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Abstract—This paper proposes aneural fuzzy approach for
connection admission control (CAC) with QoS guarantee in

multimedia high-speed networks. Fuzzy logic systems have been

successfully applied to deal with traffic-control-related problems
and have provided a robust mathematical framework for dealing
with real-world imprecision. However, there is no clear and
general technique to map domain knowledge on traffic control

high system utilization. As is known asynchronous transfer
mode (ATM) is one of the technologies that can integrate
multimedia services for high-speed networks.

Conventional CAC schemes [1]-[5] that utilize either ca-
pacity estimation or buffer thresholds suffer from some fun-
damental limitations. One of the limitations is the difficulty of

onto the parameters of a fuzzy logic system. Neural networks have ghtaining complete statistics on input traffic to a network. As

learning and adaptive capabilities that can be used to construct
intelligent computational algorithms for traffic control. However,
the knowledge embodied in conventional methods is difficult to
incorporate into the design of neural networks. The proposed
neural fuzzy connection admission contrgNFCAC) scheme is an
integrated method that combines the linguistic control capabilities
of a fuzzy logic controller and the learning abilities of a neural
network. It is an intelligent implementation so that it can provide
a robust framework to mimic experts’ knowledge embodied in
existing traffic control techniques and can construct efficient
computational algorithms for traffic control. We properly choose
input variables and design the rule structure for the NFCAC
controller so that it can have robust operation even under
dynamic environments. Simulation results show that compared
with a conventional effective-bandwidth-based CAC, a fuzzy-

a result, it is not easy to accurately determine the equivalent
capacity or effective thresholds for multimedia high-speed

networks in various bursty traffic flow conditions. Besides,

these conventional schemes provide optimal solutions only
under a steady state. A control scheme that dynamically reg-
ulates traffic flows according to changing network conditions,

however, requires understanding of network dynamics. The
rationale and principles underlying the nature and choice of
thresholds or equivalent capacity under dynamic conditions
are unclear [6]. Networks are forced to make decisions based
on incomplete information [6] so that the decision process is
full of uncertainty. Thus, because of unpredictable statistical

logic-based CAC, and a neural-net-based CAC, the proposed fluctuations of the system, these control schemes will always

NFCAC can achieve superior system utilization, high learning

be subject to decision error, which degrades performance.

speed, and simple design procedure, while keeping the QoS Fuzzy logic systems have been widely employed to deal

contract.

I. INTRODUCTION

H

with CAC-related problems in ATM networks [7]—-[9]. Fuzzy
set theory appears to provide a robust mathematical framework
for dealing with real-world imprecision, and the fuzzy ap-

IGH-SPEED network supporting multimedia serviceBroach exhibits a soft behavior, which means a greater ability
have to be capable of handling bursty traffic and satit® @dapt itself to dynamic, imprecise, and bursty environments

fying various quality-of-service (QoS) and bandwidth requird?1-[9]- Bonde and Ghosh [7] used fuzzy mathematics to
ments. Therefore, a multimedia high-speed network must haw@vide a flexible high-performance solution to queue manage-
an appropriate connection admission control (CAC) scherfiiént in ATM networks. Ndousse [9] proposed a fuzzy logic

not only to guarantee QoS for existing calls but also to achielf@Plementation of the leaky bucket mechanism that used a
channel utilization feedback to improve performance. In [8],
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The self-learning capability of neural networks has been
applied to characterize the relationship between input trafficc —> T > Inference Engine Defuzzifier [—> y
and system performance [10]-[13]. In [11], Hiramatsu used R MO 1)
a neural network as a CAC. In [12], Tran-Gia and Gropp Huey Rule Base
investigated the possible use of a neural network to perfor . .

CAC. In [13], Youssef, Habib, and Saadawi proposed a Cal%?;. 1. The basic structure of a fuzzy logic controller.

admission controller for ATM networks. A neural network is ) ) )

trained to compute the effective bandwidth required to supp&f:C (NNCAC) [14], and the radial-basis-function-based CAC
MPEG-1 VBR video calls with different QoS requirementstRBFCAC) schemes. _ _

They showed that the adaptability of the neural network The r(_ast of this paper is organized as follows. In Section _II,
controller to new traffic situations had been achieved Bjp€ basic concepts behind a neural fuzzy controller are in-
adopting a hierarchical approach to the design. However, igduced, and an NFCAC scheme is proposed to cope with
most of the proposed neural-net approaches for CAC, tﬁtéAC_-reIated problems in multlmedla hlgh—speed networks.
numbers of users for each kind of service were selected 2&ction Il presents simulation results comparing the proposed
input parameters. The dimension of neural network and thECAC scheme with the existing effective bandwidth ap-
learning time would increase as the number of traffic typ&$oach, the fuzzy logic approach, and neural net approach.
grows. The system complexity would increase for systeﬁi”a”y’ some concluding remarks are given in Section IV.
upgrade. Therefore, the application of neural network to CAC

is limited to a simplistic traffic environment, such as limited Il. NFCAC CONTROLLER

traffic type, simplified traffic source, etc.

