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The Slab Dividing Approach To Solve the Euclidean 
P-Center Problem 

R. Z. Hwang, 1 R. C. T. Lee, 1'2 and R. C. Chang 2'3 

Abstract. Given n demand points on the plane, the Euclidean P-Center problem is to find P supply 
points, such that the longest distance between each demand point and its closest supply point is 
minimized. The time complexity of the most efficient algorithm, up to now, is O(n z e -  1. log n). In this 

paper, we present an algorithm with time complexity O(n~ 

Key Words. Computational geometry, NP-completeness. 

1. Preliminaries. The Euclidean P-Center (EPC) problem is defined as follows. 
Given a set D of n demand points on the plane, find a set S of P supply points 
such that the furthest distance between demand points and their closest supply 
points is as close as possible. There are many applications in the real world for 
this problem. One of them is to find P positions to set up fire departments such 
tha t  the longest distance between each house and its closest fire department is 
minimized. The EPC problem can be formally formulated as follows: 

Given a set of n demand points D = {dl, d 2 ,  . . . ,  dn}, find a set of P supply 
points S = {sl, s2 , . . . ,  sv}, such that 

2ax{lm)nv{dist(di, sj)}}is minimized, 

where dist(di, s j) is the Euclidean distance between d~ and s t. 

Megiddo and Supowit (1984) proved that the EPC problem is NP-hard. Drezner 
(1984) proposed an algorithm with time O(n 2e+1. log n) for this problem, and it 
can be revised to O(n ze - 1. log n) by combining it with the result that the Euclidean 
1-Center problem can be solved in time O(n) (Megiddo, 1983). This combining 
method is similar to that in Drezner (1987) which solved some center problems 
corresponding to the rectilinear distance. 

In this paper we propose a new technique, the slab dividing method, to solve 

the EPC problem with time O(n~ In the next section, we review the paper 
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proposed by Drezner (1984). In Section 3, we state the major idea of the ~iab 
dividing method. The detail steps and proofs are described in Sections 4-7. 

2. Previous Results. [n this section, we shall briefly discuss the method proposed 
by Drezner (1984) from the geometric viewpoint. (The method introduced in this 
section is the same as that in Drezner (1984); only the form of presentation is 
different.) First, we shall define another problem. 

DEFINITION (The P-Circle Covering (PCC) Problem). Given n demand points on 
the plane, find the smallest radius r and a set S of P points, such that the circles 
centered at the points in S with radius r can cover all demand points. 

Given a set D of n demand points on the plane and an optimal solution of the 
EPC problem, let S be the set of the supply points and let r be the longest distance 
between each demand point and its closest supply point in this solution. It is 
obvious that r and S form an optimal solution of the PCC problem for the input 
D. Also, if we obtain an optimal solution of the PCC problem, we have found an 
optimal solution of the EPC problem. In this paper, we call the set S of points in 
an optimal solution of the PCC problem the solution centers and we call the radius 
r the solution radius. In the following paragraphs, we describe the EPC problem 
in terms of the PCC problem. 

There are two major results shown in Drezner (1984) for the PCC problem. 
One is that there are O(n 3) possible radii. This means that we can find O(n ~) radii 
and one of them is the solution radius. The other is that there are O(n z) possible 
circle centers for a given radius r. This means that given a radius r, we can find 
a set S* of O(n 2) points, such that if r is the solution radius, then there exist P 
circles of radius r centered at S', S' c S*, which can cover all demand points, From 
the above two results, we can solve the PCC problem by the following way: Sort 
the possible radii. Then we choose one of them, say r', and we ask the following 
question: Can P circles of radius r' cover the n demand points? To answer this 
question, we first find the set S* of possible circle centers for the radius r' and 
draw circles with radius r' centered at the centers in S'2 Select any combinations 
of P circles and then check whether these P circles cover all the n demand points. 
If there exist P circles which can cover all the n demand points, we choose another 
radius r", r" < r', from the possible radii, otherwise we choose r", r" > r'. (Do the 
binary search on the sorted possible radii.) Then repeat the above steps again, 
until the optimal radius is found. 

Since there are O(n ~) possible circle centers, we have C ~ selections, and 
it takes O(n) time to check whether these P circles cover all points, and 
O(log n 3) = O(log n) to do the binary search on the possible radii. So the time 
complexity is O(n 2e+ 1 -tog n). 

Now let us see how Drezner (1984) showed that there are at most O(n3) possible 
radii. Drezner pointed out that given a set of points, the smallest circle covering 
all these points must be defined by one, two, or three points. For the circle defined 
by three points, these three points define the boundary of a smallest circle enclosing 
all three of them. For the case defined by two points, they form the diameter of 
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this circle. A circle defined by only one point is a degenerated case, where the 
radius of this circle can be considered as zero and the entire circle contracts to 
one point. Thus it is obvious that for the P circles in an optimal solution of the 
PCC problem, at least one circle is defined by one of the above cases, or else we 
can contract all circles and find another radius which is smaller than the solution 
radius. 

It is obvious that there are C], C~, and C~ circles defined by one, two, and three 
points, respectively. We call these circles the bounding circles. Then the solution 
radius must be equal to one of the radii of the bounding circles. 

