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Abstract—This paper proposes aneural fuzzy approach for
connection admission control (CAC) with QoS guarantee in
multimedia high-speed networks. Fuzzy logic systems have been
successfully applied to deal with traffic-control-related problems
and have provided a robust mathematical framework for dealing
with real-world imprecision. However, there is no clear and
general technique to map domain knowledge on traffic control
onto the parameters of a fuzzy logic system. Neural networks have
learning and adaptive capabilities that can be used to construct
intelligent computational algorithms for traffic control. However,
the knowledge embodied in conventional methods is difficult to
incorporate into the design of neural networks. The proposed
neural fuzzy connection admission control(NFCAC) scheme is an
integrated method that combines the linguistic control capabilities
of a fuzzy logic controller and the learning abilities of a neural
network. It is an intelligent implementation so that it can provide
a robust framework to mimic experts’ knowledge embodied in
existing traffic control techniques and can construct efficient
computational algorithms for traffic control. We properly choose
input variables and design the rule structure for the NFCAC
controller so that it can have robust operation even under
dynamic environments. Simulation results show that compared
with a conventional effective-bandwidth-based CAC, a fuzzy-
logic-based CAC, and a neural-net-based CAC, the proposed
NFCAC can achieve superior system utilization, high learning
speed, and simple design procedure, while keeping the QoS
contract.

I. INTRODUCTION

H IGH-SPEED network supporting multimedia services
have to be capable of handling bursty traffic and satis-

fying various quality-of-service (QoS) and bandwidth require-
ments. Therefore, a multimedia high-speed network must have
an appropriate connection admission control (CAC) scheme
not only to guarantee QoS for existing calls but also to achieve
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high system utilization. As is known asynchronous transfer
mode (ATM) is one of the technologies that can integrate
multimedia services for high-speed networks.

Conventional CAC schemes [1]–[5] that utilize either ca-
pacity estimation or buffer thresholds suffer from some fun-
damental limitations. One of the limitations is the difficulty of
obtaining complete statistics on input traffic to a network. As
a result, it is not easy to accurately determine the equivalent
capacity or effective thresholds for multimedia high-speed
networks in various bursty traffic flow conditions. Besides,
these conventional schemes provide optimal solutions only
under a steady state. A control scheme that dynamically reg-
ulates traffic flows according to changing network conditions,
however, requires understanding of network dynamics. The
rationale and principles underlying the nature and choice of
thresholds or equivalent capacity under dynamic conditions
are unclear [6]. Networks are forced to make decisions based
on incomplete information [6] so that the decision process is
full of uncertainty. Thus, because of unpredictable statistical
fluctuations of the system, these control schemes will always
be subject to decision error, which degrades performance.

Fuzzy logic systems have been widely employed to deal
with CAC-related problems in ATM networks [7]–[9]. Fuzzy
set theory appears to provide a robust mathematical framework
for dealing with real-world imprecision, and the fuzzy ap-
proach exhibits a soft behavior, which means a greater ability
to adapt itself to dynamic, imprecise, and bursty environments
[7]–[9]. Bonde and Ghosh [7] used fuzzy mathematics to
provide a flexible high-performance solution to queue manage-
ment in ATM networks. Ndousse [9] proposed a fuzzy logic
implementation of the leaky bucket mechanism that used a
channel utilization feedback to improve performance. In [8],
a fuzzy traffic controller which simultaneously incorporates
CAC and congestion control was proposed. It is a fuzzy imple-
mentation of the two-threshold congestion control method and
the equivalent capacity admission control method extensively
studied in the literature. Comparative studies have shown
that the proposed fuzzy approaches significantly improve
system performance compared with conventional approaches.
However, no clear and general technique has been presented
to map existing knowledge on traffic control onto the design
parameters of the fuzzy logic controller. Self-learning capa-
bility should be incorporated into the fuzzy logic controller to
simplify the design procedure and obtain better control results.
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The self-learning capability of neural networks has been
applied to characterize the relationship between input traffic
and system performance [10]–[13]. In [11], Hiramatsu used
a neural network as a CAC. In [12], Tran-Gia and Gropp
investigated the possible use of a neural network to perform
CAC. In [13], Youssef, Habib, and Saadawi proposed a call
admission controller for ATM networks. A neural network is
trained to compute the effective bandwidth required to support
MPEG-1 VBR video calls with different QoS requirements.
They showed that the adaptability of the neural network
controller to new traffic situations had been achieved by
adopting a hierarchical approach to the design. However, in
most of the proposed neural-net approaches for CAC, the
numbers of users for each kind of service were selected as
input parameters. The dimension of neural network and the
learning time would increase as the number of traffic types
grows. The system complexity would increase for system
upgrade. Therefore, the application of neural network to CAC
is limited to a simplistic traffic environment, such as limited
traffic type, simplified traffic source, etc.