Conventional, fuzzy-logic-based, and neural-net-based CAc Neural Fuzzy Controller
schemes all have various benefits in handling CAC. Con-A fuzzy setF in a universe of discoursE is characterized
ventional CAC, based on mathematical analysis, provideg a membership function which takes values in the interval
robust solutions for different kinds of traffic environment$o, 1]. A linguistic variablex in U is defined byT(z) =
but suffers from estimation error (due to modeling) angrt 72 ... T*} and M(x) = {M}: M2, ---, MF}, where
approximation error (due to the need to complete calculatiof¥z) is a term set of;, i.e., a set of term&? with membership
in real time), so is not suitable for dynamic environmentsunction M‘ defined onl/, and M (z) is a semantic rule for
Fuzzy-logic-based CAC is excellent in dealing with realassociating each term with its meaning.
world imprecision and has a greater ability to adapt itself to A fuzzy logic controller as shown in Fig. 1, has three
dynamic, imprecise, and bursty environments, but lacks thenctional blocks: a fuzzifier, a defuzzifier, and an inference
learning capability needed to automatically construct its rukngine containing a fuzzy rule base [15]. The fuzzifier is a
structure and membership functions so as to achieve optimapping from an observed-dim input z; to fuzzy setZ’:
performance. Neural-net-based CAC provides learning antth degreeM’:, i = 1,--- m. The fuzzy rule base is a
adaptation capabilities which reduce the estimation error entrol knowledge-base characterized by a set of linguistic
conventional CAC and achieve performance similar to that sfatements in the form of “if-then” rules that describe a
a fuzzy logic controller. However, the knowledge embodieflizzy logic relationship betweem-dim inputsz; and n-dim
in conventional methods is difficult to incorporate into theutputsy;. The inference engine contains the decision-making
design of a neural network. logic; it acquires the input linguistic terms &F(z;) from

This paper proposes meural fuzzy connection admissiorthe fuzzifier and uses an inference method to obtain the
control (NFCAC) scheme, which absorbs benefits of the threitput linguistic terms ofI’(y;). The defuzzifier adopts a
approaches while minimizing their drawbacks, for multimedidefuzzification function to conve#®(y; ) into a nonfuzzy value
high-speed networks. The NFCAC scheme utilizes the learnitigat represents decisiog;. The fuzzy-logic controller can
capability of the neural network to reduce decision errors dicorporate domain knowledge from existing techniques.
conventional CAC policies resulted from modeling, approxi- A multilayer feedforward neural network is a layered net-
mation, and unpredictable traffic fluctuations of the system.\wtork that consists of an input layer, an output layer, and at
also employs the rule structure of the fuzzy logic controlldeast one hidden layer. Each hidden layer consists of nonlinear
to prevent operating errors, due to incorrect learning, and peocessing elements, called nodes. Nodes in two adjacent
decrease training time. Furthermore, the neural fuzzy netwdeyers are fully interconnected with variable link weights. The
is a simple structured network. Here we properly choosritput of a node in one layer multiplied by the link weight
input variables and design the rule structure for the NFCAGecomes the input of a node in the next layer. Each node
scheme so that it not only provides a robust framewofkrms a weighted sum of its inputs and generates an output
to mimic experts’ knowledge embodied in existing traffi@ccording to a predefined activation functiaft). Consider
control techniques but also constructs intelligent computatioralfeedforward networRNN(X, W) with input vectorX and
algorithm for traffic control. Simulation results reveal that tha set of weight vector$? which will be updated by some
NFCAC scheme achieves superior system utilization and hitgarning rules. It needs to traiNN(X, W) (actual output)
learning speed while keeping the QoS contract, comparedapproximate a desired output functigflX) as close as
with the effective-bandwidth-based CAC (EBCAC) [3], thepossible. The Stone—Weierstrass theorem [16] shows that for
fuzzy-logic-based CAC (FLCAC) [8], the neural-net-basedny continuous functiory € C(D) with respect toX and a
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that is, the total capacity subtracted from those required by
the new call and all of the existing calls, and is widely em-
ployed in the equivalent-bandwidth-based CAC schemes. The
congestion indicatow is the degree of congestion currently
in the network that provides more insight information of the

; S system. And the cell loss ratig, is the system performance
for an arbitrarye > 0, where|lellx = > xcplle(X)I* and  faednack which can be used to provide a closed-loop control
|- || is & vector norm. The neural network is a nonstructuredsiem capable of adjusting itself to provide stable and robust
network, which cannot incorporate knowledge about systemy,eration. In order to generate these input linguistic variables,

A neural fuzzy network integrates a fuzzy logic systefome peripheral processors are designed for the NFCAC
with a neural network. The integration brings the low-level . .qjier.