Next, let us see how Drezner (1984, 1981) showed that there are at most O(n 2) 
possible circle centers for a given radius r. First draw circles with radius r centered 
at all demand points. Let S* be the set of all intersection points of these circles. 
For any circle centered at the points in S covering a set 13' of demand points, it 
is obvious that we can move this circle (without changing the radius) such that 
at least two points, denoted by d 1 and d2, dl, d 2 ED', are on the circle boundary 
and this circle also covers all points in i)'. Let c' be the new circle center. We 
know that dist(dl, c') = dist(d2, c') = r, so the new circle center c' must belong to 
S*. Therefore given an optimal solution of the PCC problem, we can move all 
circles, such that these new circles are centered at the points in S* and also cover 
all demand points. Thus if there is a set S of P circles with radius r covering all 
demand points then there are P circles with radius r centered at S", S" c S*, which 
also cover all demand points. Since the number of the points in S* is O(n2), we 
conclude that there are O(n 2) possible circle centers for a given radius r. 

In our algorithm, we also use the above two results .and apply the binary search 
approach. Our basic problem is: Given a set D of n demand points and two 
parameters P and r, determine whether there exist P circles of radius r which can 
cover all demand points. We call this problem the (P, r) circle covering problem 
(the (P, r) CC problem). In the next section, we propose a procedure, called 
Procedure CIRCLE_COVER,  which can be used to solve the (P, r) CC problem. 
With this procedure, we have the following algorithm to solve the PCC problem 
(the EPC problem). 

Algorithm P-Center(D, P, r, S) 
Input: A set D of n demand points and a number P. 
Output: Return a minimum radius r, and P circles centered at the points in S 

which can cover all demand points in D. 

Step 1. 
Step 2. 
Step 3. 

Step 4. 
Step 5. 

Step 6. 

Generate a set of possible radii by using the algorithm in Drezner (1984). 
Sort the above radii in increasing order, and name them as rl, r2 . . . .  , rk. 
Let Low := 1 and High. '= k. 
(From this step, we begin a binary search.) 
Let Med := [-(Low + High)/2-]. 
If CIRCLE_COVER(D, P, rMed, S) = "FALSE," 
then Low := Med, else High := Med. 
If High ~ Low 
then go to step 4, 
else return S and r = rMe d. 
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Now let us show the time complexity of the above algorithm. From Drezner 
(1984), we know that steps 1 and 2 need O(na.log n) steps. Steps 3-7 perform 
a binary search on O(n 3) radii, so the time needed is also O(n 3 "log n). In the 
next section, we will show that Procedure CIRCLE_COVER can be solved 

in time O(n~ Therefore the time complexity of the above algorithm is 

O(n~ �9 log n = O(n~ 
In the next section, we state the major idea about how to solve the (P, r) CC 

problem in time O(n~ 

3. The Slab Dividing Method.  In this section, we shall introduce our slab dividing 
method to solve the (P, r) CC problem. Note that the (P, r) CC problem is an 
NP-hard problem. Therefore we do not expect that this problem can be solved 
by the traditional divide-and-conquer method (Horowitz and Sahni, 1978; Aho 
et al., 1974; Bentley, 1980). Yet, we shall show later that once an optimal solution 
of a (P, r) CC problem instance is given, we can use part of this solution to divide 
the input data into two subsets Do and De, such that the (P, r) CC problem can 
be solved by first solving the (P, r) CC problems defined on Do and D<, respectively, 
and then merging the sub-solutions. Consider Figure l(a), which contains 54 
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points. Figure l(b) shows an optimal solution of a (9, r) CC problem defined on 
this set of data. Next, we draw a slab with width 2r which divides the solution 
centers into three subsets Sa, Sb, and So, as shown in Figure l(c). Note that the 
solution centers on the boundaries of this slab are assigned to Sb. 

If we remove the demand points covered by Sb and divide the remaining demand 
points into Da and D c, by the centrat line of this slab, as shown in Figure l(d), we 
can see that because of the width 2r, circles of radius r centered at the solution 
centers in Sa (resp. S~) cannot cover the demand points in D c (resp. Da). This 
property guarantees that the two subproblem instances are independent and we 
call this the independent property of the slab. 

Because of the independent property, we can see that given an instance of a 
(P, r) CC problem and a slab with width 2r, if we know the corresponding Sb and 
the numbers of points in S~ and S~ in advance, then we can divide the problem 
into two independent subproblems. One is the (ISa], r) CC problem with Da as 
input; another is the (IS~l, r) CC problem with Dc as input. An optimal solution 
can be obtained by merging Sb and the two solutions in the two subproblems. 

In Sections 4 and 5, we will show that in an optimal solution of a (P, r) CC 
problem instance, there exists a slab with width 2r which divides the solution 
centers into three subsets, S~, Sb, and Sc, where S b is the set of solution centers in 
the median part (including the centers on the two boundary lines), and S, (resp. 
S~) is the set of the solution centers to the left (resp. right) of the slab, such that 
S,, Sb, and Sc satisfy the following properties: 

(1) the number of points in S b is no more than K s -- O(x/-fi); 
(2) the number of points in both S, and Sc is no more than r2P/37. 

The slab which satisfies the above properties is called the dividing slab of this 
optimal solution and the above properties are called the dividing slab properties. 