Conventional, fuzzy-logic-based, and neural-net-based CAC
schemes all have various benefits in handling CAC. Con-
ventional CAC, based on mathematical analysis, provides
robust solutions for different kinds of traffic environments
but suffers from estimation error (due to modeling) and
approximation error (due to the need to complete calculations
in real time), so is not suitable for dynamic environments.
Fuzzy-logic-based CAC is excellent in dealing with real-
world imprecision and has a greater ability to adapt itself to
dynamic, imprecise, and bursty environments, but lacks the
learning capability needed to automatically construct its rule
structure and membership functions so as to achieve optimal
performance. Neural-net-based CAC provides learning and
adaptation capabilities which reduce the estimation error of
conventional CAC and achieve performance similar to that of
a fuzzy logic controller. However, the knowledge embodied
in conventional methods is difficult to incorporate into the
design of a neural network.

This paper proposes aneural fuzzy connection admission
control (NFCAC) scheme, which absorbs benefits of the three
approaches while minimizing their drawbacks, for multimedia
high-speed networks. The NFCAC scheme utilizes the learning
capability of the neural network to reduce decision errors of
conventional CAC policies resulted from modeling, approxi-
mation, and unpredictable traffic fluctuations of the system. It
also employs the rule structure of the fuzzy logic controller
to prevent operating errors, due to incorrect learning, and to
decrease training time. Furthermore, the neural fuzzy network
is a simple structured network. Here we properly choose
input variables and design the rule structure for the NFCAC
scheme so that it not only provides a robust framework
to mimic experts’ knowledge embodied in existing traffic
control techniques but also constructs intelligent computational
algorithm for traffic control. Simulation results reveal that the
NFCAC scheme achieves superior system utilization and high
learning speed while keeping the QoS contract, compared
with the effective-bandwidth-based CAC (EBCAC) [3], the
fuzzy-logic-based CAC (FLCAC) [8], the neural-net-based

Fig. 1. The basic structure of a fuzzy logic controller.

CAC (NNCAC) [14], and the radial-basis-function-based CAC
(RBFCAC) schemes.

The rest of this paper is organized as follows. In Section II,
the basic concepts behind a neural fuzzy controller are in-
troduced, and an NFCAC scheme is proposed to cope with
CAC-related problems in multimedia high-speed networks.
Section III presents simulation results comparing the proposed
NFCAC scheme with the existing effective bandwidth ap-
proach, the fuzzy logic approach, and neural net approach.
Finally, some concluding remarks are given in Section IV.

II. NFCAC CONTROLLER

A. Neural Fuzzy Controller

A fuzzy set in a universe of discourse is characterized
by a membership function which takes values in the interval

. A linguistic variable in is defined by
and , where

is a term set of , i.e., a set of terms with membership
function defined on , and is a semantic rule for
associating each term with its meaning.

A fuzzy logic controller, as shown in Fig. 1, has three
functional blocks: a fuzzifier, a defuzzifier, and an inference
engine containing a fuzzy rule base [15]. The fuzzifier is a
mapping from an observed -dim input to fuzzy set
with degree . The fuzzy rule base is a
control knowledge-base characterized by a set of linguistic
statements in the form of “if–then” rules that describe a
fuzzy logic relationship between -dim inputs and -dim
outputs . The inference engine contains the decision-making
logic; it acquires the input linguistic terms of from
the fuzzifier and uses an inference method to obtain the
output linguistic terms of . The defuzzifier adopts a
defuzzification function to convert into a nonfuzzy value
that represents decision . The fuzzy-logic controller can
incorporate domain knowledge from existing techniques.

A multilayer feedforward neural network is a layered net-
work that consists of an input layer, an output layer, and at
least one hidden layer. Each hidden layer consists of nonlinear
processing elements, called nodes. Nodes in two adjacent
layers are fully interconnected with variable link weights. The
output of a node in one layer multiplied by the link weight
becomes the input of a node in the next layer. Each node
forms a weighted sum of its inputs and generates an output
according to a predefined activation function . Consider
a feedforward network with input vector and
a set of weight vectors which will be updated by some
learning rules. It needs to train (actual output)
to approximate a desired output function as close as
possible. The Stone–Weierstrass theorem [16] shows that for
any continuous function with respect to and a
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Fig. 2. The architecture of the NFCAC controller.

compact metric space , an with appropriate
weight can be found so that
for an arbitrary , where and

is a vector norm. The neural network is a nonstructured
network, which cannot incorporate knowledge about system.