learning and computational power of the neural network into Fig. 3 shows an NFCAC controller with its peripheral

the fuzzy logic system, and provides the high-level humag,.esqors for multimedia high-speed networks. The peripheral
like thinking and reasoning of fuzzy logic system for the neurgl o essors are a congestion controller, a bandwidth estimator,
network. The neural fuzzy network generally takes the form gf,y 5 hetwork resource estimator. Te@ngestion controller
a multilayer network to realize a fuzzy logic system [17]. Itigenerates a congestion indicagprccording to the measured
a structured r_1etwork t.hgt can incorporate domain knowledgﬁstem statistics, such as the queue lengtthe change rate
from conventional policies. of the queue length\g, and the cell loss ratig,. Different
congestion control algorithms could be employed to implement
B. NFCAC Controller the congestion controller. For example, rate-based feedback
We adopt a five-layer neural fuzzy architecture to design tleengestion control approaches, which commonly take the
NFCAC controller As shown in Fig. 2, the NFCAC controller queue length and the cell loss ratio into account, could be used.
has nodes in layer one as input linguistic nodes. It has tw@ne of the most frequently used congestion control methods
kinds of output linguistic nodes used in layer five. One is the buffer threshold method, where a congestion alarm
for feeding training data (desired output) into the net and tloecurs whenever the queue length exceeds some predefined
other is for pumping decision signals (actual output) out dfiresholds. Here, we adopt a fuzzy congestion controller
the net. The nodes in layer two and layer four are term nod@ which is a fuzzy implementation of the two-threshold
which act as membership functions of the respective linguistongestion control scheme proposed in [18]. Network con-
variables. The nodes in layer three are rule nodes; each ngéstion is then averted by regulating the traffic flow of the
represents one fuzzy rule and all nodes form a fuzzy rulecoming sources according to the traffic load adjustment
base. The links in layer three and layer four function as grarameter generated by the fuzzy congestion controller. The
inference engine—layer-three links define preconditions of th@ndwidth estimatoestimates the required capacity for a
rule nodes and layer-four links define consequences of the ralewv connection from its traffic description parameters such
nodes. The links in layer two and layer five are fully connecteat the peak cell rate, sustainable cell rate, and peak cell
between the linguistic nodes and their corresponding temate duration, denoted by,, R,,, and 7}, respectively. It
nodes. employs the equivalent-capacity-based algorithm proposed in
The NFCAC controller adopts three linguistic inputs of athe literature. The equivalent capacity method [1, eq. (2)]
available capacity’,, a congestion indicatay, and a cell loss transforms the traffic characteristics (usually described by three
ratio p; and outputs a decision signalto indicate acceptancetraffic parameters: peak cell rate, sustainable cell rate, and
or rejection of the new call request (shown in Fig. 2). Thpeak cell rate duration) of a new call into a unified metric,
available capacityC, is the amount of remaining capacity,called the equivalent bandwidth, to reduce the dependence of

Fig. 2. The architecture of the NFCAC controller.

compact metric spac€' (D), an NN(X, W) with appropriate
weight W can be found so thaiNN(X, W) — g(X)||x < ¢
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the proposed control mechanism on the traffic type. Such a
transformation can greatly reduce the number of dimensions
of the NFCAC scheme and save a large percentage of learnibgyer 3:
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time. Here, we adopt a fuzzy bandwidth estimator [8], which
is a fuzzy implementation of the equivalent capacity method
in [1]. The network resource estimataitoes the accounting

for system-resource usage. When a new connection with

bandwidth C, is accepted, the value af, is updated by
subtractingC, from the original value ofC,. Conversely,
when an existing connection with bandwidt. is discon-
nected, the value of’, is updated by adding’. to the

original value of Cj,.

C, is initially set to 1. TheNFCAC

controller takes the available capacit¢,, the congestion
indicator , and the system performance feedback of cell
loss ratiop; as input linguistic variables to handle the CAC
procedure and sends a decision sigéaback to the new

connection to indicate acceptance or rejection of the nel@Yer 4:

call request.

In general, the NFCAC controller (shown in Fig. 2) has a
net input functlonf(k)( (’“)) and an activation output function
agk)(ffk)) for nodes in layer k&, whereugj) denotes a possible
input to node: in layer & from nodej in layer (k — 1). The
layers are described below.

Layer 1:

Layer 2:

In this layer, there are three input nodes with
respective input linguistic variables,, y, andp;.
Define

FP) =u and o =P (@)

where u§11> = C,, ué? =y, uég) = p;, and
1 << 3.
The nodes in this layer are used as the fuzzi-
fier. As in the CAC methods in the literature [1],
[8], the term used to describe the remaining ca-
pacity available for a new connection is either
“Enough” or “Not Enough.” Thus the term set
for the available capacity is defined 8§C,) =
NotEnough(NE), Enough(E). The system is in
either a congestion statey(“is Negative”) or a
congestion-free state ¢"“is Positive”), so the term
set for the traffic load adjustment parameter is
defined asI’(y) = Negative(N), Positive(P). The
term used to describe the cell loss ratio, which is
one of the dominant QoS requirements, is either
“Satisfied” or “Not Satisfied,” and thus the term
set for the cell loss ratio is defined &p;) =
Satisfied(S), NotSatisfied(NS). In all, we have six
nodes in this layer. Each node performs a bell-
shaped function, defined as

(2) (2 (uf =m§)*

fz ( ) ([)2
an

o = 2)

whereu(? = a{”, 1 < <6, j = [42], andm|!)

and o—](n) are the mean and the standard dewatlon
of the nth term of the input linguistic variable from

Layer 5:

nodejy in input layer, respectivelys. = 1 if ¢ is the
odd node anch = 2 if ¢ is the even node.