Our algorithm is based upon two procedures. One is called Procedure 
GEN_SLABS which can generate a set L s of slabs and one of them will be the 
dividing slab of an optimal solution. The other is called Procedure 
GEN_SUPPNTS,  with the set D of all demand points and a slab as inputs. Its 
output is a set of partial solutions. Each partial solution is a set of circle centers. 
Furthermore, if the slab is a dividing slab of an optimal solution, then one of the 
partial solutions will be S b. Therefore, we may call these partial Solutions the 
candidates of Sb. We also guarantee that the size of each candidate, produced by 

Procedure GEN_SUPPNTS,  is no more than O(x/P ). 
According to the above properties and the procedures, we can solve the (P, r) 

CC problem by the following way. First, we call Procedure GEN_SLABS to 
generate a set L s of slabs. Then for each slab l, we generate a set S" of candidates 
of Sb by calling Procedure GEN_SUPPNTS.  For each candidate S~ of Sb in S', 
we draw circles centered at the points in S~. Next remove the demand points in 
D which are covered by these circles and divide the remaining uncovered points 
into two subsets, D a and D c. If l is a dividing slab, from the second property of 
the dividing slab, we know that there exist no more than F2P/3~ circles of radius 
r which can cover all demand points in D,(Dc). Thus, we recursively call Procedure 
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CIRCLE_COVER to find i _< F2P/3] circles of radius r to cover alL points in Da. 
Since the total number of circles in an optimal solution is no more than P, we 
check whether P - i - I S;I circles of radius r can cover all demand points in D~. 
According to the second property, the number P - i - IS~,l will be no more than 
F2P/3]. If we can find the solutions of the two subproblems, we merge back the 
solutions; otherwise we try next instance. The detail steps are stated in the 
following procedure. 

Procedure CIRCLE_COVER(D, P, r, S) 
Input: A set D of n demand points, a number P, and a radius r. 
Output. Return "TRUE,"  and a set of S of solution centers, if P circles of radms 

r can cover all points in D; otherwise return "FALSE." 

Step 1. If P < 3, then use Drezner's algorithm (Drezner, 1984) to solve this 
problem, else do the following steps. 

Step 2. Generate a set L~ of candidates of the dividing slab by using Procedure 
GEN_SLABS. 

Step 3. For each slab 1 in L~ do: 
Step4. Call Procedure G E N _ S U P P N T S  to generate a set S" of sets of 

candidates of S b. 
Step 5. For each set S; in S" do: 
Step 6. Draw the circles of radius r centered at the points in S;. Let D' be 

the set of points in D which are not covered by these circles. Let D~ 
(resp. De) be the set of points to the right (resp. left) of the central 
line of L 

Step 7. For i = 0 to F2P/3-] do: 
Step 8. I f ( P  - i - I S ; 1 )  _< [2P/3-] do: 
Step 9. Call T 1 = CIRCLE COVER(Da, j, r, S~). 
Step 10. Call T z = C I R C L E C O V E R ( D  e, P - i - ]S~,I, r, $2). 
Step ll. If T I = T z = " T R U E , "  then return " T R U E "  and S =  

S 1 k..) 8 2 u S ; .  

Step 12. Return "False." 

Now let us analyze the time complexity of the above procedure. Let T(P) be the 
time complexity of this procedure. The time complexity needed between step 7 
and step 11 can be formulated by using the term T(P) as follows: 

) ot ) o/\ Z (T(it + T(P - i S ; I -  0) -< , , = o  TU) + T(P - i) 

_< 0(2. (F2P/3-I)- T([-2P/3-])) 

= O(P. T(FZP/3-])). 

Because I S;I is bounded by O(x/P ), Step 6 needs O(x/fi) steps to draw the circles, 

O(n" x/@) steps to remove the uncovered demand points, and O(n) steps to divide 
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the uncovered points for each slab. Therefore the time needed between step 6 to 

step 11 is O(n-x/P) + O(P- T([-2P/3-])). 
Because steps 2-5 are concerned with two unknown procedures, for analyzing, 

we will define some notations. Let TI(P) (resp. Ta(P)) be the time complexity of 
Procedure GEN_SLABS (resp. Procedure GEN_SUPPNTS),  and let N~(P) (resp. 
N2(P)) be the number of slabs (resp. the candidates of Sb) generated in Procedure 
GEN_SLABS (resp. Procedure GEN_SUPPNTS).  Now we can see that the time 
needed in this procedure is 

T(P) = TI(P) + NI(P).(T2(P ) + N2(P)'(O(n" x/P) + O(P. T([-2P/3])))). 

Later, in Sections 4 and 7, we will show that 

and 

(1) T~(P) = O(T(P/3) + P3/2.n), 

(2) T2(P ) = O(n~ 

Nl(p  ) = O(x/P), 

N2(P ) = O(n~ 

Based upon the above results, the time complexity becomes 

r(p) = o(v(e/3) + P3/2. n) + o ( , fp) .  + o(e .  rff2P/37)))), 

T(P) = O(xfP" (n~ �9 T([-2P/3])))), 

T(P) = O(n~ r([-2P/3-1)), 

T(P) = O(n~ 

In the next section, we shall discuss Procedure GEN_SUPPNTS and its relative 
complexities T2(P ) and N2(P ). The first and second properties of the dividing slab 
are discussed in Sections 5 and 6, respectively. TI(P), NI(P), and Procedure 
GEN_SLABS are discussed in Section 7. 

4. Generating the Candidates of Sb. In this section, we shall discuss the details 
about Procedure GEN_SUPPNTS.  

From Drezner (1984), we can generate a set of O(n 2) possible solution centers 
for a given radius (see Section 2). From the first property of the dividing slab, we 
know that the number of points in Sb is no more than K~. Combining these two 
results, we can select any i points from the set of possible solution centers as the 
candidate of Sb, where i ranges from 0 to Ks. The following procedure states the 
detailed steps. 