A neural fuzzy network integrates a fuzzy logic system
with a neural network. The integration brings the low-level
learning and computational power of the neural network into
the fuzzy logic system, and provides the high-level human-
like thinking and reasoning of fuzzy logic system for the neural
network. The neural fuzzy network generally takes the form of
a multilayer network to realize a fuzzy logic system [17]. It is
a structured network that can incorporate domain knowledge
from conventional policies.

B. NFCAC Controller

We adopt a five-layer neural fuzzy architecture to design the
NFCAC controller. As shown in Fig. 2, the NFCAC controller
has nodes in layer one as input linguistic nodes. It has two
kinds of output linguistic nodes used in layer five. One is
for feeding training data (desired output) into the net and the
other is for pumping decision signals (actual output) out of
the net. The nodes in layer two and layer four are term nodes
which act as membership functions of the respective linguistic
variables. The nodes in layer three are rule nodes; each node
represents one fuzzy rule and all nodes form a fuzzy rule
base. The links in layer three and layer four function as an
inference engine—layer-three links define preconditions of the
rule nodes and layer-four links define consequences of the rule
nodes. The links in layer two and layer five are fully connected
between the linguistic nodes and their corresponding term
nodes.

The NFCAC controller adopts three linguistic inputs of an
available capacity , a congestion indicator, and a cell loss
ratio and outputs a decision signalto indicate acceptance
or rejection of the new call request (shown in Fig. 2). The
available capacity is the amount of remaining capacity,

Fig. 3. An NFCAC controller with its peripheral processors.

that is, the total capacity subtracted from those required by
the new call and all of the existing calls, and is widely em-
ployed in the equivalent-bandwidth-based CAC schemes. The
congestion indicator is the degree of congestion currently
in the network that provides more insight information of the
system. And the cell loss ratio is the system performance
feedback which can be used to provide a closed-loop control
system capable of adjusting itself to provide stable and robust
operation. In order to generate these input linguistic variables,
some peripheral processors are designed for the NFCAC
controller.

Fig. 3 shows an NFCAC controller with its peripheral
processors for multimedia high-speed networks. The peripheral
processors are a congestion controller, a bandwidth estimator,
and a network resource estimator. Thecongestion controller
generates a congestion indicatoraccording to the measured
system statistics, such as the queue length, the change rate
of the queue length , and the cell loss ratio . Different
congestion control algorithms could be employed to implement
the congestion controller. For example, rate-based feedback
congestion control approaches, which commonly take the
queue length and the cell loss ratio into account, could be used.
One of the most frequently used congestion control methods
is the buffer threshold method, where a congestion alarm
occurs whenever the queue length exceeds some predefined
thresholds. Here, we adopt a fuzzy congestion controller
[8] which is a fuzzy implementation of the two-threshold
congestion control scheme proposed in [18]. Network con-
gestion is then averted by regulating the traffic flow of the
incoming sources according to the traffic load adjustment
parameter generated by the fuzzy congestion controller. The
bandwidth estimatorestimates the required capacity for a
new connection from its traffic description parameters such
as the peak cell rate, sustainable cell rate, and peak cell
rate duration, denoted by , and , respectively. It
employs the equivalent-capacity-based algorithm proposed in
the literature. The equivalent capacity method [1, eq. (2)]
transforms the traffic characteristics (usually described by three
traffic parameters: peak cell rate, sustainable cell rate, and
peak cell rate duration) of a new call into a unified metric,
called the equivalent bandwidth, to reduce the dependence of
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the proposed control mechanism on the traffic type. Such a
transformation can greatly reduce the number of dimensions
of the NFCAC scheme and save a large percentage of learning
time. Here, we adopt a fuzzy bandwidth estimator [8], which
is a fuzzy implementation of the equivalent capacity method
in [1]. The network resource estimatordoes the accounting
for system-resource usage. When a new connection with
bandwidth is accepted, the value of is updated by
subtracting from the original value of . Conversely,
when an existing connection with bandwidth is discon-
nected, the value of is updated by adding to the
original value of . is initially set to 1. TheNFCAC
controller takes the available capacity , the congestion
indicator , and the system performance feedback of cell
loss ratio as input linguistic variables to handle the CAC
procedure and sends a decision signalback to the new
connection to indicate acceptance or rejection of the new
call request.