The links perform precondition matching of fuzzy
control rules. According to fuzzy set theory, the
fuzzy rule base forms a fuzzy set with dimensions
IT(Ca)l % [T(y)] x [T(py)| (T(x)| denotes the
number of terms in7(z)). Consequently, there
are eight rule nodes in this layer. Each rule node
performs the fuzzyaND operation defined as

SO () = min(u; vj € P)

(3) f(3) (3)
wherew(? = af” and B, = {j | all j that are
precondmon nodes of theth rule}, 1 < < 8.

The nodes in this layer have two operating modes:
down-upand up-down In the down-up operating
mode, the links perform consequence matching of
fuzzy control rules. In order to provide a soft
admission decision, not only “Accept” (A) and
“Reject” (R) but also “Weak Accept” (WA) and
“Weak Reject” (WR) are employed to describe
the accept/reject decision. Therefore, NFCAC con-
troller may have an alternative choice for calls
which fall into the area around the call accep-
tance/rejection decision boundary. Thus, the term
set of the output linguistic variablg is defined as
T(z) = R,WR, WA, A. There are four nodes in
this layer. Each node performs a fuzag operation

to integrate the fired strength of rules that have the
same consequence. Thus, we define

fz(4)( (4)) = max(ug); Vj e C’i)

ai) = (4)
Whereu(4) = aj?’ and C; = {j | all j that have
the same consequence of thh term in the term
set of 2}, 1 < ¢ < 4. The up-down operating mode
is used during the training period. The nodes in
this layer and the links in layer five have functions
similar to those in layer two. Each node performs a
bell-shaped function defined as

2
f0 gy = () =)
? 23 (0)2
J

oM =S (5)

whereugf) is set to bea ) obtained from the up-

down operating nodes in layer five, amﬁo) and

a§o) are the mean and the standard deviation of the
j-th term of 2, respectivelyl <i <4, j =1.

There are two nodes in this layer. One node per-
forms the down-up operation for the actual decision
signal 2. The node and its links act as the defuzzi-

fier. The function used to simulate a center-of-area



CHENG et al: A QoS-PROVISIONING NEURAL FUZZY CONNECTION ADMISSION CONTROLLER 115

defuzzification method is approximated by Obtain the statistics of cell loss ratig]

4 If p; > QoS (acceptance decision is failed),
()¢, 3 ©) _(0), (5) then
£ () ; R Setz=0
) f@ EndIf
and “50) —U W — 2 (6) Endlf_ .
Ej:l o; uzj Store training data ofC,, v, p;, andz

where u{? = af¥, i = 1, z, is the decision

y

threshold, and

Using the input training daté&’,, v, p;, the desired output
z, the fuzzy partitions|C,|, |y|, |p:|, |2|, and the desired
shape of the membership functions, the self-organized training
(7)  would locate the membership functions and find the fuzzy

control rules. If an initial knowledge base is employed to help

Clearly, 2 = af) and a new connection will be constructing an initial structure of the fuzzy control rules, a
accepted only iz = 1. The other node performsnumber of possible rule structures can be formed by slight
the up-down operation during the training period. [fnodification of rules. Among all of the possible structures, the
feeds the desired decision sigrahto the controller One that yields the minimum square erdbrfor the training
to adjust the link weights optimally. For this kinddata is selectedt’ is defined as
of node N
[P = and o = 1O (8) B =33 [A(t) - 2(t)P ©)

T j:1

, ifz>0,
otherwise.

wherei = j = 1 andu{} = 2. where N is the number of training data andt;) and 2(¢;)

are the desired output and the actual output obtained at time
C. Hybrid Learning Algorithm t;, respectively.

A hybrid learning algorithm is applied in the design of If an initial knowledge base is not provided, the initial
the NFCAC controller. The algorithm is a two-phase learningcations of membership functions are estimated by using
method. In phase one, a self-organized learning scheme is u§@fonen’s self organizing feature-maps algorithm andNhe
to construct the rules and to locate the initial membership funearest-neighborscheme [19], and the initial rule structure is
tions. In phase two, a supervised learning scheme is adopte§99structed via genetic algorithms (GA'’s) [20]. _
optimally adjust the membership functions for desired outputs. The procedure to locate the meansof theith membership
Training data must be provided for the learning process, fdnction for linguistic variabler, 1 < ¢ < M, given a set
addition to the size of the term set for each input/outp@ training dataz; for z, 1 < j < N, is described below.
linguistic variable and the fuzzy control rules. The procedufé €mploys the statistical clustering technique of Kohonen's
for constructing the set of training data is described below.feature-maps algorithm [17].