Procedure GEN_SUPPNTS(r ,  I, S") 
Input: A radius r and a slab I. 
Output: A set S" of sets of candidates of S b. If I is a dividing slab, then S b ~ S". 
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Step 1. 

Step 2. 
Step 3. 

Generate the set S* of possible solution centers, for the given radius r, by 
using the method in Drezner (1984) (see Section 2). Let S~ be the set of 
points which belong to S* and are in the slab I. 
For i = 0 to Ks do: 
Enumerate all subsets of i points from S~. Add these subsets into S ~'. 

It is obvious that if l is a dividing stab, then S b must belong to S". Now let us 
analyze the time complexity of the above procedure. From the discussion in 
Section 2, we know that I S* l  = O(n 2) and step 1 takes O(n z) steps. Because 

K s = O ( ~ ) ,  steps 2-3 take C ~ + C ~ + ' "  + ,~K,c~ = O(n ~ and the num- 

ber of candidates generated in Step 3 is als00(n~ Therefore T2(P ) = O(n ~ 
and N2(P) = O(n~ 

5. The First Property of the Dividing Slab. To prove the properties of the dividing 
slab, we arrange the slabs in such a way that their central lines intersect in a 
common reference point and if there are L slabs, the angle between two consecutive 
slabs is n/L, as shown in Figure 2. In this section, we would show that if L is large 
enough, one of these slabs satisfies the first property of the dividing slab. In the 
next section, we show that we can determine a reference point, such that all the 
L slabs can satisfy the second property. 

Before the formal discussion, let us see the example in Figure 3. Assume that 
the right circles in Figure 3 constitute an optimal solution of some (8, r) CC 
problem. We draw four slabs in this figure. We can see that some slabs contain 
more solution centers and some contain less. Here slab 2 contains the smallest 
number of supply points. Later we shall show that if the number of slabs is large 

enough, then one of the slabs will contain no more than Ks = O(\ /P)  solution 
centers. 

Fig. 2 
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slab 2 
s ~  3 

Fig. 3 

Let the number of solution centers inside slab i be denoted as g~ and 
g = mini <_~zL{g~). The first question to ask is: How large should L (L is the number 
of slabs regularly surrounding a reference point) be? Obviously, the larger L is, 
the smaller g is, because a larger L indicates that we are examining a larger number 
of slabs. Consequently, we shall not miss any slab in which only a small number 
of slabs needs be examined. However, it takes time to examine slabs. Therefore, 
we can hardly afford examining too many slabs. In the rest of this section, we 

shall show that an upper bound of g is O(~fP), when L is large enough. 
Consider Figure 4. There are many concentric circles. Each circle has radius 

i. r, i = 1, 2, 3 . . . . .  Let A(i) denote the region between two concentric circles of 
radius i. r and (i - 1). r. Let m z denote the number of solution centers in A(i). Note 
that inside A(i), a solution center may be covered by more than one slab. Let xi 
denote the solution center which is covered by the largest number of slabs in A(i). 
Let V~ denote the number of slabs covering xl. 

m 1 =1 rn 3 = 4  
rn2=2 rn 4 =1 

Fig. 4 
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Let V(i) be an upper bound of V/, let U(i) b e an upper bound of ~ = ~ mi, and 
let K be a number such that for any  k > K ,  U(k) = P. The rest of this section is 
organized as follows. In Lemma 1, we show that g <- ~ f=  l(U(i) - U(i - I)). V(i)/L. 
In Lemma 2, we show that a proper value of V(i) can be determined. Later values 
of U(i) and K are determined in Lemma 5. Finally, in Theorem 1, we combine the 

above results, and conclude that g can be bounded by a number Ks = O(\fP),  
when L = K. 

N o w  we propose the following lemma. 

L E M M A  1. 

P R O O F .  

K 
g <_ ~ (v ( i )  - u(~ - 1))-  V(i)/L. 

/ = l  

L 

g~L<_ ~ gl 
i = l  

<_ Y m,v~. 
i=1 

There must exist a number C, such that for any i > C, m i = O. Therefore 

C 

g 'L  < ~ m i V i =  ~ mi'V~ 
i = l  i = l  

C - 1  

= y ,  m~. y(i)  + mc" V ( C )  
i=1  

< mi. V(i) + U ( C ) -  m i . V(C) 
,=1  / = i  

Note  that U(C) > m, = mc + m,. 
i=1  i=1 / 

C - 1  

m,.  (v( i )  - v ( c ) )  + u ( c ) .  v ( c )  
/=1  

C 2 

= Z m,.  (v( i )  - v ( c ) )  + m e - l ( v ( c  - 11 - v ( o )  + g ( c ) "  V(C) 
i=1 

<_ ~ m j V ( i )  - v ( c ) t  + g ( c  - 1t - mi  
i = l  i = l  

�9 ( v ( c  - 1) - v ( c ) )  + u ( c ) . v ( c )  

C - 2  

= ~ m~(V(i) - v ( c )  - y ( c  - 1) + v ( c ) )  
i = l  

+ U(C -- 1) . (V(C --  1) - V(C)) + U(C). V(C) 
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< 

< 

C - 2  

Z 
i = 1  

m,(V(i )  - V ( C  - 1)) + U ( C  - I ) . ( V ( C  - 1) - V(C))  + U ( C ) .  V ( C )  

C - 3  

E 
i = I  

mi(V( i )  - -  V ( C  - -  2)) + U ( C  - 2 ) . ( V ( C  - 2) - V ( C  - 1)) 

+ U ( C -  1) . (V(C-  1 ) -  V(C)) + U(C).V(C) 

C - 1  

2 
i = 1  

U ( i ) . ( V ( i )  - V( i  + 1)) + U ( C ) .  V(C) .  