In general, the NFCAC controller (shown in Fig. 2) has a
net input function and an activation output function

for node in layer , where denotes a possible
input to node in layer from node in layer . The
layers are described below.

Layer 1: In this layer, there are three input nodes with
respective input linguistic variables , and .
Define

and (1)

where , and
.

Layer 2: The nodes in this layer are used as the fuzzi-
fier. As in the CAC methods in the literature [1],
[8], the term used to describe the remaining ca-
pacity available for a new connection is either
“Enough” or “Not Enough.” Thus the term set
for the available capacity is defined as

. The system is in
either a congestion state (“is Negative”) or a
congestion-free state (“is Positive”), so the term
set for the traffic load adjustment parameter is
defined as . The
term used to describe the cell loss ratio, which is
one of the dominant QoS requirements, is either
“Satisfied” or “Not Satisfied,” and thus the term
set for the cell loss ratio is defined as

. In all, we have six
nodes in this layer. Each node performs a bell-
shaped function, defined as

(2)

where , and

and are the mean and the standard deviation
of the th term of the input linguistic variable from

node in input layer, respectively. if is the
odd node and if is the even node.

Layer 3: The links perform precondition matching of fuzzy
control rules. According to fuzzy set theory, the
fuzzy rule base forms a fuzzy set with dimensions

( denotes the
number of terms in ). Consequently, there
are eight rule nodes in this layer. Each rule node
performs the fuzzyAND operation defined as

(3)

where and { all that are
precondition nodes of the-th rule}, .

Layer 4: The nodes in this layer have two operating modes:
down-upand up-down. In the down-up operating
mode, the links perform consequence matching of
fuzzy control rules. In order to provide a soft
admission decision, not only “Accept” (A) and
“Reject” (R) but also “Weak Accept” (WA) and
“Weak Reject” (WR) are employed to describe
the accept/reject decision. Therefore, NFCAC con-
troller may have an alternative choice for calls
which fall into the area around the call accep-
tance/rejection decision boundary. Thus, the term
set of the output linguistic variable is defined as

. There are four nodes in
this layer. Each node performs a fuzzyOR operation
to integrate the fired strength of rules that have the
same consequence. Thus, we define

(4)

where and { all that have
the same consequence of theth term in the term
set of }, . The up-down operating mode
is used during the training period. The nodes in
this layer and the links in layer five have functions
similar to those in layer two. Each node performs a
bell-shaped function defined as

(5)

where is set to be obtained from the up-

down operating nodes in layer five, and and

are the mean and the standard deviation of the
-th term of , respectively, .

Layer 5: There are two nodes in this layer. One node per-
forms the down-up operation for the actual decision
signal . The node and its links act as the defuzzi-
fier. The function used to simulate a center-of-area
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defuzzification method is approximated by

and (6)

where is the decision
threshold, and

if
otherwise.

(7)

Clearly, and a new connection will be
accepted only if . The other node performs
the up-down operation during the training period. It
feeds the desired decision signalinto the controller
to adjust the link weights optimally. For this kind
of node

and (8)

where and .

C. Hybrid Learning Algorithm

A hybrid learning algorithm is applied in the design of
the NFCAC controller. The algorithm is a two-phase learning
method. In phase one, a self-organized learning scheme is used
to construct the rules and to locate the initial membership func-
tions. In phase two, a supervised learning scheme is adopted to
optimally adjust the membership functions for desired outputs.
Training data must be provided for the learning process, in
addition to the size of the term set for each input/output
linguistic variable and the fuzzy control rules. The procedure
for constructing the set of training data is described below.

[Construction of Training Data:]
For a new connection request with traffic parameters of

, and
Estimate the required capacity by using fuzzy
bandwidth estimator
Count the available capacity by using network
resource estimator
Generatea congestion indicator by using fuzzy
congestion controller
Get the cell loss ratio measured from system
information statistics

If QoS
Then

Reject the request and set the desired output

Else
Accept the request and set the desired output

[Verification of the Acceptance Decision:]
Continue the simulation for a predefined time
interval, without accepting any new connection
requests

Obtain the statistics of cell loss ratio
If QoS (acceptance decision is failed),
then

Set
EndIf

EndIf
Store training data of , and

Using the input training data , the desired output
, the fuzzy partitions , and the desired

shape of the membership functions, the self-organized training
would locate the membership functions and find the fuzzy
control rules. If an initial knowledge base is employed to help
constructing an initial structure of the fuzzy control rules, a
number of possible rule structures can be formed by slight
modification of rules. Among all of the possible structures, the
one that yields the minimum square errorfor the training
data is selected. is defined as

(9)

where is the number of training data and and
are the desired output and the actual output obtained at time

, respectively.
If an initial knowledge base is not provided, the initial

locations of membership functions are estimated by using
Kohonen’s self organizing feature-maps algorithm and theN-
nearest-neighborsscheme [19], and the initial rule structure is
constructed via genetic algorithms (GA’s) [20].

