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Abstract

Reliability and efficiency are important criteria in the design of interconnection networks.
Recently, the w-wide diameter d,,(G), the (w — 1)-fault diameter D,,(G), and the w-Rabin number
r+(G) have been used to measure network reliability and efficiency. In this paper, we study these
parameters for an important class of parallel networks — Butterfly networks. The main result
of this paper is to determine the Rabin number of Butterfly networks. © 1999 Elsevier Science
B.V. All rights reserved
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1. Introduction

Reliability and efficiency are important criteria in the design of interconnection net-
works. Connectivity is widely used to measure network fault-tolerance capacity, while
diameter determines routing efficiency along individual paths. In practice, we are in-
terested in high-connectivity, small-diameter networks.

By a network, we mean a graph. For general notions of graphs, see [3]. The distance
dg(x, y) from a vertex x to another vertex y in a network G is the minimum number
of edges of a path from x to y. The diameter d(G) of a network G is the maximum
distance from one vertex to another. The connectivity k(G) of a network G is the
minimum number of vertices whose removal results in a disconnected or one-vertex
network. According to Menger’s theorem (see [3], Theorem 2.2.5), there are k inter-
nally vertex-disjoint paths (i.e. with disjoint vertices except for the extremities) from
a vertex x to another vertex y in a network of connectivity k. Throughout this paper,
‘vertex-disjoint’ always means ‘internally vertex-disjoint’.

For a network G with connectivity k(G) and w<k(G), the three parameters d,,(G),
D,(G), and r,(G) (defined below) arise from the study of, respectively, parallel
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routing, fault-tolerant systems, and randomized routing (see [6,9,12—14]). Due to
widespread use of (and demand for) reliable, efficient, and fault-tolerant networks,
these three parameters have been the subjects of extensive study over the past decade
(see [6]).

Give an integer w, the w-wide diameter d,,(G) of a network G is the minimum
! such that for any two distinct vertices x and y there exist w vertex-disjoint paths
of length at most / from x to y. The notion of w-wide diameter was introduced by
Hsu [6] to unify the concepts of diameter and connectivity.

The (w—1)-fault diameter of G is D,,(G)=max{d(G—S): |S|<w—1} for w<k(G).
This notion was defined by Hsu [6], and the special case in which w=%(G) was
first defined by Krishnamoorthy and Krishnamurthy [9], who studied the fault-tolerant
properties of graphs and networks.

The w-Rabin number r,(G) of a network G is the minimum / such that for any
w4+ 1 distinct vertices x, y,..., ¥ there exist w vertex-disjoint paths of length at most
! from x to y,¥3,..., V. This concept was first defined by Hsu [6], and the special
case in which w=k(G) was studied by Rabin [14] in conjunction with a randomized
routing algorithm.

It is clear that when w=1, d,(G)=D(G)=r1(G)=d(G) for any network G. On
the other hand, these parameters can be very large, as in the case in which w=k(G).
For example, Hsu and Luczak [7] showed that dx(G)=n/2 for some regular graphs
G having connectivity and degree & and n vertices. The following are basic properties
and relationships among d,(G), D,.(G), and r,(G).

Lemma 1 (Liaw et al. [11]). The following statements hold for any network G of
connectivity k.

(1) DI(G)<Dy(G) < - - <DK(G).

(2) di(G)<d(G) <+ - <di(G).

3) N(GYK(G)K--- < G).

(4) D,(G)<d,(G) and D,(G)<r,(G) for 1<w<k.

This paper examines the above parameters for Butterfly networks, which are also
known as banyan networks in the literature, see [2,4,5,15] for discussions of these
networks as multistage interconnection networks. The Butterfly network B, is the graph
whose vertices are x = (xp,X1,...,X,) With 0<x;<n and x; € {0,1} for 1<i<an, and
two vertices x and y are adjacent if and only if yo=xp+1 and x;=y; for 1 <i<n
with i # yo. Note that B, is a 4-cycle. For a vertex x =(xg,xy,...,X,) in B,, we say
that x is in level xy of B, and call x; the ith coordinate of x. Fig. 1 shows an example
of B3, in which the top row indicates the level numbers and the left column indicates
the names (x),x3,...,Xn)-

Cao et al. [1] gave the connectivity, the diameter, the fault diameter, and bounds of
the wide diameter and the Rabin number of the Butterfly network B, as follows:

Theorem 2 (Cao et al. [1]). If n=2, then k(B,)=2,d(B,)=2n, Dy(B,)=2n+2,
2n+2<dy(By)<2n+4, and 2n+2<ry(B,)<2n+4.