Since U(i) is def ined on  i = 1, 2 . . . . .  we  m a y  c o n v e n i e n t l y  set U(0) = 0. Therefore  

C - 1  C - 1  

g" L <_ ~, U(i)" V(i) + U(C)" V(C) - 
i = 1  i = 1  

C C - 1  

= ~,  U ( i l . V ( i ) -  ~ U ( i ) . V ( i  + 11 
i= l i=O 

C C 

= ~ V ( i ) . V ( i ) -  2 V ( i -  1) 'V( i )  
i = 1  i = 1  

( u ( i )  - u ( f  - 1)). v( i ) .  
i = 1  

u ( i ) . v ( i  + 1) - u ( o ) -  v (1 )  

Therefore  

C 

g .  L <_ ~ (U( i )  - U(i  - -  1)). V(i). 
i = 1  

I fK>_C,  

C K 

g .  L < ~ ,  (U( i )  - U(i  - 1)). V(i)  <_ ~ (U(i)  - U(i  - 1)). V(i).  
i = 1  i = 1  

I fK  < C, 

C 

g .  L <_ ~ (U( i )  - U( i  - 1)). V(i)  
i = 1  

K C 

= ~ (U( i )  - U( i  - 1)). V(i) + ~ (U( i )  - U(i  - 1))- V(i)  
i = 1  i = K + I  

K 

= ~ (U(i) - U(i  - I))- V(i). 
i=I 

(Since  U(i)  = U( i  - 1) = P, for any  i - 1 > K.) 
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Therefore 

K 

g <_ ~ (U(i) -- U(i -- t)) o V(i)/L. 
i=1 

[] 

In the next lemma,  we determine a value of V(i). We first define another  term 
Bj, which is like V~, except that  it is defined at the circle of radius j ' r  (where j is 
any positive real number)  instead of a range. Therefore we can see that  the upper  
bound  of max{Bjl i  - 1 _<j _< i} is also an upper  bound  of V~. Now we prove 
L e m m a  2. 

LEMMA 2. I f  we choose V(1) = V(2) = L, and V(i) = [-(2L/~) x (1/(i - 2))-1, for 
i >_ 3, then V(k) is an upper bound of Vk, for any positive integer k. 

PROOF. It  is easy to see that  V1 -< L and V: _< L. Therefore we only consider the 
case when i > 3. Let yj be a point  on the bounda ry  of a circle of radius j ' r  and 
covered by the largest number  of slabs. Let Bj be the number  of slabs covering 
yj. (Note that  j is any positive number ,  and i is a positive integer.) Therefore,  f rom 
the definitions, we know that  

(1) V~. = max{Bj[i  - 1 _<j _< i}. 

Draw a line through yj and the origin. Let 0 be the largest angle as shown in 
Figure 5, such that  any slab which has width 2r and whose central line lies inside 
0 will cover yj. It  is obvious  that  0 < 0/2 < zc/2, when j > 3. 

/ 

Fig. 5 
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An upper  bound  of 0 can be found in the following derivations (when j >_ 3): 

r I 
tan(O/2) x / ( j . r ) 2 _ r 2  x / j 2 - 1  

It is well known that 

x 3 2x s 17x 7 22m. (22m - -  1).Bm x2, . -1  
tan(x) = x + ~-  + ~ -  + ~ -  + ' - -  + (2m)! + -~ 

-7c/2 < x < ~/2, where B m is the Bernoulli number  of m 

x 3 2x 5 17x 7 2 2m" (2 2ra - -  1)" Bm X2m- 1 

tan(x) - x = 3 -  + 1 5  + 3 1 5  + ' "  + (2m)! 
+ .-..  

Since B m >_ O, we know that  tan(x) - x > 0, when - re /2  < x < ~z/2. 
In our  case, 0 < 0/2 < re/2. Therefore 0/2 < tan(0/2) 

1 
0/2 < tan(0/2) < - -  

x/j  2 - 1 

1 1 

x / ( J - - 1 ) ' ( J +  1) , , ~ - - 1 )  2 

2 
O < - -  j - l  

1 

j - l '  

An upper bound  of 0 has been found. Then we ask another  question: How 
many  slabs among  the L slabs can be put into angle 07 Because there are only L 
slabs, the angle between any two consecutive slabs is ~/L. Therefore the largest 
number  of slabs which can be put into angle 0 is 

(2) Bj  <_ < [-(2L/~z).(1/(j - !))7. 

F rom (1) and (2), we derive that V~ = B i_ !. Therefore, 

Vii = B i - ,  < [-(2L/rO(l / ( i  - 2))7, 

when i _> 3. [ ]  

In the next step, we shall derive a value of U(i). The way to determine U(i) is 
somewhat  complicated. We first present a lemma to show that if a large circle of 
radius (k + 1)- r can be fully covered by i small circles of radius r (that means any 
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area in the large circle is covered by at least one small circle), there are at most i 
solution centers in the area of a circle of radius k.r. 