The procedure to locate the meansof the th membership
function for linguistic variable , given a set
of training data for , is described below.
It employs the statistical clustering technique of Kohonen’s
feature-maps algorithm [17].

[Obtain by using Kohonen’s Feature-Maps Algorithm:]

Step 1: Set initial values of for all membership functions,
, such that

Set an initial learning rate .
Step 2: Set .
Step 3: Present training data and compute the distance

.
Step 4: Determine theth membership function which has

the minimum distance
.

Update by

Step 5: If , Goto Step 3
Else

Decrease and Goto Step 2.
EndIf

The above procedure will stop until . The determination
of which is minimum atStep 4can quickly be accomplished
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in constant time via a winner-take-all circuit [17]. The adaptive
algorithm can be independently performed to obtain for
each input and output linguistic variables.

As for the corresponding standard deviationof the th
membership function of , since and will be finely
tuned in the supervised learning phase, we just use a first-
nearest-neighbor heuristic to estimate, which is given by

(10)

where

for
otherwise,

(11)

and is called an overlap parameter used to describe the
degree of overlapping for the two membership functions.

GA’s are search algorithms based on the mechanics of
natural selection and natural genetics [21, pp. 1–22]. They
combine the survival of the fittest and some of the innovative
flair of human search. According to the fittest values among
those randomly selected string structures, a structured but
randomized information exchange is defined to form a search
algorithm. Although the randomized generating procedure is
used, GA’s are not simple random walks. They efficiently
make use of the historical information to speculate on new
search points with expected improved performance [21]. The
input/output rule structure is encoded into a gene string
defined as

(12)

where is the total number of rule nodes, and
denotes theth gene in . For example, if theth rule

node in Layer 3 is connected to theth node
in Layer 4 at time , then is set to . Initially, the
rules are integers and are randomly assigned within the
range of . is then updated by genetic operators
of crossoverand mutation according to the value of fitness
function, which is defined as the inverse of the errordefined
in (9). The structure that provides the minimum value of
will be chosen as the optimal structure.

After the self-organized training phase, the NFCAC con-
troller then enters the supervised learning phase. The aim of the
supervised learning is to further minimize for the training
data using a back-propagation learning algorithm. Starting at
the output node, a backward pass is used to compute
for all the hidden nodes in Layer 4 and Layer 2. Assuming that

is an adjustable parameter in a node (i.e., the mean or the
standard deviation of the membership function), the general
learning rule is

(13)

where is the learning rate and

(14)

and were defined in the previous subsection. Here,
different values of could be used in Layer 2 and Layer

4 to provide different learning rates for input and output
variables. Different values of represent different adoption
rates for these variables. If the membership function of a
specific linguistic variable is not intended to be modified, then

is used.

III. SIMULATION RESULTS

Simulations were performed to test the effectiveness of the
proposed NFCAC scheme. Before discussing the results of the
simulations, we will first describe the simulation environment.

A. Simulation Environment

Assume that an ATM network is chosen to be the high-speed
network supporting multimedia services. The input traffic is
categorized into two types: real-time (type-1) and nonreal-
time (type-2) traffic. Video and voice services are examples
of type-1 traffic, while data services are examples of type-2
traffic. The network system provides two separate finite buffers
with size , in order to support different QoS requirements
for type- traffic, and . When the buffer is full,
incoming cells are blocked and lost. The system reserves
portion of its capacity for type-1 traffic and the remaining

portion for type-2 traffic. When there is unused type-
1 or type-2 capacity, it is used for the other type of traffic.
In the simulations described here, cells
and . Also, the QoS requirement for type-1 traffic

and that for type-2 traffic .
The cell-generation process for a video coder is assumed

