) + (n - a) + n + x_0^2 = 2n - 2a + y_0 + x_0^2 \le$ $2n - 2a + y_0 + x_0^1 \leq 2n + 2$. Moreover, between levels *n* and y₀, vertices in *W* and *W'* differ at $(a + 1)$ th coordinate; between levels y_0 and 0, vertices in W and W' differ at y₀th, $(a + 1)$ th, or $(x_0^1 + 1)$ th coordinate. So, W and W' are vertex-disjoint.

Case 3.2: $x^1 = (x_0^1, y_1, y_2, \ldots, y_{x_0^1}, x_{x_0^1+1}^2, x_{x_0^1+2}^2, \ldots, x_n^2)$. Let $a = [(y_0 + x_0^2 - 2)/2]$. *Case* 3.2.1: $a \ge x_0^1$. The $y-x^1$ walk is

$$
W = Q_{y_0,a}(y,u^1)P_{a,n}(u^1,u^2)Q_{n,x_0^1}(u^2,x^1),
$$

where

$$
y = (y_0, y_1, \ldots, y_{x_0^2}, y_{x_0+1}^2, y_{x_0^2+2}, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u^1 = (a, y_1, \ldots, y_{x_0^2}, y_{x_0^2+1}, y_{x_0^2+2}, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^2}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u^2 = (n, y_1, \ldots, y_{x_0^2}, y_{x_0^2+1}, y_{x_0^2+2}, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^2}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
x^1 = (x_0^1, y_1, \ldots, y_{x_0^1}, x_{x_0^1+1}^2, x_{x_0^1+2}^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2).
$$

Note that the total length of W is $(y_0 - a) + (n-a) + (n-x_0') = 2n - 2a + y_0 - x_0' \leq$ $2n - 2a + y_0 + x_0^2 \leq 2n + 2$. The y-x² walk is

$$
W' = P_{y_0,n}(y,v^1)Q_{n,a}(v^1,v^2)Q_{a,0}(v^2,v^3)P_{0,a+1}(v^3,v^4)Q_{a+1,x_0^1}(v^4,x^2),
$$

where

$$
y = (y_0, y_1, \ldots, y_{x_0^2}, y_{x_0^2+1}, y_{x_0^2+2}, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^1 = (n, y_1, \ldots, y_{x_0^2}, y_{x_0^2+1}, y_{x_0^2+2}, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^2 = (a, y_1, \ldots, y_{x_0^2}, y_{x_0^2+1}, y_{x_0^2+2}, \ldots, y_a, x_{a+1}^1, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2),
$$

\n
$$
v^3 = (0, x_1^2, \ldots, x_{x_0^2}^2, x_{x_0^2+1}^2, x_{x_0^2+2}^2, \ldots, x_a^2, x_{a+1}^1, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2),
$$

\n
$$
v^4 = (a + 1, x_1^2, \ldots, x_{x_0^2}^2, \overline{y_{x_0^2+1}}, x_{x_0^2+2}^2, \ldots, x_a^2, \overline{x_{a+1}^1}, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2),
$$

\n
$$
x^2 = (x_0^2, x_1^2, \ldots, x_{x_0^2}^2, x_{x_0^2+1}^2, x_{x_0^2+2}^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2).
$$

Note that the total length of W' is $(n-y_0)+(n-a)+a+(a+1)+(a+1-x_0^2)=$ $2n + 2 + 2a - y_0 - x_0^2 \le 2n + 1$. Moreover, between levels *n* and y_0 , vertices in *W* and *W'* differ at $(a + 1)$ th coordinate; between levels y_0 and 0, vertices in *W* and *W'* differ at y₀th, $(a + 1)$ th, or $(x_0^2 + 1)$ th coordinate. So, *W* and *W'* are vertex-disjoint.