LEMMA 3. Let Ct and C 2 be two concentric circles of radii k ' r  and (k + 1).r, 
respectively. I f  C2 can be fully covered by i circles of radius r, then there are at most 
i solution centers of the optimal solution in C~ 

PROOF. First, we assume that there are j solution centers of the optimal solution 
in C1, where j > i. We now show that these j solution centers cannot constitute 
an optimal solution. 

The area which is covered by the circles centered at the solution centers inside 
C 1 (radius k.r) is restricted in C2 (radius (k + 1).r), for the radii of these circles 
are only r. Therefore those demand points covered by these circles centered at the 
j solution centers must be distributed inside Cz. 

Because i circles are sufficient to cover all the area of C2, these i circles must 
also cover all demand points inside this circle. Therefore we can choose the centers 
of these i circles as the new supply points. This shows that these j solution centers 
cannot be an optimal solution, because there is a better solution which needs only 
i (i < j) supply points. [] 

Now another problem arises. What  is the relation between i and k in the above 
lemma? To find the relation directly is difficult. Therefore we use an indirect 
method to solve this problem. We know that a circle of radius r can fully cover 

a square of side length x/2- r. Therefore if an area can be fully covered by i squares 

of side length x/2" r, this area can also be covered by i circles of radius r. In the 
following property and the lemma, we discuss the relation between the squares 
and the circle. 

PROPERTY A. A circle of radius r can cover a square of side length w/2 �9 r, and a 
square of side length 2 ' r  can cover a circle of radius r. 

Figure 6 illustrates this property. 
Now we use the above property to derive the next lemma. 

( 
, . 

(a) 

) 
Fig. 6 

26  

(b) 
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LEMMA 4. A circle o f  radius k . r  can be covered by (xf2k + 1) 2 squares o f  side 

length x/~" r. 

PROOF. F rom proper ty  A, we know that  a circle of radius k . r  can be covered 

by a square of side length 2. k'r.  Because (2. k. r)/(~vf2" r)= x/2" k, [x/2" k-] 2 
squares of side length x /2 .  r are sufficient to cover a square of side length 2" k" r. 

Therefore (xf2k + 1) 2 > [-x/2.k-] z squares of side length x / 2 . r  can cover a circle 
of radius k" r. [ ]  

Now we want to derive a value of U(i). From Lemma 3, we know that if we 
want to find an upper bound  of solution centers in A(k), we should first calculate 
the number  of circles which can cover a circle of radius (k + 1). r. Since Lemma 

4 shows that  (~f2k + 1) 2 squares of side length x / 2 . r  are sufficient to cover a 

circle of radius k" r, we conclude that  there must exist (x/2k + 1) a circles of radius 
r which can cover this circle, for a circle of radius r can cover a square of side 

length ,~/2. r. Therefore we can now determine the value of U(i). 

L E M M A  5. ! f  we choose 

U(k) = min{(,,/2" k + x /2  + 1):, P} 

and 

K = l-x/P/2 - (1 + 1/, ,~)~, 

then U(k) is an upper bound of ~.f= 1 mk, where k is any positive integer, and for any 
i >_ K, U(i) = P. 

PROOF. We know that, for Lemma 4, (xf2k + 1) 2 squares of side length , , f2"r  
can cover a circle of radius k. r, and a circle of radius r can cover a square of side 

length , , /2"r .  Therefore (x/~k + 1) 2 circles of radius r must be able to cover a 

circle of radius k.r,  and (w/2(k + 1) + 1) 2 = (x//2 �9 k + , , ~  + 1) 2 circles of radius 
r must be able to cover a circle of radius (k + 1).r. 

Considering Lemma 3 and the above result, we conclude that  there are at most  

(x/2.  k + , ~  + 1) z solution centers in the circle of radius k . r .  Since the total 
number  of solution centers in the optimal solution is P, 

k 

Z 
i = 1  

rn k _< min{(x//2 �9 k + x /2  + 1) z, P}. 

Therefore if U(k) = min{(x/2" k + x /2  + 1) 2, P}, then Z~=l mk <_ U(k). Since U(k) 
is known, it is easy to derive that K = [ - x / ~  - (1 + 1/x/2)7. V1 
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Now we have already found the values of U(i), V(i), and K. At the beginning 
of this section, we have defined L, which is the number of slabs which we should 
examine. In the next theorem, we combine all the above results together and show 

that when L = K we can derive that an upper bound of g is O(,,/P). 

THEOREM 1. [ f  L = K ,  an upper bound o f  g is Ks  = O(x /P) .  

PROOF. 

~c 'L g <- (U(i) - U(i - 1))" V(i) (from Lemma 1) 
i 

= (U(i) - g ( i -  1)). V(i) L + (U(2) -  U(1)). V(2)/L + (U(1) - U(O))- V(1)/L 
i 

<_ (U(i) - U(i - t)). V(i) L + U(2) (for U(0) = 0 and V(1) = V(2) = L) 
i 

K 
< Z ((',/2' i + x/2 + 1) 2 - (x/2" i + 1)2) �9 V(i) /L + U(2) 

i = 3  

= ~ ( 4 " i + 2 + 2 x f 2  )" ~ +U(2)  
i = 3  

~=3 2) + 1  L + U ( 2 )  

i= 3 n ( i -  2~--) + + U(2). 