to have two motion states: one is the low motion state for the
rate of interframe coding and the other is the high motion state
for the rate of intraframe coding [22]. The rate of intraframe
coding is further divided into two parts: the first part has
the same rate as the interframe coding and the second part,
called difference coding, is the difference between the rates
of intraframe coding and interframe coding. The interframe
coding and the difference coding are all modeled as discrete-
state Markov-modulated Bernoulli processes (MMBP) with
basic rates and . The state-transition diagram is shown
in Fig. 4(a) and (b). Let , and denote the
cell generation rates for intraframe coding, interframe coding,
and difference coding at time, respectively, from the video
coder. Clearly, . The process of
is an -state birth–death Markov process. The state-
transition diagram for uses the label to indicate
the cell generation rate of interframe coding of a state and
uses the labels and to denote the transition
probabilities from state to state and from
state to state , respectively. Similarly, the
process for is an -state birth–death Markov
process. The state-transition diagram for uses the label

to indicate the additional cell generation rate of a state
due to intraframe coding and uses the labels and

to denote the transition probability from state to
state and from state to state ,
respectively. One should note that the long-term correlation
behavior of a video source is resulted from the process

. The video source will alternate between interframe and
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(a)

(b)

(c) (d)

Fig. 4. Level transition diagram for (a) interframe coding�r(t); (b) differ-
ence state�0

a
(t); (c) interframe and intraframe alternate model, and (d) voice

source.

TABLE I
THE RULE STRUCTURE FOR THENFCAC

intraframe, depending on the video source activity factor. As
shown in Fig. 4(c), there is a transition ratein the interframe
state and a transition ratein the intraframe state. The values
of , and can be obtained
from the traffic variables , and .

The cell-generation process for a voice call is modeled
by an interrupted Bernoulli process (IBP) [18]. As shown
in Fig. 4(d), during theON (talkspurt) state, voice cells are
generated with rate ; during theOFF (silence) state, no cells
are generated. A voice source has a transition ratein the
OFF state and a transition rate in the ON state.

As for the data source, there are high-bit-rate and low-
bit-rate data services. The generation of high-bit-rate and
low-bit-rate data cells is characterized by Bernoulli processes
with rates and , respectively. Also, the distributions of
the holding times for video, voice, high-bit-rate data, and
low-bit-rate data are assumed to be exponentially distributed.

In the simulations, for the arrival process of a video source,
it is assumed that ,
and s, which would give

,
and ; for the arrival process of a voice source,
it is assumed that ,
and s, which would give

, and ; for high-bit-
rate data sources, it is assumed that

, and s, which would give
, and for low-bit-rate data sources, it is assumed that

, and
s, which give . The mean holding time is 60 min for
a video service, 3 min for a voice service, and 18 s for both
high- and low-bit-rate data services. Notice that the values of

and have been normalized by the network capacity.
Two kinds of cell loss ratios for type-traffic are considered:

the source loss ratio due to selective discarding at the customer
side and the node loss ratio due to blocking at the network
side . The overall cell loss ratio for type-traffic is
defined as

(15)

where is used to indicate the significance of the node loss
ratio over the source loss ratio. is assumed here
because selectively discarding cells at the source should have
less effect on information retrieval than blocking cells at the
node. In the simulations, the cell loss ratio is estimated as the
total loss cells divided by the arriving cells during the whole
simulation interval.

B. Simulation Results and Discussion

On the basis of prior knowledge concerning CAC, the rule
structure and parameters of the NFCAC controller can be ini-
tially set and then properly adjusted via the learning algorithm.
The membership functions of the linguistic variables for type-
1 and type-2 traffic were initially specified in the left-hand side
of Fig. 5(a) and 5(b), respectively. As we know, the available
capacity , deduced from the equivalent capacity of the
existing calls, may possess estimation errors. In order to utilize
the network as much as possible, we may employ an idea of
“budget deficit” to over-assign the capacity. Thus, the mean
value of the membership function ofNE was set to be
a negative value and the mean value of the membership
function of was set to be a value close to zero.

The behavior of the congestion indicatorcould be mon-
itored from the congestion and congestion-free states during
a long-term simulation of the network operation. Thus, the
membership functions of could be initially optimized based
on the obtained information. The mean value of the
membership function of would be set to be the mean value
of the queue-length change rate during congestion-free periods,
the mean value of the membership function of would
be set to be the mean value of the queue-length change rate
during congestion periods, and let .
These parameters could be further off-line optimized via GA
by simulation.

The initial membership functions of the cell loss ratio
were set according to the QoS requirement. The mean value

of the membership function ofNSwould be set to be the
QoS requirement, the mean value of the membership
function of would be set to be a fraction of the QoS
requirement, and the standard deviations would be set to be

. As a result, there exists a safety
margin between the membership functions of termsand
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(a)

(b)

Fig. 5. Membership functions ofCa; y; pl and ẑ for (a) type-1 traffic and
(b) type-2 traffic.