S.-C. Liaw, G.J. Chang/ Discrete Mathematics 196 (1999) 219-227 221

Level 0 1

Fig. 1. The Butterfly network Bs.

In a previous paper [13], we determined the exact value of the wide diameter
of B,:

Theorem 3 (Liaw and Chang {13]). If n 22, then d,(B,)=2n+2.
In the same paper, we proposed the following conjecture.
Conjecture: If n=>2, then ry(B,)=2n+2.

In this paper, we confirm the conjecture.

2. The Rabin number r,(B,)

The inverse B,' of a Butterfly network B, is the network obtained from B, by
interchange levels i and n— i for 0<i<n. It is trivial that B, is isomorphic to B, ! by
the following mapping:

(x(),xl,xZ, L ,xn~l,xn) - (n _x(),xn’xn—l’ cee s X2, X1 )

This is useful in the proof of our main result.

For any a€{0,1}, @ is defined to be 1 —a. Suppose y and x are two vertices
with yo=i<j=xy and y; =x; for k€{1,2,...,i}U{j+1,j+2,...,n}. Denoted as
P, ;j(y,x), or P,; with y and x specified, the following path of length j —i from y to x:

(i’YI,---,}’i,}’iﬂ,}’i+2,J’i+3,---,yj',yj'+1,---,}’n)
“"(i+1,y1,-~-aJ’i,xi+l,Yt+2,}’i+3,-~~,yj,J’j+l,~-,yn)
—’(i+2a}’l,---,J’i,xi+l,xi+2,Yi+3,---’,Vj,}"j+l,~-,)’n)

—> s

= (s Voo YisXit X4 2, Xid 3505 Xjs Vit ls oo o5 Vi)



222 S.-C. Liaw, G.J. Changl Discrete Mathematics 196 (1999) 219-227

Similarly, if y and x are two vertices with yy=i=j=xy and y,=x; for
ke{l,2,....j}u{i+1,i+2,...,n}. Denoted as Q; (y,x), or Q;; with y and x spec-
ified, the following path of length i — j from y to x:
(i,)’l,---,Yj,yj+la---»)’i—Z,J’i—l,yi,J’i+l,---,Yn)
—)(l_ l,yl,u-,yj,y/‘+1,~--,J/i—z,)’i—l’xi,yiH,---,Yn)
- (i"zayl,--~,J’j,yj'+1,~--,J’i—2,xi—l,xi,yi+1,---,Yn)

—_ ...

- (j’ Yisoooa VisXjt1s-- -’xi-—Zaxi—laxivyi+la-'"yn)'

We are now ready to prove the main result.
Theorem 4. If n>2, then ry(B,)=2n+2.

Proof. According to Theorem 2, it suffices to show that for any three distinct vertices
V=0, V155 ¥n)y X =(xhxl,.x)), x?=(x3,x3,...,x2), there exist two vertex-
disjoint paths of lengths at most 2z +2 from y to x! and y to x?, respectively. We, in
fact, will construct two vertex-disjoint y—x' and y—x?> walks, based on the following
three cases. Without loss of generality, we may assume that x} >x2.

Case 1: x}>yo2x}. As B,=B;', we only need to consider the case in which
y0>0. The y—x! walk is

W=Qyo,O(y,ul)P(),n(ulsuz)Qn,x(')(uzsxl)’
where
y=(y09y1;---’yyo—layyoayyo+l’---9yn)s
ul :(anlv--’yJ’o—l’a’yyo+l’---,yn)’
u2=(n,x{,...,x)l,o_,,xylo,x;ﬁl,...,x,l,),
x! :(xé,x,‘,...,xylo_l,x;o,x)foﬂ,...,x,l,).