[Obtain m; by using Kohonen'’s Feature-Maps Algoritim:

Step 1: Set initial values of.; for all membership functions,
1 <4 < M, such that

[Construction of Training Dat§:
For a new connection request with traffic parameters of
R, R,, and1),
Estimate the required capacit¢’. by using fuzzy
bandwidth estimator
Count the available capacit¢, by using network

min z; <m; £ max z;.
1<5EN 1<GEN

resource estimator
Generatea congestion indicatog by using fuzzy
congestion controller
Get the cell loss ratiqp; measured from system
information statistics
If p; > QoS
Then
Reject the request and set the desired output
z=0
Else
Accept the request and set the desired output
z=1
[Verification of the Acceptance Decisidn:
Continue the simulation for a predefined time

interval, without accepting any new connection

requests

Set an initial learning rater (0 < « < 1).
Step 2: Setj = 1.
Step 3: Present training date; and compute the distance
diI |a:j—m7;|, 1 SLSM
Step 4: Determine théth membership function which has
the minimum distancel;
(dk = 1n1111§i§1w dz)
Updatem; by
my = my + a(z; —ms).
Step 5: Ifj < N, j = j+ 1, Goto Step 3
Else
Decreasex and Goto Step 2.
EndIf

The above procedure will stop until < 0. The determination

of which d; is minimum atStep 4can quickly be accomplished
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in constant time via a winner-take-all circuit [17]. The adaptivé to provide different learning rates for input and output

algorithm can be independently performed to obtaip for variables. Different values of represent different adoption

each input and output linguistic variables. rates for these variables. If the membership function of a
As for the corresponding standard deviation of the ith  specific linguistic variable is not intended to be modified, then

membership function ofc, sincem; and o; will be finely 7 = 0 is used.

tuned in the supervised learning phase, we just use a first-

nearest-neighbor heuristic to estimatg which is given by . SIMULATION RESULTS

o — |m; — m*| (10 Simulations were performed to test the effectiveness of the
T T . .
v proposed NFCAC scheme. Before discussing the results of the
where simulations, we will first describe the simulation environment.
m* = b for [m; —mi_y| <|mi —mip] (11) A. Simulation Environment
Miy1, otherwise,

Assume that an ATM network is chosen to be the high-speed
and v is called an overlap parameter used to describe thetwork supporting multimedia services. The input traffic is
degree of overlapping for the two membership functions. categorized into two types: real-time (type-1) and nonreal-

GA’'s are search algorithms based on the mechanics tihe (type-2) traffic. Video and voice services are examples
natural selection and natural genetics [21, pp. 1-22]. They type-1 traffic, while data services are examples of type-2
combine the survival of the fittest and some of the innovativaffic. The network system provides two separate finite buffers
flair of human search. According to the fittest values amongith size K, in order to support different QoS requirements
those randomly selected string structures, a structured gyt type+ traffic, ¢ = 1 and 2. When the buffer is full,
randomized information exchange is defined to form a searnglgoming cells are blocked and lost. The system resefes
algorithm. Although the randomized generating procedure ggrtion of its capacity for type-1 traffic and the remaining
used, GA’s are not simple random walks. They efﬁcientlyl_or) portion for type-2 traffic. When there is unused type-
make use of the historical information to speculate on newor type-2 capacity, it is used for the other type of traffic.
search points with expected improved performance [21]. Tie the simulations described her&; = K, = 100 cells
input/output rule structure is encoded into a gene st€if¢) and C,. = 0.8. Also, the QoS requirement for type-1 traffic
defined as QoS, = 1077 and that for type-2 traffi€oS, = 106,

. The cell-generation process for a video coder is assumed
Gt) = 101(8), 92(8): -+ 9a(D)] (12) 1 have two motion states: one is the low motion state for the
wheren is the total number of rule nodes, apdt) (1 <i < rate of interframe coding and the other is the high motion state

n) denotes thath gene inG(t). For example, if theth rule for the rate of intraframe coding [22]. The rate of intraframe
node in Layer 3 is connected to thith node(1 < j < [T()|) coding is further divided into two parts: the first part has
in Layer 4 at timet, then g;(t) is set toj. Initially, the the same rate as the interframe coding and the second part,
rules ¢;(0) are integers and are randomly assigned within tif@lled difference coding, is the difference between the rates
range of[1, |T'(2)|]. G(¢) is then updated by genetic operatorf intraframe coding and interframe coding. The interframe
of crossoverand mutation according to the value of fitnesscoding and the difference coding are all modeled as discrete-
function, which is defined as the inverse of the edbdefined State Markov-modulated Bernoulli processes (MMBP) with
in (9). The structure that provides the minimum valuefof basic ratesd,. and A,. The state-transition diagram is shown
will be chosen as the optimal structure. in Fig. 4(a) and (b). Let\,(?), A.(f), and A, (¢) denote the
After the self-organized training phase, the NFCAC cor¢€ll generation rates for intraframe coding, interframe coding,
troller then enters the supervised learning phase. The aim of &l difference coding at timg respectively, from the video
supervised learning is to further minimizg for the training coder. Clearly\,(t) = A.(t) + X, (¢). The process of,.(¢)
data using a back-propagation learning algorithm. Startingiatan (A, + 1)-state birth—death Markov process. The state-
the output node, a backward pass is used to compatsIw transition diagram for\,.(¢) uses the labet, A, to indicate
for all the hidden nodes in Layer 4 and Layer 2. Assuming thite cell generation rate of interframe coding of a state and
w is an adjustable parameter in a node (i.e., the mean or t&es the label§M,. — m,.)y andm,.w to denote the transition
standard deviation of the membership function), the genefdpbabilities from staten,.A,. to state(m,. + 1)A4, and from