NSprovided to tolerate the dynamic behavior of the network
operation and insure the QoS requirement.

Here, little information about the setting of initial values
for the mean of the term set could be employed;

therefore, the values of are set to be equally spaced in
the range of . Based on the initial membership functions,
an optimal rule structure shown in Table I was obtained by
using GA in the self-organized learning phase. When the fuzzy
logic rules were found, the NFCAC controller entered the

supervised learning phase, in which the membership functions
were adjusted optimally.

Three different values of were used for the variables
, and . was set to zero for because the membership

functions were specified by the QoS constraint and should
not be modified. was used for because the
membership functions of were initially optimized. As for

and , their initial membership functions were heuristically
set and required further optimization in the supervised learning
phase. Thus, was used. The use of differentmay
drastically reduce the training time required in the supervised
learning phase. The learned membership functions of the
linguistic variables for type-1 and type-2 traffic were shown
in the right-hand side of Fig. 5(a) and Fig. 5(b), respectively.

For type-1 traffic in Fig. 5(a), it can be found that the
differences of the membership functions before and after
learning are as follows. For the membership functions of,
the mean value of the membership function ofNE was
properly modified from to . Similarly, the mean
value of the membership function of was properly
modified from 0.16 to . There is a drastically change
for membership functions of , and the phenomenon can
also be found in the membership functions of. It is because
we heuristically set their initial values and we used only two
terms to describe or . The change of the position of one
term of and will squeeze the other term but receive
less counteraction from the other one term (compared to
described later). Membership functions ofare not changed
since for was chosen to be zero. For the membership
function of , however, the mean of the membership
function of is slightly increased from 0 to 0.05, representing
that the effect of “Reject” is decreased. Also, the mean
of the membership function ofWA is slightly increased from
0.67 to 0.72, representing that the effect of “Weak Accept”
is increased. The small change is because we used four
terms to describe . The change of the position of one term
of will squeeze the other three terms but receive more
counteraction from the three terms. Therefore, the change of
position would be confined in a smaller range. The changes of
membership functions of imply that the NFCAC controller
prefers to accept new calls. This phenomenon demonstrates
that the NFCAC controller intends to recover some system
bandwidth which the equivalent capacity method wastes due
to over-estimation, while keeping the QoS contract. It may
be the reason for the utilization improvement of the proposed
NFCAC controller, which will be shown below. Similar results
could be found for type-2 traffic in Fig. 5(b).

We compare the NFCAC scheme with the effective-band-
width-based CAC (EBCAC) scheme proposed in [3], the
fuzzy-logic-based CAC (FLCAC) scheme proposed in [8], the
neural-net-based CAC (NNCAC) scheme proposed in [14],
and the radial-basis-function-based CAC (RBFCAC) scheme
from the aspects of the cell loss ratio (CLR), the system
utilization, and/or the training time under the constraint of QoS
guarantee. The EBCAC scheme is a hybrid technique combin-
ing the conventional techniques of the Gaussian approximation
and the bufferless analysis; it is an improved version of the
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(a)

(b)

Fig. 6. Cell loss ratio for (a) type-1 traffic and (b) type-2 traffic.

equivalent capacity method [1]. Simulation of the EBCAC
scheme is simply to calculate the required bandwidth of a
new connection. The new connection request is accepted if
the total bandwidth required by the new connection and the
existing connection is less than the system capacity. Otherwise,
it is rejected. The FLCAC scheme is a fuzzy implementa-
tion of the equivalent capacity admission control method;
details for the FLCAC scheme can be referred to [8]. The
NNCAC and RBFCAC schemes are neural-net implementation
of the equivalent capacity admission control method, where
the NNCAC adopts the multilayer perceptron (MLP) structure
with 30 hidden nodes, while the RBFCAC uses radial basis
function network (RBFN) with 30 hidden nodes. Details for the
NNCAC scheme can be referred to [14]. In the simulations, the
FLCAC, NNCAC, or RBFCAC controller is equipped with the
same three peripheral processors as those used in the NFCAC
controller shown in Fig. 3. The sizes of training set and test
set are all equal to 200, the number of repeated experiments
is 20, and the standard deviation is less than 5%.