Note that the total length of W is yo+n+(n—x})=2n+ yo—x}<2n. The y-x*
walk is

W' = 0y yo—1(3 0 WPy —1,(0', 0 )0 (07, 0’ )Po,xg(v3,x2 ),
where

Y={Y0, Vis-eos Voom1s Yyos Yoot bs - o3 Vs

V' = (00— LVt s Yy 1> Xigs Yot 15 Vs

5 —_—
v :(n’J’l’--~,J/y0—lsx;0,J’yo+l,---,yn)’

3 2 2 2 .2 2
U= (0,x7, - X s X Xy 10 X s

2 2 .2 2 2 02 2
x =(x0,xl,...,xyo_l,xyo,xy0+l,...,x,,).
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Note that the total length of W/ is 1+ (n— yo+ 1)+n +x8 =2n+2—yo+x3<2n+2.
Moreover, vertices in W and W' differ at the ygth coordinate and hence are disjoint,
except the special case in which x? =(y0,x},x%,...,xy'o,yml,yyﬁz,...,y,,) is a vertex
in By ,(u',u*) in W. For this special case, we may assume x}= yp, otherwise we
consider y, x!, x* in B;! to avoid the special case. In this case, we only need to
exchange the roles of x! and x* in the above process. From W and W’ we can find
two vertex-disjoint y—x' and y—x? paths as desired.

Case 2: yo—1 =x 2x3. The arguments in Case 1 also work except when x' =(yp—1,

yl,yz,...,yyo_l,ygo,x§0+l,...,x%) or (yo—l,yl,yz,...,yyo_l,xio,){vwl,...,y,,) is a ver-
tex in Q, o(v?,v*) in W’ or is equal to v'. We consider the following two sub-cases.
Case 2.1: yp— 1 =x\>x3. Let a= [(yo +x3 —2)/2]. The y—x' walk is

W = Qo 13,4 P, 87)0, 0 (4,31,
where
Y=(Y0: Y1s- -5 Yas Yat1s Yat2s - - > Yyo—1s Yyps Yot 1o -+ > Yn)s
W' = (V0= 1, P1sev s Yar Yat1s Yat2s- -2 Yoo 1 Xogs Yyo 1o o0 V)
W= (B Y1y Yar Yat s Vat2s-- > Yro=1:Xogs Yot 1o+ Yo s
X' =(P0 = LYty Yas Yarts Yards oo os Vum 15X By 15+ % )
Note that the total length of W is 1 +(n—~x})+(n—x})=2n+1 —2x,<2n+1. The
y—x* walk is
W= 0.a(3,0 WP n (0!, 09 )00 0 (0%, 07 )Py 2 (v, 2%,
where

y:(YO,yla---’}’a,J’a+l,ya+2,---’Yyovl,J/yo,YyOH,---,_Vn),
1 S 7

[% —(aayls“-sya’ya+1sya+2"'~ayy0-laxy0ay}'0+]""’yn)a
2 _ v 52

[ _(n’yl"“’ya9ya+15ya+29“-9yy0-laxyo,yy0+la--°9yn),
3 __ 2 2 2 2 2 2 .2 2

U= (0,7, X X 1 X2 5 Xy 15Xy Xy 1+ -5 X )

2 (2 42 2.2 2 2 2 2 2
X = (XG5 XTa e X Xy 13 X252 Xy < 15 Xy s Xy 1 -+ 5 X )-

Note that the total length of W' is (yo—a) + (n—a)+ n+x} =2n—2a+ yo +x3 <2n+2.
Moreover, between levels n and y, vertices in W and W' differ at (@ + 1)th coordinate;
between levels yo and 0, vertices in W and W’ differ at ygth coordinate. So, W and
W' are vertex-disjoint.

Case 2.2: yo— 1 =x} =x}. The y—x' walk W is the same as in Case 2.1. The y-x?
walk is

W, = Qyo,O(J’, Ul )I)O,Il(vl s 02 )Qn,xé(vz’xz )a
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where
y=(y(),ylv'--’yyo—l’yy()’yy0+1’~--yyn)’
vl‘_‘(o’yl’ <3 Yyo—15%, 07yy0+1’ o> Yn)s
2 2 2 T3 2 2
V5= (X0, Xp 1 X s Xy 1 5 % )s
xz=(x§,xf,...,x§0_,,x§0,x - xf).
Note that the total length of W’ is yo +n+(n—x3)=2n+ yo —x% = 2n+ 1. Moreover,
vertices in W and W’ differ at the ygth coordinate and hence are disjoint, except the
special case in which x? = (yy — l,yl,yz,...,yyo_l,xyzo,yyo+1,...,y,,). For this special
case, we only need to exchange the roles of x! and x° in the above process.
Case 3: yo— 1>x} =x3.
Case 3.1: x' # (x}, y1, y2, .- C Vil +l,x21+2, ., x2). Let a=[(yo +x} —2)/2]. The
y—x' walk is