learning rule is statem,. A, to state(m, — 1)A,., respectively. Similarly, the
OF process for\(¢) is an (M, + 1)-state birth—death Markov
WV = o 4 == (13) process. The state-transition diagram (t) uses the label
ow mq A, to indicate the additional cell generation rate of a state
wheren is the learning rate and due to intraframe coding and uses the lal{@l, — m, )¢ and
OE OEOf OF da df mg1) to denote the transition probability from state, A, to

—=— = (14) state(m, + 1)A, and from staten, A4, to state(m, — 1)A4,,

Gw  df dw  Oa df dw respectively. One should note that the long-term correlation
f and a were defined in the previous subsection. Herdehavior of a video source is resulted from the process
different values ofn could be used in Layer 2 and Layer),(¢). The video source will alternate between interframe and
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s, which givef; = 0.02. The mean holding time is 60 min for
a video service, 3 min for a voice service, and 18 s for both
@) high- and low-bit-rate data services. Notice that the values of
R, and R,,, have been normalized by the network capacity.

Mry Me-1)y Mr-2)y (Mr-me-lyy Memey Y R, =7.36x1073, andT,, = 3.14x 102 s, which would give
< T S §, = 0.1, and for low-bit-rate data sources, it is assumed that
@ @ @ cee 69 cee @ R, =3.68x107% R, = 7.36 x 107*, andZ,, = 2.88 x 10~ 2
A e S - TV "
9] 20 30

me  @meDe Mo

Mad Ma-1)p Ma-2)¢p Ma-ma-1)¢ Ma-ma)p ¢ . . ) . ‘
T T 7 T 7 T Two kinds of cell loss ratios for typétraffic are considered:
@ @ @ e @ ) @ the source loss ratio due to selective discarding at the customer
A\ S N " T - sidep. ; and the node loss ratio due to blocking at the network

v 2y By may (matly Mew side p,.;. The overall cell loss ratio for typgraffic p;; is
(b) defined as

c o .

(j \\7/_\ C{\\f Dii = KPsi +pn,ia 1= 1a 2 (15)

Inter, w OFF )@ . o o

S~ S~ wherex is used to indicate the significance of the node loss

d B ratio over the source loss ratie. = 0.8 is assumed here
(© (d) because selectively discarding cells at the source should have

Fig. 4. Level transition diagram for (a) interframe codikg(t), (b) differ- less effect On_information retrieval than p|9Cking cells at the

ence state\, (¢), (c) interframe and intraframe alternate model, and (d) voicaode. In the simulations, the cell loss ratio is estimated as the

source. total loss cells divided by the arriving cells during the whole
simulation interval.

TABLE | . . . .
THE RULE STRUCTURE FOR THENFCAC B. Simulation Results and Discussion
Rule] C, [y [ pm | 2 JRule[Coay [ m | 2 On the basis of prior knowledge concerning CAC, the rule
1 [NE|NINS| R || 5 | E g NSS W§ structure and parameters of the NFCAC controller can be ini-
g g}é 1; NSS V‘};R ?{ E PTNS aA tially set and then properly adjusted via the learning algorithm.
7 I INEPTS TWRIT & TE TPl S| & The membership functions of the linguistic variables for type-

1 and type-2 traffic were initially specified in the left-hand side
of Fig. 5(a) and 5(b), respectively. As we know, the available
) ] . o capacityC,, deduced from the equivalent capacity of the
intraframe, depending on the video source activity factor. Agsting calls, may possess estimation errors. In order to utilize

shown in Fig. 4(c), there is a transition ratén the interframe {he network as much as possible, we may employ an idea of
state and a transition ratgin the intraframe state. The Va|ues‘budget deficit” to over-assign the capacity. Thus, the mean

of v, w, M,, A., ¢, ¥, M,, A,, ¢, andd can be obtained

from the traffic variablesk,, R,,, andZ},. ; D ;
: . . a negative value and the mean vatug, of the membership
The cell-generation process for a voice call is modele%d

. : unction of £ was set to be a value close to zero.
by an interrupted Bemoulli process (IBP) [18]. As shown The behavior of the congestion indicatgrcould be mon-

in Fig. 4(d), during theoN (talkspurt) state, voice cells are, . . .
. o i itored from the congestion and congestion-free states during
generated with ratd,,; during theorr (silence) state, no cells : - :
a long-term simulation of the network operation. Thus, the

are generated. A voice source has a transition sate the : : o o
" : membership functions af could be initially optimized based
OFF state and a transition rat@ in the oN state. T