Fig. 6 shows the CLR’s of an ATM traffic controller
employing the NFCAC scheme, and the EBCAC, FLCAC,
NNCAC, RBFCAC schemes. It is found that the QoSs for
both types of traffic are indeed guaranteed for all of these
control schemes. Fig. 7 shows that the system utilization
of the NFCAC scheme and the four schemes. We can find
that the utilization of the NFCAC scheme is slightly greater
than that of the NNCAC and the RBFCAC schemes; the
system utilizations of NFCAC, NNCAC, and RBFCAC are
91%, 90.5%, and 89%, respectively; and the NFCAC scheme
offers about 32% and 11% greater system utilization than

Fig. 7. System utilization.

the EBCAC scheme and the FLCAC scheme. It is because
NFCAC can incorporate the domain knowledge obtained from
both the analytical-based method (the equivalent capacity
scheme [1] is employed in the bandwidth estimator) and the
measurement-based method (the system statistics of the queue
length, the change rate of the queue length, and the CLR are
considered in the congestion controller). Also, the reason for
the performance improvement is that NFCAC possesses the
learning capability of the neural network.

Fig. 8 shows the training time required for the NFCAC
scheme and the NNCAC, RBFCAC schemes. Here, a widely
used back-propagation learning algorithm was employed to
adjust the membership functions (i.e. represented in terms of
weights) of the multilayer neural fuzzy network and neural
network for the NFCAC and NNCAC schemes, while the
RBFCAC scheme is basically trained by the hybrid learning
rule: unsupervised learning in the input layer and supervised
learning in the output layer. It is found that NFCAC has
training time of 7 (4) epochs, while RBFCAC and NNCAC
have training time of 103 (40) and ,
respectively, for type-1 (type-2) traffic. The NFCAC has higher
learning speed than the RBFCAC and NNCAC. One reason is
that the neural fuzzy network is a structured network, thus the
NFCAC controller can easily adopt the domain knowledge
of conventional control methods to construct the initial rule
structure and the parameters of the membership functions,
providing an excellent initial guess in adjusting its weights;
on the contrast, the neural network is a nonstructured network,
which cannot incorporate domain knowledge about system.
The other reason is that the neural fuzzy network has simpler
structure than the neural network; the number of tunning
parameters used in the neural fuzzy network is quite small,
as compared to the neural network such as MLP and RBFN
considered here. In this paper, there are only 16 weighting
parameters used in NFCAC, while there are 150 and 480
weighting parameters required for the RBFCAC and NNCAC,
respectively. It is also noted that the RBFCAC scheme has less
learning time than the NNCAC scheme. This is because the
RBFCAC scheme can have the proper initial setting of means
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(a)

(b)

Fig. 8. Training cycles needed for (a) type-1 traffic and (b) type-2 traffic.

and variances for the Gaussian activation functions during
unsupervised learning according to the prior knowledge, and
it has only one layer of connection needed to be trained by
supervised learning.

As usually noted, RBFCAC can have faster training speed
than NNCAC but cannot achieve the same accuracy as the
back-propagation NNCAC. In the simulations, we first adopted
the same set of data used to train NFCAC and NNCAC
for RBFCAC. However, it was found that RBFCAC finally
violated the QoS contracts due to its error decision of accepting
more users than it should be. In order to provide QoS guarantee
for RBFCAC, we have to prepare much more training data, es-
pecially those around the acceptance/rejection boundary. This
will increase the training time of RBFCAC in each epoch than
those required by NFCAC and NNCAC. Moreover, the overall
processing time of RBFCAC is greater than that needed by
either NFCAC or NNCAC because RBFCAC uses more nodes
(compared with NFCAC) and a more complicated activation
function (compared with NNCAC). All of these would degrade
the performance of RBFCAC in real application.

IV. CONCLUSION

This paper proposes a neural fuzzy approach for connection
admission control in high-speed multimedia networks. The
NFCAC scheme combines the linguistic control capability
of a fuzzy logic controller and the learning ability of a
neural network. This type of integrated neural fuzzy system
can automatically construct a rule structure by learning from
training examples and can self-calibrate parameters of mem-
bership functions. It not only provides a robust framework
to mimic experts’ knowledge embodied in existing traffic

control techniques but also constructs intelligent computational
algorithms for traffic control. It can be easily trained and
enhances system utilization. Simulation results show that the
proposed NFCAC scheme provides system utilization about
32% and 11% higher than the EBCAC and FLCAC schemes
proposed in [3] and [8], respectively, and the NFCAC scheme
requires only a fraction of the order and the order of
training cycles, consumed by the NNCAC scheme proposed in
[14] and RBFCAC scheme, respectively. An NFCAC scheme
such as the one introduced here may be the answer to the
problem of designing a coherent call admission controller for
ATM systems.
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