Let j = i - 2 

_ ( 4 . j + 1 0 + 2  ~-). 2 _ + + U(2 )  g <  
j = l  ~ ' J  

< y . ( 4 " j + 1 0 + 2 ,  + ~ ( 4 " j +  1 0 + 2  ) + U(2) 
j=l  j=l  

<- Z (4"j + 10 + 2x/2) + 2 (4-j + 10 + 2,,//2) + U(2) 
j ~ l  j = l  

< (K - 2).(8 + 20 + 4x/-2 ) + ~, ((4 . j / L ) +  (K - 2)-(10 + 2x//2) . 
j = l  

+ U(2). 

From Lemma 5, U(2) = 19 + 6 , /2 .  Let cl = U(2), c2 = (8 + 20 + 4V/2)(1/~),  
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c3 = (10 + 2,,f2), and L = K. Then we derive that 

9 < - ( K - 2 ) ' c  2 +  2 \ ( 4 j / K ) + ( K - 2 ) c 3 "  + c l ,  
J 

9 < _ ( K - 2 ) . c 2 + ( K - 2 ) . c 3 . ( 1 ) + 4 . ( K - 2 ) . ( K - 1 ) / 2 K + c l .  

From the above equation, we can see that when L = K, there is an upper bound 
of 9 which is O(K). 

Let 

K, = ( K -  2) 'c2 + (K - 2 ) ' c 3 " ( 1 )  + 4"(K - 2 ) ' ( K -  t)/2K + cl. 

Since K = [-xf-P/2 - (1 + 1 / , ~ ) ] ,  we conclude that 9 < K, = O(K) = O(x/P ). El] 

Now we have shown the first property of the dividing slab. In the next section, 
we will show the second property of the dividing slab. 

6. The Second Property of the Dividing Slab. In the above section, we deliberately 
avoided discussing the problem of determining a proper location of the L slabs. 
We shall now proceed to discuss the problem. Consider the case when L = 1, as 
shown in Figure 7. Assume that an optimal solution of some (P, r) CC problem 
instance is known. We want to find a position to put this slab, such that the 
number of solution centers to the left and to the right of the slab are both no more 
than [-2P/3]. 

To achieve this, we observe that because of the width, the circles of radius r 
centered to the left of the central line of the slab cannot cover the demand points 
to the right of the slab, and vice versa. Therefore, if the number of solution centers 
to the left of the central line of the slabs is not less than LP/3J, then the number 
of solution centers to the right of the slab must be no more than [-2P/3], for the 
total number of solution centers is no more than P, as shown in Figure 8. 

Fig. 7 
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Fig. 8 
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To find the position of a central line, we may conduct a linear scan and 
recursively call Procedure CIRCLE_COVER (see Section 3) to determine whether 
a set of points can be covered by LP/3J circles with radius r. Consider Figure 9. 

We may conduct the linear scanning from both the leftmost and the rightmost 
direcctions toward their opposite directions, and ask whether the set of demand 
points to the left of the left scan line and to the right of the right scan line can be 
covered by exactly LP/3J circles with radius r. Then we can find two scan lines, 
as shown in Figure 10. We call the middle empty area the gap. It can be easily 
seen that if we place a slab centered at any position of the gap, we obtain a slab 
such that the numbers of solution centers to the left and to the right of this slab 
are both no more than F2P/3], as shown in Figure 10. 

In the above discussion we assumed that the direction of the slab is determined; 
we only have to find the proper location. It is easy to see that as long as the 
direction of the slab does not coincide with the direction of a line linking two 
demand poi-+~, this location can always be found. If the direction does coincide 
with the dir__ :ion of a line linking two demand points, we may tilt this direction 
slightly to overcome the trouble. 

Let us now consider the case when L = 2. Using similar reasoning techniques, 
we can determine two gaps perpendicular to each other as shown in Figure 1I. 
There exists a common intersection and we can place the two slabs centered at 
this intersection area, as shown in Figure 12. Then our problem is solved. 

For any number of L, we can perform the same operations. But we can see that 
there is no guarantee that the gaps between all pairs of scan lines will intersect at 
a common area. It is interesting that we can use Helly's theorem (Edetsbrunner, 
1987) to solve this problem. Helly's theorem is presented as follows: 

m 

m 

) "o 
I 
t 

Fig. 9 
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Scan Lines 

Fig. 10 
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THEOREM 2 (Helly's Theorem)  (a simplified version) (Edelsbrunner,  1987; Helly, 
1923). I f  there are n convex sets in a plane, and any three o f  them have a common 
intersection, then all n convex sets have a common intersection. 

Because a half-plane is also a convex set, Helly's theorem can also be stated as 
follows: 

I f  n half-planes do not have a common intersection, then there exist three 
half-planes such that they have no common intersection. 

Now let us see how we can apply Helly's theorem. As shown in Figure 11, the 
intersection of the two gaps can be expressed by the following formula:  

(hi u h 2 u h 3 w h4) ~, 

where hi ,  h2, h3, and h~ are half-planes and h~ denotes the complement  of hi. 
In general, we are given 2 '  L half-planes hi, h 2 . . . .  , h2. L and we are interested 

in knowing whether  (h 1 u h 2 w . . '  u h 2.L) c is empty  or not. We shall prove  the 
following theorem. (Let ~2 denote the entire plane.) 

THEOREM 3. I f  (h 1 ~ h 2 ~ "'" w h2.L) c = ~ ,  then  there  e x i s t  three  half-planes hil, 
hi2, hi3 ~ {hi, h2, . . . ,  h2.L}, such that (hil  kA hi2 ~A hi3 ) = ~2. 