Case 3.2.2: $a < x_0^1$. The $y-x^1$ walk is

$$
W=P_{y_0,n}(y,u)Q_{n,x_0^1}(u,x^1),
$$

where

$$
y = (y_0, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
u = (n, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
x^1 = (x_0^1, y_1, \ldots, y_{x_0^1}, x_{x_0^1+1}^2, x_{x_0^1+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2).
$$

Note that the total length of W is $(n - y_0) + (n - x_0^1) = 2n - y_0 - x_0^1 \le 2n - 2$. The $y-x^2$ walk is

$$
W' = Q_{y_0,a}(y,v^1)P_{a,n}(v^1,v^2)Q_{n,0}(v^2,v^3)P_{0,x_0^2}(v^3,x^2),
$$

where

$$
y = (y_0, y_1, \ldots, y_a, y_{a+1}, y_{a+2}, \ldots, y_{y_0-1}, y_{y_0}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^1 = (a, y_1, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^1}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^2 = (n, y_1, \ldots, y_a, \overline{y_{a+1}}, y_{a+2}, \ldots, y_{y_0-1}, \overline{x_{y_0}^1}, y_{y_0+1}, \ldots, y_n),
$$

\n
$$
v^3 = (0, x_1^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2),
$$

\n
$$
x^2 = (x_0^2, x_1^2, \ldots, x_a^2, x_{a+1}^2, x_{a+2}^2, \ldots, x_{y_0-1}^2, x_{y_0}^2, x_{y_0+1}^2, \ldots, x_n^2).
$$

Note that the total length of *W'* is $(y_0-a)+(n-a)+n+x_0^2 = 2n-2a + y_0 + x_0^2 \le 2n+2$. Moreover, between levels *n* and y_0 , vertices in *W* and *W'* differ at $(a + 1)$ th coordinate; between levels y_0 and 0, vertices in *W* and *W'* differ at y_0 th or $(a + 1)$ th coordinate. So, *W* and *W'* are vertex-disjoint. \square

Acknowledgements

The authors thank the referee for many useful suggestions on revising the paper.

References

- [l] F. Cao, D.Z. Du, D.F. Hsu, P. Wan, Fault-tolerant routing in Butterfly networks, Technical Report TR 95-073, Department of Computer Science, Univ. of Minnesota, 1995.
- [2] G.J. Chang, F.K. Hwang, L.D. Tong, Characterizing bit permutation networks, Networks, accepted.
- [3] R. Gould, Graph Theory, The Benjamin/Cummings Pub. Co., Menlo Park, California, 1988.
- [4] L.R. Goke, G.J. Lipovski, Banyan networks for partitioning multiprocessing systems, Proc. First Ann. Comput. Architecture Conf., 1973, pp. 21-28.
- [5] F.K. Hwang, S.C. Liaw, H.G. Yeh, Equivalence classes for extra-stage networks, submitted for publication.
- [6] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fundam. Electr., Comm. Comput. Sci. E77-A (1994) 668-680.
- [7] D.F. Hsu, T. Luczak, Note on the k-diameter of k-regular k-connected graphs, Discrete Math. 133 (1994) 291-296.
- [8] D.F. Hsu, Y.D. Lyuu, A graph theoretical study of transmission delay and fault tolerance, Int. J. Mini Microcomput. 16 (1994) 35-42.
- [9] M.S. Krislmamoorthy, B. Krishnamurthy, Fault diameter of interconnection networks, Comput. Math. Appl. 13 (1987) 577-582.
- [lo] S.C. Liaw, Generalized Diameters on Networks, Ph.D. thesis, Dept. of Applied Math., National Chiao Tung Univ., February, 1998.
- [11] S.C. Liaw, F. Cao, G.J. Chang, D.F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networks, Annals of Comb. (to appear).

- *[12] S.C.* Liaw, G.J. Chang, Generalized diameters and Rabin numbers of networks, J. Comb. Optimization (to appear).
- [13] S.C. Liaw, G.J. Chang, Wide diameters of Butterfly networks, Taiwanese J. Math. (to appear).
- [141 M.O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, J. Assoc. Comput. Mach. 36 (1989) 335-348.
- [15] C. Wu, T. Feng, On a class of multistage interconnection networks, IEEE Trans. Comput. C-29(8) (1980) 694-702.