As for the data source, there are high-bit-rate and low"! the obt_amed |.nformat|on. The mean Valmé; of the
bit-rate data services. The generation of high-bit-rate a mbership function of would be ;et to be th? mean valge
low-bit-rate data cells is characterized by Bernoulli proc9338 the queue-leng&r)] change rate durmg conge_snon-free periods,
with ratesé, and s, respectively. Also, the distributions oft® Mean valuen;,” of the membership function oV would
the holding times for video, voice, high-bit-rate data, anB® SEt t0 be the mean value of th)e qut(age—len%})h che(lp)ge rate
low-bit-rate data are assumed to be exponentially distributediring congestion periods, and e’ = Ogp = Mgy — Mgy

In the simulations, for the arrival process of a video sourcénese parameters could be further off-line optimized via GA

it is assumed thak, = 3.31 x 102, R,,, = 1.10 x 10-2, Dby simulation. _ _ _
and 7T, = 0.5 s, which would giveM, = M, = 20 The initial membership functions of the cell loss ratip

A, = 1.34 x 1073, A, = 3.15 x 10~%, v = 3.77 x 10~6, Wwere set according to the QoS requirement. The mean value
w=>565%x10"6 ¢ =1 =283 x 1077, ¢ = 5.65 x 1076, mé? of the membership function diSwould be set to be the
andd = 5.09 x 10~; for the arrival process of a voice sourceQo0S requirement, the mean valmg? of the membership

it is assumed thak, = 4.71 x 107*, R,, = 2.12 x 10~*, function of S would be set to be a fraction of the QoS
and 7, = 1.35 s, which would giveA, = 4.71 x 10—, requirement, and the standard deviations would be set to be
a = 1.71 x 1075, and 8 = 2.09 x 1075; for high-bit- o—é{) = o—g) = mé? - mg). As a result, there exists a safety
rate data sources, it is assumed tHgt = 7.36 x 1072, margin between the membership functions of terfhand

value mg? of the membership function dflE was set to be
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supervised learning phase, in which the membership functions
were adjusted optimally.

Three different values of were used for the variables, ,
Y, p;, andz. n was set to zero fop; because the membership
functions were specified by the QoS constraint and should
not be modified.n 0.001 was used fory because the
membership functions of were initially optimized. As for
C, andz, their initial membership functions were heuristically
set and required further optimization in the supervised learning
phase. Thusy = 0.01 was used. The use of differeptmay
drastically reduce the training time required in the supervised
learning phase. The learned membership functions of the
linguistic variables for type-1 and type-2 traffic were shown
in the right-hand side of Fig. 5(a) and Fig. 5(b), respectively.

For type-1 traffic in Fig. 5(a), it can be found that the
differences of the membership functions before and after
learning are as follows. For the membership function€pf
the mean valueng? of the membership function d¥E was
properly modified from—0.4 to —0.27. Similarly, the mean
value m§§> of the membership function oF was properly
modified from 0.16 to—0.02. There is a drastically change
for membership functions of’,, and the phenomenon can
also be found in the membership functionsyofit is because
we heuristically set their initial values and we used only two
terms to describ&’, or 4. The change of the position of one
term of C, and y will squeeze the other term but receive
less counteraction from the other one term (compared to
described later). Membership functions gfare not changed
since n for p; was chosen to be zero. For the membership
function of z, however, the meamgo) of the membership
function of R is slightly increased from 0 to 0.05, representing
that the effect of “Reject” is decreased. Also, the meagff )
of the membership function dNA is slightly increased from
0.67 to 0.72, representing that the effect of “Weak Accept”
is increased. The small change is because we used four
terms to describé. The change of the position of one term
of z will squeeze the other three terms but receive more
counteraction from the three terms. Therefore, the change of
position would be confined in a smaller range. The changes of
membership functions of imply that the NFCAC controller
prefers to accept new calls. This phenomenon demonstrates
that the NFCAC controller intends to recover some system
bandwidth which the equivalent capacity method wastes due
to over-estimation, while keeping the QoS contract. It may
be the reason for the utilization improvement of the proposed
NFCAC controller, which will be shown below. Similar results
could be found for type-2 traffic in Fig. 5(b).

We compare the NFCAC scheme with the effective-band-

NS provided to tolerate the dynamic behavior of the networidth-based CAC (EBCAC) scheme proposed in [3], the
operation and insure the QoS requirement.