PROOF. Since (h 1 w h 2 u " "  u h2.L) c = ~Z~, we have (hi c~ h~ ~ - . - c ~  h~.L) = ~ .  
According to Helly's theorem, there exist three half-planes, hi1, hlz, 

Fig. ~1 
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Slab 

�9 

 | 
Fig. 12 

hla 6 {hi, h2 . . . . .  h2.L}, such that (h~l ~ h~2 ~ hC3) = ~ .  This implies that 

Theorem 3 shows that if L gaps do not have a common intersection, then there 
must exist three half-planes such that they comprise the entire plane. But each 
half-plane defines a region in which the demand points can be covered by IP/3J  
circles. This means that the entire set of demand points can be covered by at most 
P circles with radius r. We can find these circles by adding up all circles found in 
these three half-planes by calling Procedure CIRCLE_COVER. 

We may conclude that either we have a reference location to put all the L slabs, 
such that each slab satisfies the second property of the dividing slab, or we have 
found no more than P circles which can cover all demand points in D. The detailed 
algorithm about how to draw these slabs and find the reference location is 
described in Procedure GEN_SLABS discussed in the next section. 

7. Procedure GEN_SLABS and Its Relative Complexities. We now present Pro- 
cedure GEN SLABS, which corresponds to the method described in the above 
two sections. In this procedure, we generate a set of slabs and one of them is the 
dividing slab. Or we will find no more than P circles with radius r which can 
cover all the demand points in D. 

Procedure GEN_SLABS(D, P, r, L~, or S) 
Input: A set D of n demand points, a number P, and a radius r. 
Output: Return: A set L s of slabs and one of them is the dividing slab, or K' circles 

of radius r, K' _< P, which can cover all points in D. 

Step 1. Draw a set L, of L slabs regularly surrounding a point in the plane. 
Step 2. Rotate the L slabs, such that no lines connecting any two demand points 

are parallel to any slab. (First, we choose any direction as the L slabs 
direction and test whether there exists any line, which connects any two 
demand points, parallel to any slab direction or not. If such a line exists, 
we then find all angles between slabs and lines. Let the smallest nonzero 
angle be &. It is obvious that if we rotate all the slabs by angle ~/2~ there 
will exist no line connecting any two demand points parallel to any slab 
direction.) 

Step 3. For each slab l~ in L S do: 
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Step 4. 
Step 5. 

Step 6. 
Step 7. 
Step 8. 
Step 9. 
Step 10. 
Step 11 
Step 12. 
Step 13. 

Step 14. 

Step 15. 
Step 16. 
Step 17. 
Step 18. 
Step 19. 
Step 20. 

Find a line L'i which is perpendicular to li. 
Sort all demand points in D by the sequence that they map into LI from 
left to right, denoted as d'~, d~ . . . . .  d',. 

For  j : =  1 to n do: 
Let m:= 2.L.  
T := CIRCLE_COVER({dl,  . . . ,  a~}, LP/3J, r, S m_ 0. 
If T = "FALSE," then j : = j  - 1 and go to next step. 
F o r k : = l t o n d o :  

T :=  CIRCLE_COVER({d;, d '_ l  . . . .  , d~,}, I_P/3J, r, Sin). 
If T = "FALSE," then k := k + 1 and go to next step. 

Draw the line l~,_ 1 (resp. l~,) which is parallel to l~ and passes through 
the point d) (resp. d~,). 
Let hm- 1 (resp. hm) be the half-plane to the left (resp. right) of l~_ 1 (resp. 
l~) including the line 1 m_ 1 (resp. l;~). 
If(h 1 w h 2 w h 3 u ' - '  w h 2.L) = ~2, then do: 
Find ml, m2, and m3, such that (hmx w h,, 2 u h,,3) = N 2. 
Return S = S ~  u S,,2 u S~,3 as a solution of the (P, r) CC problem. 
Else do: 
Find a point p not covered by any of ht, h 2 . . . . .  h2.L. 
Move the set Ls of L slabs, such that their central lines intersect at point 
p. Return Ls. 

The time complexities of the above steps are as follows: The time complexity 
needed in steps 1 and 2 is O(n 2 .L). In Steps 3-14, it takes O(n. L" T([P/3J)), where 
T([P/3A) is the time needed by recursively calling Procedure C I R C L E C O V E R .  
In Steps 15-17, it takes O(L3"n) and in Steps 18-20, it takes O(L) time. Therefore 
TI(P ) is O(n 2. L + n" L" T([_P/3 J) + L 3. n) = O(T([_P/3J) + n. p3/Z). 

Recall that, for the EPC problem (also the PCC problem), we perform the binary 
search on all possible radii before calling Procedure C I R C L E C O V E R .  Therefore 
the total time complexity of the corresponding algorithm for the EPC problem 

(also the PCC problem) is O(T(P)).O(log n) = O(n~ 

8. Conclusions. In this paper, we propose the slab-dividing method solving the 

Euclidean P-Center problem in time O(n~ Lipton and Tarjan (1979, 1980) 
and Mehlhorn (1984) also proposed an algorithm which solved some planar 

NP-hard problems in time O(n~176 We believe that there are still many famous 
NP-hard problems defined on the planar graph or the geometry plane which can 
be solved more efficiently as these cases. 
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