W =Py n(3, 4" )Ona(tt',1%)Qa 0,1 YPo a1 (0,4 )t (', x1),

where
y= (yO’yl’- . ~ayxé’yx(')+l’yx[')+2,' vy Yas Yat1s Ya+2s+ -5 Yyo—1s Vygs Vo415 -+ -’yn),
u' =(ny,.- ©s Vals Vel 1s Yala2s oo o5 Yas Yatls Yat2s o+ o5 Vyo—1s Vygs Yyo+15 - - s Yn)s

2_ 2 1 1
u *(an’ln-~,yx(1),yx5+1,yxé+2,-",)’a,xa+1,xa+2,---, yo"l’ )’0’ +17 3 Xy )
3_ 1 L | 1 1 1,1 1
w=(0,x),...,x, IR M WRTE SUPHEREE xa+1,xa+2, S SRESTS S0 SR TIPS 2 X

4 _ 172 .1 5! 11 1
u —(a-f—l,xl, ,xl,yx X +2, s Xgs Xy 1 Xa425 -5 Xpg—15Xy0s Ko 4 15+ -5 % )y

1_ ol 1 (R - 1.1 1 1 1l
x' ={xp,xi,... ENIESIRIE $+2,...,xa,xa+l,xa+2,...,xyo_l,xyo,xyo+l,...,x,,).

Note that the total length of W is (n—yo)+(n—a)+a+(a+1)+(a+1—x})=
2n42+2a—yo—x, <2n+1. The y—x* walk is

W' = Qy.a(3, 0 )Pun(0',0) 00 o(v?, 0 )Py 2 (v, 2%),

where
y:(yO’yl’---’yxé’yxé+l’yx(‘)+2""9yaaya+laya+2’-~-’yyo—layyo’yyo+l"--’yn)’
vl:(asyls---ayx(l)’yx(')+l’yxé+2"'-sya97a—+_l’ya+2’---ayyo—l,;;’yyuﬂa---,yn),
02=(n9y1,--"yx(‘,’yx(')+]’yxé+2’"',ya’mT’ytH-Z,---’yyo-—l’;;’yyo+la---ayn)9
v3=(0,xf,...,x2.,x2,+l, 2+2, ,xﬁ,x§+],x2+2,...,xyzu_,,xfo,xz ey )
x2=(x(2,,xf, xz.,leH, 2é+2,...,x§,x2+1,x§+2, . yzo_l, yzo’ 20+1,...,x,,).

Note that the total length of W' is (yo—a)+(n—a)+n+x3=2n—2a+ yo+x3<
2n—2a+ yp +x(1, <2n+ 2. Moreover, between levels n and yq, vertices in W and W’
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differ at (a + 1)th coordinate; between levels y, and 0, vertices in W and W' differ at
yoth, (a+ 1)th, or (x(‘) + 1)th coordinate. So, W and W' are vertex-disjoint.
Case 3.2: x' .—_(x("],yl,yz,...,yx‘;,)gfé+],x Ly %) Let a= (o +x3—2)/2].
Case 3.2.1: a=x}. The y—x' walk is

W = Qa3 Yo', 67)Q, o (21,

where
Y=(Y0: Yise- 2 Yo Ve i1y Vdias- -+ Yas Yarts Yar2se -5 Yyo=1s Vys Yvot s+ Y
u' = (a’ Y5 .,yx(z), yx(z)+l’yxg+2’ coos Yas Yar1s Ya+2s-- ~»J{vo—1,23_0, Yyo+15-- -ayn)’
W= (n,y1,.. -2 Yxs yx2+1’yxé+2’~ -5 Vas Ya+ 1 Yat+2s -+ -,yyo—l,;f_o,yyo-;.],. e Vn)s