Here, little information about the setting of initial valuesyeyral-net-based CAC (NNCAC) scheme proposed in [14],
for the meanm”’ of the term setZ'(2) could be employed; and the radial-basis-function-based CAC (RBFCAC) scheme
therefore, the values ofz]@) are set to be equally spaced irfrom the aspects of the cell loss ratio (CLR), the system
the range of0, 1]. Based on the initial membership functionsutilization, and/or the training time under the constraint of QoS
an optimal rule structure shown in Table | was obtained yuarantee. The EBCAC scheme is a hybrid technique combin-
using GA in the self-organized learning phase. When the fuzing the conventional techniques of the Gaussian approximation
logic rules were found, the NFCAC controller entered thand the bufferless analysis; it is an improved version of the

fuzzy-logic-based CAC (FLCAC) scheme proposed in [8], the
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& 06 i
2
g 0.4
g  NNCAC the EBCAC scheme and the FLCAC scheme. It is because
3 o2l v~ FBCAC, FLCAC, RBFCACH NFCAC can incorporate the domain knowledge obtained from
[7%\ both the analytical-based method (the equivalent capacity
0 1 1 1 1y 1 1 1

200 300 400 S00 600 700 800 900 1000 scheme [1] is employed in the bandwidth estimator) and the
measurement-based method (the system statistics of the queue
length, the change rate of the queue length, and the CLR are
considered in the congestion controller). Also, the reason for
the performance improvement is that NFCAC possesses the
learning capability of the neural network.
equivalent capacity method [1]. Simulation of the EBCAC Fig. 8 shows the training time required for the NFCAC
scheme is simply to calculate the required bandwidth of stheme and the NNCAC, RBFCAC schemes. Here, a widely
new connection. The new connection request is acceptedisfed back-propagation learning algorithm was employed to
the total bandwidth required by the new connection and tlaljust the membership functions (i.e. represented in terms of
existing connection is less than the system capacity. Otherwigegights) of the multilayer neural fuzzy network and neural
it is rejected. The FLCAC scheme is a fuzzy implementaetwork for the NFCAC and NNCAC schemes, while the
tion of the equivalent capacity admission control method®BFCAC scheme is basically trained by the hybrid learning
details for the FLCAC scheme can be referred to [8]. Thmile: unsupervised learning in the input layer and supervised
NNCAC and RBFCAC schemes are neural-net implementatitgarning in the output layer. It is found that NFCAC has
of the equivalent capacity admission control method, whet&ining time of 7 (4) epochs, while RBFCAC and NNCAC
the NNCAC adopts the multilayer perceptron (MLP) structurleave training time of 103 (40) and x 10* (6 x 10%),
with 30 hidden nodes, while the RBFCAC uses radial basigspectively, for type-1 (type-2) traffic. The NFCAC has higher
function network (RBFN) with 30 hidden nodes. Details for thiearning speed than the RBFCAC and NNCAC. One reason is
NNCAC scheme can be referred to [14]. In the simulations, tlleat the neural fuzzy network is a structured network, thus the
FLCAC, NNCAC, or RBFCAC controller is equipped with theNFCAC controller can easily adopt the domain knowledge
same three peripheral processors as those used in the NF@AConventional control methods to construct the initial rule
controller shown in Fig. 3. The sizes of training set and testructure and the parameters of the membership functions,
set are all equal to 200, the number of repeated experimepteviding an excellent initial guess in adjusting its weights;
is 20, and the standard deviation is less than 5%. on the contrast, the neural network is a nonstructured network,
Fig. 6 shows the CLR’'s of an ATM traffic controllerwhich cannot incorporate domain knowledge about system.
employing the NFCAC scheme, and the EBCAC, FLCACThe other reason is that the neural fuzzy network has simpler
NNCAC, RBFCAC schemes. It is found that the QoSs fastructure than the neural network; the number of tunning
both types of traffic are indeed guaranteed for all of theparameters used in the neural fuzzy network is quite small,
control schemes. Fig. 7 shows that the system utilizati@s compared to the neural network such as MLP and RBFN
of the NFCAC scheme and the four schemes. We can findnsidered here. In this paper, there are only 16 weighting
that the utilization of the NFCAC scheme is slightly greatguarameters used in NFCAC, while there are 150 and 480
than that of the NNCAC and the RBFCAC schemes; theeighting parameters required for the RBFCAC and NNCAC,
system utilizations of NFCAC, NNCAC, and RBFCAC aragespectively. It is also noted that the RBFCAC scheme has less
91%, 90.5%, and 89%, respectively; and the NFCAC schermarning time than the NNCAC scheme. This is because the
offers about 32% and 11% greater system utilization th&BFCAC scheme can have the proper initial setting of means

cell time (unit: 10° cells)
(b)
Fig. 6. Cell loss ratio for (a) type-1 traffic and (b) type-2 traffic.
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control technigues but also constructs intelligent computational
algorithms for traffic control. It can be easily trained and
enhances system utilization. Simulation results show that the
proposed NFCAC scheme provides system utilization about
32% and 11% higher than the EBCAC and FLCAC schemes
proposed in [3] and [8], respectively, and the NFCAC scheme
requires only a fraction of th&0* order and thel0! order of
training cycles, consumed by the NNCAC scheme proposed in
[14] and RBFCAC scheme, respectively. An NFCAC scheme
such as the one introduced here may be the answer to the
problem of designing a coherent call admission controller for
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