1yl 2 2.2 .2 22 .2 2
x —(xo,yl,...,yxl x? Xl 2 s Xas Xap 15 Xa 20 Ko Xyos Xyob 1o -+ =2 Xn )

Note that the total length of W is (yo—a)+(n—a)+(n—x})=2n—2a+ yo—x} <
2n—2a+ yo+x3<2n+2. The y—x? walk is

Wl :Pyo,n(yy Dl )Qn,(l(v]9 UZ)QH,O(UZ’ v3 )PO,a+ 1(03’ v4)Qa+l,x(])(v4’x2 )’
where

y:(yanl,---,ng’yX(z)+l,Yx(2)+2»-~-’ya’Ya+l,J’a+2,-'-»yyo——lay_vo,yyoﬂw--,)’n),
I_
[% —(n’ yl,"'syx(z),yx(2)+l,yx%+2""aya’ya+laya+2""»yy0—1,yy(]7 yy()+l"",yn)a

2 _ 1 2 2 2 2 2
v —(a,_VI,---,yX(Z), yx§+l’yx§+2" . ~,ya5xa+)’xa+2>~"9xy0—]’xyoax‘)0+1; -x”),

3 _ 2 2 2 2 212 2 2 2
v —(O,xl,...,xxg,xx3+1,xx5+2,...,xa,xaH,tz,...,x_vO_l,va,xOH, , X )

4_ 2 2 — 2 277 2 2 2 .2 2
v —(a+l,xl,...,xxg,yx(z)+l,xxé+2,...,xa,xaﬂ,xaﬂ,...,Jq‘,o_l,va,xyo+l,...,xn),

x? =(x3,xf,...,xfg,xfg+l,xf§+2,...,xﬁ,x§+],x§+2,... xyzo_l, yzo,xy20+], ...,x,Z,).
Note that the total length of W’ is (n—y))+(n—a)+a+(a+1)+(a+1-x3)=
2n+2+42a— yy —xé <2n+ 1. Moreover, between levels n and y,, vertices in W and
W' differ at (a + 1)th coordinate; between levels y, and 0, vertices in W and W’ differ
at yoth, (a+ 1)th, or (x3 + 1)th coordinate. So, W and W' are vertex-disjoint.
Case 3.2.2: a<x}. The y—x' walk is

W= Pyo.’l(y’ u)Qn,xé(u,xl ),

where

y=(.VOa)’l,---,J’a,J’a+1,)’a+2,-~-,J’yo—l,J’yo,J’y0+|,~~-,Yn),

u=(nsyl"'"ya’ya+|’ya+2,""yyo—layvo’}{V0+la-'~,yn)s

1 (4l 2 2 2 2 .2 2
x —(xo,yl,...,yxé,xxéﬂ,x DT xyo_l,xm,xyoﬂ,...,xn).
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Note that the total length of W is (n— yo)+ (n — x}) =2n — yo — x} <2n — 2. The y-x?
walk is

W = Qyo,a(y’ Ul )Pa,n(vl’ UZ)QH,O(U2’ U3 )})(),xé(v37x2 )’
where
J’:(}’O,J’la voos Yas Ya+1s Ya+2s - - -,yyo—lyy_vm yyo+15' . ~ayn);

1 o _
v =(a,yl,-~-,Ya,ya+l,J’a+2,~--,){vo—l,x)}o,yy0+1,'-~,yn),

2 —_
14 —(”’yl’”-’J’aa)’a+l,)’a+2,---,)’y()-l,x}lo,y):oﬂ,---,J’n),
3_ 2 2.2 2 2 2.2 2
v —(O,xl,...,xa,xa+|,xa+2,...,xyo_,,xyo,xy0+],...,x,,),
2_ 2.2 2.2 2 2 2 .2 2
X7 = (X5 X s+ s Xgs Xy 1 Xy 2s -+ 2 Kyg— 15 Kygs Kyg i 15+ - -5 X )-

Note that the total length of W’ is (yo—a)+(n—a)+n+x3 =2n—2a+ yo+x3 <2n+2.
Moreover, between levels n and yg, vertices in W and W’ differ at (a + 1)th coordinate;
between levels yp and 0, vertices in W and W’ differ at yoth or (a+ 1)th coordinate.
So, W and W’ are vertex-disjoint.
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